
hyperstonestonestonestone E1 E1 E1 E1----32XS / E132XS / E132XS / E132XS / E1----16XS16XS16XS16XS

32-Bit-RISC/DSP Microprocessor
User's Manual

Specifications and information in this document are subject to change
without notice and do not represent a commitment on the part of
Hyperstone AG. Hyperstone AG reserves the right to make changes to
improve functioning. Although the information in this document has been
carefully reviewed, Hyperstone AG does not assume any liability arising
out of the use of the product or circuit described herein.

Hyperstone AG does not authorize the use of the Hyperstone
microprocessor in life support applications wherein a failure or
malfunction of the microprocessor may directly threaten life or cause
injury. The user of the Hyperstone microprocessor in life support
applications assumes all risks of such use and indemnifies Hyperstone
AG against all damages.

No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photo-copying and
recording, for any purpose without the permission of Hyperstone AG.

Hyperstone is a registered trademark of Hyperstone AG

For further information please contact:

Hyperstone AG
Line-Eid-Strasse 3
D-78467 Konstanz
Germany

Phone (+49) 7531 / 9803-0
Fax (+49) 7531 / 51725
E-Mail info@hyperstone.de

www.hyperstone.com

 Copyright 1990, 2002 Hyperstone AG

Revision 09/2002

mailto:info@hyperstone.de
http://www.hyperstone.com/

TABLE OF CONTENTS i

Table of Contents
1. Architecture

1.1. Introduction .. 1-1
1.2. Block Diagram ... 1-7
1.3. Global Register Set .. 1-8

1.3.1. Program Counter PC.. 1-9
1.3.2. Status Register SR ... 1-10
1.3.3. Floating-Point Exception Register FER .. 1-13
1.3.4. Stack Pointer SP .. 1-13
1.3.5. Upper Stack Bound UB ... 1-13
1.3.6. Bus Control Register BCR... 1-13
1.3.7. Timer Prescaler Register TPR ... 1-14
1.3.8. Timer Compare Register TCR... 1-14
1.3.9. Timer Register TR ... 1-14
1.3.10. Watchdog Compare Register WCR... 1-14
1.3.11. Input Status Register ISR... 1-14
1.3.12. Function Control Register FCR... 1-14
1.3.13. Memory Control Register MCR .. 1-14

1.4. Local Register Set .. 1-15
1.5. Privilege States... 1-16
1.6. Register Data Types ... 1-17
1.7. Memory Organization .. 1-18
1.8. Stack... 1-20
1.9. Instruction Cache.. 1-25
1.10. On-Chip Memory (IRAM) ... 1-27

2. Instructions General
2.1. Instruction Notation.. 2-1
2.2. Instruction Execution ... 2-2
2.3. Instruction Formats .. 2-3

2.3.1. Table of Immediate Values.. 2-5
2.3.2. Table of Instruction Codes... 2-6
2.3.3. Table of Extended DSP Instruction Codes .. 2-7

2.4. Entry Tables ... 2-8
2.5. Instruction Timing.. 2-12

3. Instruction Set
3.1. Memory Instructions .. 3-1

3.1.1. Address Modes .. 3-2
3.1.2. Load Instructions ... 3-6
3.1.3. Store Instructions ... 3-8

3.2. Move Word Instructions... 3-10
3.3. Move Double-Word Instruction ... 3-10
3.4. Logical Instructions.. 3-11
3.5. Invert Instruction .. 3-12
3.6. Mask Instruction... 3-12

ii TABLE OF CONTENTS

3.7. Add Instructions... 3-13
3.8. Sum Instructions .. 3-15
3.9. Subtract Instructions .. 3-16
3.10. Negate Instructions .. 3-17
3.11. Multiply Word Instruction ... 3-18
3.12. Multiply Double-Word Instructions... 3-18
3.13. Divide Instructions... 3-19
3.14. Shift Left Instructions .. 3-20
3.15. Shift Right Instructions .. 3-21
3.16. Rotate Left Instruction ... 3-22
3.17. Index Move Instructions .. 3-23
3.18. Check Instructions ... 3-24
3.19. No Operation Instruction ... 3-24
3.20. Compare Instructions ... 3-25
3.21. Compare Bit Instructions ... 3-26
3.22. Test Leading Zeros Instruction .. 3-26
3.23. Set Stack Address Instruction .. 3-27
3.24. Set Conditional Instructions... 3-27
3.25. Branch Instructions .. 3-29
3.26. Delayed Branch Instructions .. 3-30
3.27. Call Instruction... 3-32
3.28. Trap Instructions .. 3-33
3.29. Frame Instruction ... 3-35
3.30. Return Instruction .. 3-37
3.31. Fetch Instruction .. 3-39
3.32. Extended DSP Instructions .. 3-40
3.33. Software Instructions ... 3-42

3.33.1. Do Instruction.. 3-43
3.33.2. Floating-Point Instructions .. 3-44

4. Exceptions
4.1. Exception Processing... 4-1
4.2. Exception Types... 4-2

4.2.1. Reset .. 4-2
4.2.2. Range, Pointer, Frame and Privilege Error.. 4-2
4.2.3. Extended Overflow.. 4-3
4.2.4. Parity Error .. 4-3
4.2.5. Interrupt ... 4-3
4.2.6. Trace Exception... 4-4

4.3. Exception Backtracking ... 4-4

5. Timer
5.1. Overview.. 5-1

5.1.1. Timer Prescaler Register TPR... 5-1
5.1.2. Timer Register TR... 5-2
5.1.3. Timer Compare Register TCR... 5-3
5.1.4. Power-Down Mode ... 5-3
5.1.5. Additional Power Saving... 5-4

TABLE OF CONTENTS iii

5.1.6. Sleep Mode .. 5-5

6. Bus Interface
6.1. Bus Control General... 6-1

6.1.1. Boot Width Selection... 6-2
6.1.2. SRAM and ROM Bus Access.. 6-2
6.1.3. DRAM Bus Access, Fast Page Mode or EDO DRAM.......................... 6-2

