

93419 64 x 9-Bit Static Random Access Memory

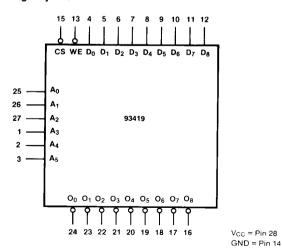
TTL Bipolar Memory

Bipolar Division

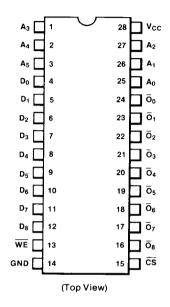
Description

The 93419 is a 576-bit read/write Random Access Memory (RAM), organized 64 words by nine bits per word with open collector outputs. It is ideally suited for scratchpad, small buffer and other applications where the number of required words is small and where the number of required bits per word is relatively large. The ninth bit can provide parity for 8-bit word systems. The commercial version of the 93419 is available in two speeds "standard" speed and an 'A' grade.

- Commercial Address Access Time 93419 — 45 ns Max 93419A — 35 ns Max
- Military Address Access Time 60 ns Max
- Fully TTL Compatible
- Features Open Collector Outputs
- Data Output is the Complement of Data Input
- Power Dissipation 0.87 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature


Pin Names

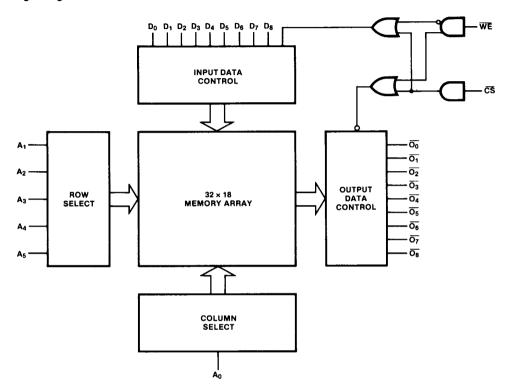
A₀-A₅ Address Inputs
D₀-D₈ Data Inputs


 $\overline{O}_0 - \overline{O}_8$ Inverting Data Outputs

WE Write Enable Input (Active LOW)
Chip Select Input (Active LOW)

Logic Symbol

Connection Diagram
28-Pin DIP (Top View)



Note:

The 28-Pin Flatpak and the 28-Pin Leadless Chip Carrier have the same pinout as the 28-Pin DIP.

4-17

Logic Diagram

Functional Description

The 93419 is a fully decoded 576-bit random access memory organized 64 words by nine bits. Word selection is achieved by means of a 6-bit address, A₀ through A₅.

One Chip Select input is provided for easy memory array expansion of up to 128 words without the need for external decoding. For larger memories, the fast chip select access time permits decoding without an increase in overall memory access time.

The read and write functions of the 93419 are controlled by the state of the active LOW Write Enable (\overline{WE}) input. When \overline{WE} is held LOW and the chip is selected, the data D_0-D_5 is written into the location specified by the binary address present at A_0 through A_5 . Since the write function is level triggered, data must be held stable at the data input for at least $tw_{SD(min)}$ plus $tw_{(min)}$ plus $tw_{HD(min)}$ to insure a valid write. When \overline{WE} is held HIGH and the chip selected, inverted data is read from the addressed location and presented at the outputs $(\overline{O_0}-\overline{O_8})$.

Open collector outputs are provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93419s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of $R_{\rm L}$ value must be used to provide a HIGH at the output when it is off. Any $R_{\rm L}$ value within the range specified below may be used.

$$\frac{V_{CC}(Max)}{I_{OL} - FO(1.6)} \le R_L \le \frac{V_{CC}(Min) - V_{OH}}{n(I_{CEX}) + FO(0.04)}$$

RL is in kΩ
n = number of wired-OR outputs tied together
FO = number of TTL Unit Loads (UL) driven
ICEX = Memory Output Leakage Current
VOH = Required Output HIGH Level at Output Node
IOL = Output LOW Current

The minimum R_L value is limited by the output current sinking ability. The maximum R_L value is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} . One Unit Load = 40 μ A HIGH/1.6 mA LOW.

Truth Table

_		Inputs		Output				
	CS WE		D	Open Collector	Mode			
	н	Х	Х	Н	Not Selected			
	L	L	L	Н	Write "0"*			
	L	L	Н	<u> </u>	Write "1" *			
	L	Н	Х	Dout*	Read			

H = HIGH Voltage Level (2.4 V)

L = LOW Voltage Level (.5 V)

X = Don't Care (HIGH or LOW)

'Memory inverts from Data In to Data Out

DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition		
V _{OL}	Output LOW Voltage		0.3	0.5	V	V _{CC} = Min, I _{OL} = 12 mA		
VIH	Input HIGH Voltage	2.1	1.6		٧	Guaranteed Input HIGH Voltage for All Inputs ⁶		
VIL	Input LOW Voltage		1.5	0.8	٧	Guaranteed Input LOW Voltage for All Inputs 6		
liL	Input LOW Current		-200	-400	μΑ	V _{CC} = Max, V _{IN} = 0.4 V		
Ін	Input HIGH Current		1.0	40 1.0	μA mA	V _{CC} = Max, V _{IN} = 4.5 V V _{CC} = Max, V _{IN} = 5.25 V		
ICEX	Output Leakage Current		1.0	-100	μΑ	V _{CC} = Max, V _{OUT} = 4.5 V		
V _{IC}	Input Clamp Diode Voltage		-1.0	-1.5	٧	V _{CC} = Max, I _{IN} = -10 mA, Note 4		
lcc	Power Supply Current		100	150 170	mA mA	Commercial Military	V _{CC} = Max All Inputs Grounded	

Notes

- Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute.
 Conformance testing performed instantaneously where T_A = T_J = T_C.
 Correlated temperatures, typically 25°C and 100°C, and limits may be used to auarantee performance.
- 2. Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25 ^{\circ} \text{C}$ and maximum loading.
- The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
- 4. Short circuit to ground not to exceed one second.
- Tw measured at twsa = Min, twsa measured at tw = Min.
- Static condition only.

Commercial

AC Characteristics: $V_{CC} = 5.0~V \pm 5\%,~GND = 0~V,~T_A = 0^{\circ}C~to + 75^{\circ}C~(Notes~1,~3)$

		"A"		Std			
Symbol	Characteristic	Min	Max	Min	Max	Unit	Condition
tacs tzrcs taa	Read Timing Chip Select Access Time Chip Select to HIGH Z Address Access Time		30 30 35		40 40 45	ns ns ns	Figures 3a, 3b
tw twsd twhd twsa twha twscs twhcs tzws twr	Write Timing Write Pulse Width to Guarantee Writing ⁵ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ⁵ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Disable to HIGH Z Write Recovery Time	25 5 5 5 5 5 5	30 35	35 5 5 5 5 5 5	40 40	ns ns ns ns ns ns	Figure 4

Military

AC Characteristics: $V_{CC} = 5.0 \text{ V} \pm 10\%$, GND = 0 V, $T_A = -55^{\circ}C$ to $+125^{\circ}C$ (Notes 1, 3)

Symbol	Characteristic	Min	Max	Unit	Condition
	Read Timing				
tacs	Chip Select Access Time		40	ns	İ
tzrcs	Chip Select to HIGH Z		40	ns	Figures 3a, 3b
taa	Address Access Time		60	ns	
	Write Timing				
tw	Write Pulse Width to Guarantee Writing5	45	1	ns	
twsp	Data Setup Time Prior to Write	5		ns	
twhD	Data Hold Time after Write	5		ns	
twsa	Address Setup Time Prior to Write ⁵	10		ns	Figure 4
twha	Address Hold Time after Write	5		ns	
twscs	Chip Select Setup Time Prior to Write	5		ns	
twics	Chip Select Hold Time after Write	5		ns	
tzws	Write Disable to HIGH Z		45	ns	
twR	Write Recovery Time		55	ns	

Notes on preceeding page

Fig. 1 AC Test Load

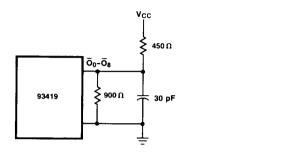
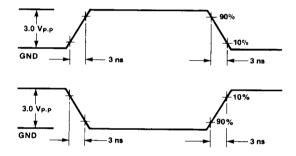
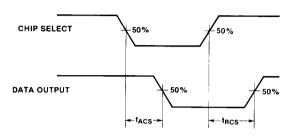
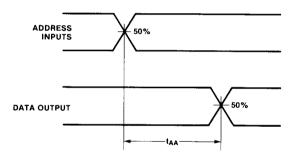
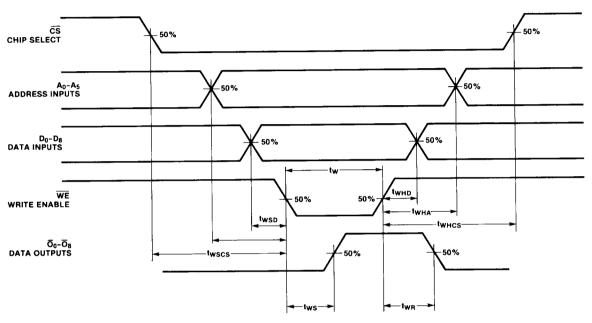




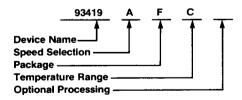
Fig. 2 Input Levels

Fig. 3 Read Mode Timing

a. Read Mode Propagation Delay from Chip Select

b. Read Mode Propagation Delay from Address Inputs


Fig. 4 Write Mode Timing

Note:

Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Speed Selection

Blank = Standard Speed A = 'A' Grade (Commercial Only)

Packages and Outlines (See Section 10)

D = Ceramic DIP

F = Flatpak

L = Leadless Chip Carrier

P = Plastic DIP

Temperature Range

C = 0°C to +75°C

 $M = -55^{\circ}C$ to $+125^{\circ}C$

Optional Processing

QB = Mil Std 883

Method 5004 and 5005, Level B

QC = Mil Std 883

Method 5004 and 5005, Level C

QR = Commercial Device with

160 Hour Burn In