6.1.3.1. DRAM Row Address Bits Multiplexing 6-3
6.1.4. SDRAM Bus Access.. 6-3

6.1.4.1. SDRAM Row Address Bits Multiplexing 6-4
6.1.4.2. SDRAM Mode Register Setting ... 6-4
6.1.4.3. SDRAM Connection... 6-5

6.2. I/O Bus Access ... 6-6
6.3. Bus Control Register BCR ... 6-8
6.4. Memory Control Register MCR... 6-12

6.4.1. MEMx Parity Disable .. 6-14
6.4.2. MEM2 Wait Disable.. 6-14
6.4.3. MEMx Byte Mode... 6-14
6.4.4. DRAMType and DRAMType2 ... 6-15
6.4.5. Entry Table Map .. 6-15
6.4.6. MEMx Bus Hold Break ... 6-15
6.4.7. MEMx Bus Size... 6-16

6.5. SDRAM Control Register SDCR... 6-17
6.5.1. BankAddrEnable.. 6-17
6.5.2. CS1Enable ... 6-17
6.5.3. CS1Select... 6-18
6.5.4. CASLatency... 6-18
6.5.5. SDCLKSelect .. 6-18
6.5.6. SDRAM Connection Example .. 6-18

6.6. Input Status Register ISR ... 6-19
6.7. Function Control Register FCR ... 6-20

6.7.1. CLKOUTControl and CLKOUTControl2... 6-22
6.8. Watchdog Compare Register WCR ... 6-22
6.9. IO3 Control Modes... 6-22

6.9.1. IO3Standard Mode... 6-22
6.9.2. Watchdog Mode... 6-22
6.9.3. IO3Timing Mode ... 6-22
6.9.4. IO3TimerInterrupt Mode ... 6-23

6.10. Bus Signals... 6-24
6.10.1. Bus Signals for the E1-32XS Processor .. 6-24
6.10.2. Bus Signals for the E1-16XS Processor .. 6-25
6.10.3. Bus Signal Description .. 6-26

6.11. Bus Cycles.. 6-31
6.11.1. MEMx Byte Mode = 1... 6-31

6.11.1.1. SRAM and ROM Single-Cycle Read Access 6-31
6.11.1.2. SRAM Single-Cycle Write Access 6-31
6.11.1.3. SRAM and ROM Multi-Cycle Read Access 6-32
6.11.1.4. SRAM Multi-Cycle Write Access 6-32

6.11.2. MEMx Byte Mode = 0... 6-33

iv TABLE OF CONTENTS

6.11.2.1. SRAM Single-Cycle Read Access...................................... 6-33
6.11.2.2. SRAM Single-Cycle Write Access..................................... 6-33
6.11.2.3. SRAM Multi-Cycle Read Access 6-34
6.11.2.4. SRAM Multi-Cycle Write Access 6-34

6.11.3. MEM2 Read Access with WAIT Pin .. 6-35
6.11.4. I/O Read Access .. 6-36
6.11.5. I/O Read Access with WAIT Pin .. 6-37
6.11.6. I/O Write Access ... 6-38
6.11.7. DRAM... 6-39

6.11.7.1. Fast Page Mode DRAM Access ... 6-39
6.11.7.2. EDO DRAM Single-Cycle Access 6-40
6.11.7.3. EDO DRAM Multi-Cycle Access 6-41
6.11.7.4. Fast Page Mode or EDO DRAM Refresh........................... 6-42
6.11.7.5. SDRAM Access.. 6-43

6.12. DC Characteristics ... 6-44
6.13. AC Characteristics ... 6-45

6.13.1. Processor Clock and CLKIN ... 6-45
6.13.2. GRANT# response time .. 6-45

7. Mechanical Data
7.1. hyperstone E1-32XS, 144-Pin LQFP Package .. 7-1

7.1.1. Pin Configuration - View from Top Side .. 7-1
7.1.2. Pin Cross Reference by Pin Name... 7-2
7.1.3. Pin Cross Reference by Location .. 7-3

7.2. hyperstone E1-16XS, 100-Pin LQFP Package .. 7-4
7.2.1. Pin Configuration - View from Top Side .. 7-4
7.2.2. Pin Cross Reference by Pin Name... 7-5
7.2.3. Pin Cross Reference by Location .. 7-6

7.3. hyperstone E1-16XSB, 100-Pin TFBGA Package .. 7-7
7.3.1. Pin Configuration – View from Top Side ... 7-7
7.3.2. Pin Cross Reference by Pin Name... 7-8
7.3.3. Pin Cross Rreference by Location ... 7-9

7.4. Package Dimensions .. 7-10
7.4.1. Package Dimensions LQFP... 7-10
7.4.2. Package Dimensions TFBGA.. 7-12

ARCHITECTURE 1-1

1. Architecture

1.1. Introduction
The hyperstone E1-32XS and hyperstone E1-16XS microprocessors represent a further devel-
opment of the hyperstone E1-32X and hyperstone E1-16X processors. Using a sophisticated
0.25 µm CMOS process, the maximum clock rate of the processor could be further im-
proved. Being pin-compatible to their predecessors these new processors can be used as a
direct replacement in existing designs, given that the changed voltage supply requirements
are considered.

This combination of a high-performance RISC microprocessor with an additional powerful
DSP instruction set and on-chip microcontroller functions offers a high throughput. The
speed is obtained by an optimized combination of the following features:

❒ The most recent stack frames are kept in a register stack, thereby reducing data memory
accesses to a minimum by keeping almost all local data in registers.

❒ Pipelined memory access allows overlapping of memory accesses with execution.

❒ 16 KByte fully static On-Chip Memory (IRAM).

❒ On-chip Instruction Cache omits instruction fetch in inner loops and provides prefetch.

❒ Variable-length instructions of 16, 32 or 48 bits provide a large, powerful instruction
set, thereby reducing the number of instructions to be executed.

❒ Primarily used 16-bit instructions halve the memory bandwidth required for instruction
fetch in comparison to conventional RISC architectures with fixed-length 32-bit instruc-
tions, yielding also even better code economy than conventional CISC architectures.

❒ Orthogonal instruction set.

❒ Most instructions execute in one cycle.

❒ Pipelined DSP instructions.

❒ Parallel execution of ALU, DSP, and load/store instructions.

❒ Single-cycle half-word multiply-accumulate operation.

❒ Fast Call and Return by parameter passing via registers.

❒ An instruction pipeline depth of just two stages — decode/execute — provides branch-
ing without insertion of wait cycles in combination with Delayed Branch instructions.

❒ Range and pointer checks are performed without speed penalty, thus, these checks need
no longer be turned off, thereby providing higher runtime reliability.

❒ Separate address and data buses provide a throughput of one 32-bit word each cycle.

The features noted above contribute to reduce the number of idle wait cycles to a bare
minimum. The processor is designed to sustain its execution rate with a standard SDRAM
memory.

The low power consumption is of advantage for mobile (portable) applications or in tem-
perature-sensitive environments.

1-2 CHAPTER 1

1.1. Introduction (continued)
Most of the transistors are used for the on-chip memory, the instruction cache, the register
stack and the multiplier, whereas only a small number is required for the control logic.

Due to their low manufacturing costs, the hyperstone E1-32XS and E1-16XS microproces-
sors are very well suited for embedded systems applications requiring high performance
and lowest cost. To simplify board design as well as to reduce system costs, the hyper-
stone E1-32XS and E1-16XS already come with integrated peripherals, such as a timer and
memory and bus control logic. Therefore, complete systems using hyperstone microproces-
sors can be designed with a minimum of external components. To connect any kind of
memory or I/O, no glue logic is necessary. It is even suitable for systems where up to now
microprocessors with 16-bit architecture have been used for cost reasons. Its improved per-
formance compared to conventional microcontrollers can be used to software-substitute
many external peripherals like graphics controllers or DSPs. Using the hyperstone E1-32XS
as a core for ASICs or ASSPs is particularly advantageous because the total gate count of
the entire logic is just about 35k gates without the on-chip memory.

The software development tools include an optimizing C compiler, assembler, source-level
debugger with profiler as well as a runtime kernel and a sophisticated DSP library. Using
the runtime kernel, up to 31 tasks, each with its own virtual timer, can be developed inde-
pendently of each other. The synchronization of these tasks is effected almost automatically
by the runtime kernel. For the system designer, it seems as if he has up to 31 hyperstone
microprocessors to which he can allocate his programs accordingly. Real-time debugging
of multiple tasks is assisted in an optimized way. The DSP library provides a powerful set
of DSP related functions and is taking care of all parallelism between ALU, DSP, and
Load/Store unit.

The following description gives a brief architectural overview:

Compatibility:

❒ Pin compatible to hyperstone E1-32X and hyperstone E1-16X.

Phased Locked Loop:

❒ An internal phased locked loop circuit (PLL) provides clock rate multiplication by a
factor ½, 1, 2, 4, or 8. For example, only an external crystal of 12 MHz is required to
achieve an internal clock rate of 96 MHz.

Registers:

❒ 32 global and 64 local registers of 32 bits each

❒ 16 global and up to 16 local registers are addressable directly

Flags:

❒ Zero(Z), negative(N), carry(C) and overflow(V) flag

❒ Interrupt-mode, interrupt-lock, trace-mode, trace-pending, supervisor state, cache-mode
and high global flag

ARCHITECTURE 1-3

1.1. Introduction (continued)

Register Data Types:

❒ Unsigned integer, signed integer, single or double signed short, signed complex short,
single or double 16-bit fixed-point, bit string, IEEE-754 floating-point, each either 32 or
64 bits

External Memory:

❒ Address space of 4 Gbytes, divided into five areas

❒ Separate I/O address space

❒ Load/Store architecture

❒ Pipelined memory and I/O accesses

❒ High-order data located and addressed at lower address (big endian)

❒ Instructions and double-word data may cross DRAM page boundaries

On-Chip Memory (IRAM):

❒ 16 KByte fully static internal memory, 32 bit wide, single cycle access

Memory Data Types:

❒ Unsigned and signed byte (8 bit)

❒ Unsigned and signed half-word (16 bit), located on half-word boundary

❒ Undedicated word (32 bit), located on word boundary

❒ Undedicated double-word (64 bit), located on word boundary

Runtime Stack:

❒ Runtime Stack is divided into memory part and register part

❒ Register part is implemented by the 64 local registers holding the most recent stack
frame(s)

❒ Current stack frame (maximum 16 registers) is always kept in register part of the stack

❒ Data transfer between memory and register part of the stack is automatic

❒ Upper stack bound is guarded

Instruction Cache:

❒ An on-chip Instruction Cache reduces instruction memory access substantially

Instructions General:

❒ Variable-length instructions of one, two or three half-words halve required memory
bandwidth

❒ Pipeline depth of only two stages, assures immediate refill after branches

1-4 CHAPTER 1

1.1. Introduction (continued)
❒ Register instructions of type "source operator destination ⇒ destination" or

"source operator immediate ⇒ destination"

❒ All register bits participate in an operation

❒ Immediate operands of 5, 16 and 32 bits, zero- or sign-expanded

❒ Large address displacement of up to 28 bits

❒ Two sets of signed arithmetical instructions: instructions set or clear either only the
overflow flag or trap additionally to a Range Error routine on overflow

❒ DSP instructions operate on 16-bit integer, real and complex fixed-point data and 32-bit
integer data into 32-bit and 64-bit hardware accumulators

Instruction Summary:

❒ Memory instructions pipelined to a depth of two stages, trap on address register equal to
zero (check for invalid pointers)

❒ Memory address modes: register address, register post-increment, register + dis-
placement (including PC relative), register post-increment by displacement (next ad-
dress), absolute, stack address, I/O absolute and I/O displacement

❒ Load, all data types, bytes and half-words right adjusted and zero- or sign-expanded,
execution proceeds after Load until data is needed

❒ Store, all data types, trap when range of signed byte or half-word is exceeded

❒ Move, Move immediate, Move double-word

❒ Logical instructions AND, AND not, OR, XOR, NOT, AND not immediate, OR imme-
diate, XOR immediate

❒ Mask source and immediate ⇒ destination

❒ Add unsigned/signed, Add signed with trap on overflow, Add with carry

❒ Add unsigned/signed immediate, Add signed immediate with trap on overflow

❒ Sum source + immediate ⇒ destination, unsigned/signed and signed with trap on over-
flow

❒ Subtract unsigned/signed, Subtract signed with trap on overflow, Subtract with carry

❒ Negate unsigned/signed, Negate signed with trap on overflow

❒ Multiply word ∗ word ⇒ low-order word unsigned or signed, Multiply word ∗ word ⇒
 double-word unsigned and signed

❒ Divide double-word by word ⇒ quotient and remainder, unsigned and signed

❒ Shift left unsigned/signed, single and double-word, by constant and by content of regis-
ter

❒ Shift right unsigned and signed, single and double-word, by constant and by content of
register

❒ Rotate left single word by content of register

❒ Index Move, move an index value scaled by 1, 2, 4 or 8, optionally with bounds check

ARCHITECTURE 1-5

1.1. Introduction (continued)
❒ Check a value for an upper bound specified in a register or check for zero

❒ Compare unsigned/signed, Compare unsigned/signed immediate

❒ Compare bits, Compare bits immediate, Compare any byte zero

❒ Test number of leading zeros

❒ Set Conditional, save conditions in a register

❒ Branch unconditional and conditional (12 conditions)

❒ Delayed Branch unconditional and conditional (12 conditions)

❒ Call subprogram, unconditional and on overflow

❒ Trap to supervisor subprogram, unconditional and conditional (11 conditions)

❒ Frame, structure a new stack frame, include parameters in frame addressing, set frame
length, restore reserve frame length and check for upper stack bound

❒ Return from subprogram, restore program counter, status register and return-frame

❒ Software instructions, call an associated subprogram and pass a source operand and the
address of a destination operand to it

❒ DSP Multiply instructions:
signed and/or unsigned multiplication ⇒ single and double word product

❒ DSP Multiply-Accumulate instructions:
signed multiply-add and multiply-subtract ⇒ single and double word product sum and
difference

❒ DSP Half-word Multiply-Accumulate instructions:
signed multiply-add operating on four half-word operands ⇒ single and double word
product sum

❒ DSP Complex Half-word Multiply instruction:
signed complex half-word multiplication ⇒ real and imaginary single word product

❒ DSP Complex Half-word Multiply-Accumulate instruction:
signed complex half-word multiply-add ⇒ real and imaginary single word product sum

❒ DSP Add and Subtract instructions:
signed half-word add and subtract with and without fixed-point adjustment ⇒ single
word sum and difference

❒ Floating-point instructions are architecturally fully integrated, they are executed as
Software instructions by the present version. Floating-point Add, Subtract, Multiply,
Divide, Compare and Compare unordered for single and double-precision, and Convert
single ⇔ double are provided.

1-6 CHAPTER 1

1.1. Introduction (continued)

Exceptions:

❒ Pointer, Privilege, Frame and Range Error, Extended Overflow, Parity Error, Interrupt
and Trace mode exception

❒ Watchdog function

❒ Error-causing instructions can be identified by backtracking, thus allowing a very de-
tailed error analysis

Timer:

❒ Two multi-functional timers

Bus Interface:

❒ Separate address bus of 26 (E1-32XS) or 22 (E1-16XS) bits and data bus of up to 32 (E1-
32XS) or 16 bits (E1-16XS) provide a throughput of up to four or two bytes at each clock
cycle, respectively.

❒ Data bus width of 32, 16 or 8 bits, individually selectable for each external memory
area.

❒ 8-bit, 16-bit, and 32-bit boot width selectable via two external pins.

❒ Configurable I/O pins

❒ Internal generation of all memory and I/O control signals

❒ Wait pin function for I/O accesses to peripheral devices.

❒ Wait pin function for memory accesses to address space MEM2.

❒ On-chip DRAM controller supporting Fast-Page-Mode DRAMs, EDO DRAMs, and
synchronous DRAMs (SDRAM).

❒ Up to seven vectored interrupts.

❒ Control function for CLKOUT pin.

Power Management:

❒ Lower power supply current in power-down mode.

❒ Clock-Off function to further reduce power dissipation (Sleep Mode).

❒ PLL settings controllable by software, providing a “gear-up” or “gear-down” within one
clock cycle.

ARCHITECTURE 1-7

1.2. Block Diagram

Internal
Timer

I/O and
Interrupt
Control

Store Data
Pipeline

Watchdog

PLL
Power
Reset

Control
16 KByte

SRAM

Data Bus Parity
Address

Bus
Control

Bus

Bus Interface
Control

Bus Pipeline
Control

Instruction
Prefetch Control

Instruction
Decode

X Decode

Y Decode

Instruction
Cache
Control

Load
Decode

7

26
(22)

1432

4
(2)

32
(16)

Register Set

64 Local
26 Global

X Y PC

Instruction

Cache

Memory Address
Pipeline

X Y

DSP
Execution

Unit

ALU
Barrel Shifter

Z W A

X Y I Instruction
Execution

Control

Figure 1.1: Block Diagram

1-8 CHAPTER 1

1.3. Global Register Set
The architecture provides 32 global registers of 32 bits each. These are:

G0 Program Counter PC

G1 Status Register SR

G2 Floating-Point Exception Register FER

G3..G15 General purpose registers

G16..G17 Reserved

G18 Stack Pointer SP

G19 Upper Stack Bound UB

G20 Bus Control Register BCR (see section 6. Bus Interface)

G21 Timer Prescaler Register TPR (see section 5. Timer)

G22 Timer Compare Register TCR (see section 5. Timer and CPU Clock
Modes)

G23 Timer Register TR (see section 5. Timer and CPU Clock Modes)

G24 Watchdog Compare Register WCR (see section 6. Bus Interface)

G25 Input Status Register ISR (see section 6. Bus Interface)

G26 Function Control Register FCR (see section 6. Bus Interface)

G27 Memory Control Register MCR (see section 6. Bus Interface)

G28..G31 Reserved

Registers G0..G15 can be addressed directly by the register code (0..15) of an instruction.
Registers G18..G27 can be addressed only by a MOV or MOVI instruction with the high
global flag H set to 1.

ARCHITECTURE 1-9

G0

031

0

G1

G2

G3

G15

G16

G17

G18

G19

G20

G21

G22

G23

G24

G25

G26

G27

Program Counter PC

Status Register SR

Floating-Point Exception Register FER

Reserved

Reserved

General Purpose Registers G3..G15

Stack Pointer SP

Upper Stack Bound UB

Bus Control Register BCR

Timer Prescaler Register TPR

Timer Compare Register TCR

Timer Register TR

Watchdog Compare Register WCR

Input Status Register ISR

Function Control Register FCR

Memory Control Register MCR

G28..G31 Reserved

0

00

0

G28

G31

Figure 1.2: Global Register Set

1.3.1. Program Counter PC
G0 is the program counter PC. It is updated to the address of the next instruction through
instruction execution. Besides this implicit updating, the PC can also be addressed like a
regular source or destination register. When the PC is referenced as an operand, the value
supplied is the address of the first byte after the instruction which references it, except
when referenced by a delay instruction with a preceding delayed branch taken (see section
3.26. Delayed Branch Instructions).

Placing a result in the PC has the effect of a branch taken. Bit zero of the PC is always
zero, regardless of any value placed in the PC.

1-10 CHAPTER 1

1.3.2. Status Register SR
G1 is the status register SR. Its content is updated by instruction execution. Besides this
implicit updating, the SR can also be addressed like a regular register. When addressed as
source or destination operand, all 32 bits are used as an operand. However, only bits 15..0
of a result can be placed in bits 15..0 of the SR, bits 31..16 of the result are discarded and
bits 31..16 of the SR remain unchanged. The full content of the SR is replaced only by the
Return Instruction. A result placed in the SR overrules any setting or clearing of the condi-
tion flags as a result of an instruction.

Frame Pointer Frame Length

2829

FL S P T

Trace-Mode Flag
Trace Pending Flag

Supervisor State Flag

Instruction-Length Code

31 30 27 26 25 24 23 22 21 20 19 18 17 16

ILCFP

Figure 1.3: Status Register SR (bits 31..16)

Floating-Point Rounding Mode
Floating-Point Trap Enable

Interrupt-Mode Flag

High Global Flag
Cache-Mode Flag

1213

FTE V N Z C

Carry Flag
Zero Flag

Negative Flag

Overflow Flag

15 14 11 10 9 8 7 6 5 4 3 2 1 0

MHFRML I

Reserved

Interrupt-Lock Flag

Figure 1.4: Status Register SR (bits 15..0)

ARCHITECTURE 1-11

1.3.2. Status Register SR (continued)
The status register SR contains the following status information:

C Bit zero is the carry condition flag C. In general, when set it indicates that the
unsigned integer range has been exceeded. At add operations, it indicates a
carry out of bit 31 of the result. At subtract operations, it indicates a borrow
(inverse carry) into bit 31 of the result.

Z Bit one is the zero condition flag Z. When set, it indicates that all 32 or 64 re-
sult bits are equal to zero regardless of any carry, borrow or overflow.

N Bit two is the negative condition flag N. On compare instructions, it indicates
the arithmetic correct (true) sign of the result regardless of an overflow. On all
other instructions, it is derived from result bit 31, which is the true sign bit
when no overflow occurs. In the case of overflow, result bit 31 and N reflect
the inversion of the true sign.

V Bit three is the overflow condition flag V. In general, when set it indicates a
signed overflow.

M Bit four is the cache-mode flag M. Besides being set or cleared under program
control, it is also automatically cleared by a Frame instruction and by any
branch taken except a delayed branch. See section 1.9. Instruction Cache for
details.

H Bit five is the high global flag H. When H is set, denotation of G0..G15 addres-
ses G16..G31 instead. Thus, the registers G18..G27 may be addressed by deno-
ting G2..G11 respectively.
The H flag is effective only in the first cycle of the next instruction after it was
set; then it is cleared automatically.
Only the MOV or MOVI instruction issued as the next instructions can be used
to copy the content of a local register or an immediate value to one of the high
global registers. The MOV instruction can also be used to copy the content of a
high global register (except the BCR, TPR, FCR and MCR register, which are
write-only) to a local register. With all other instructions, the result may be in-
valid.
If one of the high global registers is addressed as the destination register in user
state (S = 0), the condition flags are undefined, the destination register remains
unchanged and a trap to Privilege Error occurs.

Reserved Bit six is reserved for future use. It must always be zero.

I Bit seven is the interrupt-mode flag I. It is set automatically on interrupt entry
and reset to its old value by a Return instruction. The I flag is used by the oper-
ating system; it must be never changed by any user program, regardless of user
or supervisor state.

FTE Bits 12..8 are the floating-point trap enable flags (see section 3.33.2. Floating-
Point Instructions).

FRM Bits 14..13 are the floating-point rounding modes (see section 3.33.2. Floating-
Point Instructions).

1-12 CHAPTER 1

1.3.2. Status Register SR (continued)
L Bit 15 is the interrupt-lock flag L. When the L flag is one, all Interrupt, Parity

Error and Extended Overflow exceptions regardless of individual mode bits are
inhibited. The state of the L flag is effective immediately after any instruction
which changed it. The L flag is set to one by any exception.
The L flag can be cleared or kept set in any or on return to any privilege state
(user or supervisor). Changing the L flag from zero to one is privileged to su-
pervisor or return from supervisor to supervisor state. A trap to Privilege Error
occurs if the L flag is set under program control from zero to one in user or on
return to user state.

The following status information cannot be changed by addressing the SR:

T Bit 16 is the trace-mode flag T. When both the T flag and the trace pending flag
P are one, a trace exception occurs after every instruction except after a De-
layed Branch instruction. The T flag is cleared by any exception.
Note: The T flag can only be changed in the saved return SR and is then effec-
tive after execution of a Return instruction.

P Bit 17 is the trace pending flag P. It is automatically set to one by all in-
structions except by the Return instruction, which restores the P flag from bit
17 of the saved return SR.
Since for a Trace exception both the P and the T flag must be one, the P flag
determines whether a trace exception occurs (P = 1) or does not occur (P = 0)
immediately after a Return instruction which restored the T flag to one.
Note: The P flag can only be changed in the saved SR. No program except the
trace exception handler should affect the saved P flag. The trace exception han-
dler must clear the saved P flag to prevent a trace exception on return, in order
to avoid tracing the same instruction in an endless loop.

S Bit 18 is the supervisor state flag S (see section 1.5. Privilege States). It is set to
one by any exception.

ILC Bits 20 and 19 represent the instruction-length code ILC. It is updated by in-
struction execution. The ILC holds (in general) the length of the last in-
struction: ILC values of one, two or three represent an instruction length of one,
two or three half-words respectively. After a branch taken, the ILC is invalid.
The Return instruction clears the ILC.
Note: Since a Return instruction following an exception clears the ILC, a pro-
gram must not rely on the current value of the ILC.

FL Bits 24..21 represent the frame length FL. The FL holds the number of usable
local registers (maximum 16) assigned to the current stack frame.
FL = 0 is always interpreted as FL = 16.

FP Bits 31..25 represent the frame pointer FP. The least significant six bits of the
FP point to the beginning of the current stack frame in the local register set,
that is, they point to L0.
The FP contains bit 8..2 of the address at which the content of L0 would be
stored if pushed onto the memory part of the stack.

ARCHITECTURE 1-13

1.3.3. Floating-Point Exception Register FER
G2 is the floating-point exception register. Only bits 12..8 and 4..0 may be changed by a
user program, all other bits must remain unchanged.

Reserved

Floating-Point Actual Exceptions

Reserved for Operating System

Floating-Point Accrued Exceptions

1213 11 10 9 8 7 6 5 4 3 2 1 031

Figure 1.5: Floating-Point Exception Register

1.3.4. Stack Pointer SP
G18 is the stack pointer SP. The SP contains the top address + 4 of the memory part of the
stack, that is the address of the first free memory location in which the first local register
would be saved by a push operation (see section 3.29. Frame Instruction for details). Stack
growth is from low to high address.

When the SP is set, bits one and zero must always be zero. The SP can be addressed only
via the high global flag H being set. Copying an operand to the SP is a privileged opera-
tion.

1.3.5. Upper Stack Bound UB
G19 is the upper stack bound UB. The UB contains the address beyond the highest legal
memory stack location. It is used by the Frame instruction to inhibit stack overflow.

When the UB is set, bits one and zero must always be zero. The UB can be addressed only
via the high global flag H being set. Copying an operand to the UB is a privileged opera-
tion.

1.3.6. Bus Control Register BCR
G20 is the write-only bus control register BCR. Its content defines the options possible for
bus cycle, parity and refresh control. The BCR can be addressed only via the high global
flag H being set. Copying an operand to the BCR is a privileged operation. The BCR regis-
ter is described in detail in the bus interface description in section 6.

1-14 CHAPTER 1

1.3.7. Timer Prescaler Register TPR
G21 is the write-only timer prescaler register TPR. It adapts the timer clock to different
processor clock frequencies and controls the processor clock generation by the PLL circuit.
The TPR can be addressed only via the high global flag H being set. Copying an operand to
the TPR is a privileged operation. The TPR is described in the timer description in section
5. Updating TPR with amended values for the PLL multiplication factor in conjunction
with corresponding updated values for the timer prescaler changes the internal clock fre-
quency while keeping all timer settings correct.

1.3.8. Timer Compare Register TCR
G22 is the timer compare register TCR. Its content is compared continuously with the con-
tent of the timer register TR. The TCR can be addressed only via the high global flag H
being set. Copying an operand to the TCR is a privileged operation. The TCR is described
in the timer description in section 5.

1.3.9. Timer Register TR
G23 is the timer register TR. Its content is incremented by one on each time unit. The TR
can be addressed only via the high global flag H being set. Copying an operand to the TR is
a privileged operation. The TR is described in the timer description in section 5.

1.3.10. Watchdog Compare Register WCR
G24 is the watchdog compare register WCR. The WCR can be addressed only via the high
global flag H being set. Copying an operand to the WCR is a privileged operation. The
WCR is described in the bus interface description in section 6.

1.3.11. Input Status Register ISR
G25 is the read-only input status register ISR. The ISR can be addressed only via the high
global flag H being set. The ISR is described in the bus interface description in section 6.

1.3.12. Function Control Register FCR
G26 is the write-only function control register FCR. The FCR can be addressed only via
the high global flag H being set. Copying an operand to the FCR is a privileged operation.
The FCR is described in the bus interface description in section 6.

1.3.13. Memory Control Register MCR
G27 is the write-only memory control register MCR. The MCR can be addressed only via
the high global flag H being set. Copying an operand to the MCR is a privileged operation.
The MCR is described in the bus interface description in section 6.

ARCHITECTURE 1-15

1.4. Local Register Set
The architecture provides a set of 64 local registers of 32 bits each. The local registers 0..63
represent the register part of the stack, containing the most recent stack frame(s).

0

Local Register L0

Local Register L15

31
0

L0

L15

63

Figure 1.6: Local Register Set 0..63

The local registers can be addressed by the register code (0..15) of an instruction as
L0..L15 only relative to the frame pointer FP; they can also be addressed absolutely as part
of the stack in the stack address mode (see section 3.1.1. Address Modes).

The absolute local register address is calculated from the register code as:
absolute local register address := (FP + register code) modulo 64.

That is, only the least significant six bits of the sum FP + register code are used and thus,
the absolute local register addresses for L0..L15 wrap around modulo 64.

The absolute local register addresses for FP + register code + 1 or FP + FL + offset are cal-
culated accordingly.

1-16 CHAPTER 1

1.5. Privilege States
The architecture provides two privilege states, determined by the supervisor state flag S:
user state (S = 0) and supervisor state (S = 1).

The runtime kernel hyRTK is executed in the higher privileged supervisor state, thereby
restricting access to all sensitive data to a highly reliable system program. The following
operations are also privileged to be executed only in the supervisor or on return from su-
pervisor to supervisor state:

❒ Copying an operand to any of the high global registers

❒ Changing the interrupt-lock flag L from zero to one

❒ Returning through a Return instruction to supervisor state

Any illegal attempt causes a trap to Privilege Error.

The S flag is also saved in bit zero of the saved return PC by the Call, Trap and Software
instructions and by an exception. A Return instruction restores it from this bit position to
the S flag in bit position 18 of the SR (thereby overwriting the bit 18 returned from the
saved return SR).

If a Return instruction attempts a return from user to supervisor state, a trap to Privilege
Error occurs (S = 1 is saved).

Returning from supervisor to user state is achieved by clearing the S flag in bit zero of the
saved return PC before return. Switching from user to supervisor state is only possible by
executing a Trap instruction or by exception processing through one of the 64 supervisor
subprogram entries (see section 2.4. Entry Tables).

ARCHITECTURE 1-17

1.6. Register Data Types

32 Bits

Bitstring

31

MSB LSB

0

S = sign bit, MSB = most significant bit, LSB = least significant bit

Double-Word Bitstring

32-Bit Magnitude

Unsigned Integer

31

MSB LSB

Unsigned Double-Word Integer

31-Bit Magnitude

Signed Integer, Two's Complement

31

MSB LSBS

High-Order 31-Bit Magnitude

Signed Double-Word Integer, Two's Complement

31

LSBLow-Order 32-Bit Magnitude

MSBS

23-Bit Fraction

Single Precision Floating-Point Number

31

MSB LSB

0

S 8-Bit Exponent

High-Order 20-Bit Fraction

Double Precision Floating-Point Number

31

LSB

0

Low-Order 32-Bit Fraction

11-Bit ExponentS MSB

Register:

Complex Signed Short

31

MSB LSB

0

S MSB LSB S

Two Signed Shorts

31

MSB LSB

0

S MSB LSB S

15

15

Real Part Imaginary Part

High-Order 32-Bit Magnitude

31

LSBLow-Order 32-Bit Magnitude

MSB

High-Order 32-Bits

LSBLow-Order 32-Bits

MSB

n+1

n

n

n

0

n

n

n+1

0

n

n

n+1

n

n+1

n

n

0

0

31 0

Figure 1.7: Register Data Types

1-18 CHAPTER 1

1.7. Memory Organization
The architecture provides a memory address space in the range of 0..232 - 1
(0..4 294 967 295) 8-bit bytes. Memory is implied to be organized as 32-bit words. The fol-
lowing memory data types are available (see figure 1.8)

❒ Byte unsigned (unsigned 8-bit integer, bit string or character)

❒ Byte signed (signed 8-bit integer, two's complement)

❒ Half-word unsigned (unsigned 16-bit integer or bit string)

❒ Half-word signed (signed 16-bit integer, two's complement)

❒ Word (32-bit undedicated word)

❒ Double-word (64-bit undedicated double-word)

Besides the memory address space, a separate I/O address space is provided. In the I/O ad-
dress space, only word and double-word data types are available.

Words and double-words must be located at word boundaries, that is, their most significant
byte must be located at an address whose two least significant bits are zero. Half-words
must be located at half-word boundaries, their most significant byte being located at an
address whose least significant bit is zero. Bytes may be located at any address.

The variable-length instructions are located as contiguous sequences of one, two or three
half-words at half-word boundaries.

Memory- and I/O-accesses are pipelined to a depth of two words.

Note: All data is located high to low order at addresses ascending from low to high, that is,
the high order part of all data is located at the lower address (big-endian).

ARCHITECTURE 1-19

1.7. Memory Organization (continued)
Figure 1.8 shows the location of data and instructions in memory relative to a binary ad-
dress n = ...xxx00 (x = 0 or 1). The memory organization is big-endian.

31

Byte n Byte n + 1 Byte n + 2 Byte n + 3

0

Halfword n Halfword n + 2

Byte n Byte n + 1 Halfword n + 2

Halfword n Byte n + 2 Byte n + 3

Word n

High-Order Word n of Double-Word

Low-Order Word n + 4 of Double-Word

1st Instruction Halfword 2nd Instruction Halfword (opt.)

3rd Instruction Halfword (opt.)

Preceding Instruction 1st Instruction Halfword

2nd Instruction Halfword (opt.) 3rd Instruction Halfword (opt.)

Figure 1.8: Memory Organization

At all data types, the most significant bit is located at the higher and the least significant bit
at the lower bit position.

1-20 CHAPTER 1

1.8. Stack
A runtime stack, called stack here, holds generations of local variables in last-in-first-out
order. A generation of local variables, called stack frame or activation record, is created
upon subprogram entry and released upon subprogram return.

The runtime stack provided by the architecture is divided into a memory part and a register
part. The register part of the stack, implemented by a set of 64 local registers organized as a
circular buffer, holds the most recent stack frame(s). The current stack frame is always kept
in the register part of the stack. The frame pointer FP points to the beginning of the current
stack frame (addressed as register L0). The frame length FL indicates the number of regis-
ters (maximum 16) assigned to the current stack frame. The stack grows from low to high
address. It is guarded by the upper stack bound UB.

The stack is maintained as follows:

❒ A Call, Trap or Software instruction increments the FP and sets FL to six, thus creating
a new stack frame with a length of six registers (including the return PC and the return
SR).

❒ An exception increments the FP by the value of FL and then sets FL to two.

❒ A Frame instruction restructures a stack frame to include (optionally) passed parameters
by decrementing the FP and by resetting the FL to the desired length, and restores a re-
serve of 10 local registers for the next subprogram call. If the required number of regis-
ters + 10 do not fit in the register part of the stack, the contents of the differential (re-
quired + 10 - available) number of local registers are pushed onto the memory part of
the stack. A trap to Frame Error occurs after the push operation when the old value of
the stack pointer SP exceeded the upper stack bound UB.

❒ A Return instruction releases the current stack frame and restores the preceding stack
frame. If the restored stack frame is not fully contained in the register part of the stack,
the content of the missing part of the stack frame is pulled from the memory part of the
stack.

For more details see the descriptions of the specific instructions.

When the number of local registers required for a stack frame exceeds its maximum length
of 16 (in rare cases), a second runtime stack in memory may be used. This second stack is
also required to hold local record or array data.

The stack is used by routines in user or supervisor state, that is, supervisor stack frames are
appended to user stack frames, and thus, parameters can be passed between user and super-
visor state. A small stack space must be reserved above UB. UB can then be set to a higher
value by the Frame Error handler to free stack space for error handling.

ARCHITECTURE 1-21

1.8. Stack (continued)
Because the complete stack management is accomplished automatically by the hardware,
programming the stack handling instructions is easy and does not require any knowledge of
the internal working of the stack.

The following example demonstrates how the Call, Frame and Return instructions are ap-
plied to achieve the stack behavior of the register part of the stack shown in the figures 1.9
and 1.10.

A currently activated function A has a frame length of FL = 13. Registers L0..L6 are to be
retained through a subsequent call, registers L7..L12 are temporaries. A call to function B
needs 2 parameters to be passed. The parameters are placed by function A in registers L7
and L8 before calling B. The Call instruction addresses L9 as destination for the return PC
and return SR register pair to be used by function B on return to function A.

On entry of function B, the new frame of B has an implicit length of FL = 6. It starts physi-
cally at the former register L9 of frame A. However, since the frame pointer FP has been
incremented by 9 by the Call instruction, this register location is now being addressed as
L0 of frame B. The passed parameters cannot be addressed because they are located below
the new register L0 of frame B. To make them addressable, a Frame instruction decrements
the frame pointer FP by 2. Then, parameter 1 and 2 passed to B can be addressed as regis-
ters L0 and L1 respectively. Note that the return PC is now to be addressed as L2!

The Frame instruction in B specifies also the new, complete frame length FL = 11 (includ-
ing the passed parameters as well as the return PC and return SR pair). Besides, a new re-
serve of 10 registers for subsequent function calls and traps is provided in the register
stack. A possible overflow of the register stack is checked and handled automatically by the
Frame instruction. A program needs not and must not pay attention to register stack over-
flow.

At the end of function B, a Return instruction returns control to function A and restores the
frame A. A possible underflow of the register stack is handled also automatically; thus, the
frame A is always completely restored, regardless whether it was wholly or partly pushed
into the memory part of the stack before (in the case when B called other functions).

In the present example with the frame length of FL = 13, any suitable destination register
up to L13 could be specified in the Call instruction. The parameters to be passed to the
function B would then be placed in L11 and L12. It is even possible to append a new frame
to a frame with a length of FL = 16 (coded as FL = 0 in the status register SR): the destina-
tion register in the Call instruction is then coded as L0, but interpreted as the register past
L15.

See also sections 3.27. Call instruction, 3.29. Frame instruction and 3.30. Return instruc-
tion for further details.

Note: With an average frame length of 8 registers, ca. 7..8 Frame instructions succeed a
pulling Return instruction until a push occurs and 7..8 Return instructions succeed a push-
ing Frame instruction until a pull occurs. Thus, the built-in hysteresis makes pushing and
pulling a rare event in regular programs.

1-22 CHAPTER 1

1.8. Stack (continued)
Program Example:

A: FRAME L13, L3 ; set frame length FL = 13, decrement FP by 3
 : ; parameters passed to A can be addressed
 : ; in L0, L1, L2
 :
 :
 code of function A
 :
 :
 MOV L7, L5 ; copy L5 to L7 for use as parameter1
 MOVI L8, 4 ; set L8 = 4 for use as parameter2
 CALL L9, 0, B ; call function B,
 : ; save return PC, return SR in L9, L10
 :
 :
 MOVI L0, 20 ; set L0 = 20 as return parameter for caller
 RET PC, L3 ; return to function calling A,
 ; restore frame of caller

B: FRAME L11, L2 ; set frame length FL = 11, decrement FP by 2
 : ; passed parameter1 can now be addressed in L0
 : ; passed parameter2 can now be addressed in L1
 :
 :
 code of function B
 :
 :
 RET PC, L2 ; return to function A, frame A is restored by
 ; copying return PC and return SR in L2 and L3
 ; of frame B to PC and SR

ARCHITECTURE 1-23

1.8. Stack (continued)
Figure 1.9 shows the creation and release of stack frames in the register part of the stack.

 Return from B Call B Frame in B

PC := ret. PC for B; PC := branch address; FP := FP - code of source reg.;
SR := ret. SR for B; ret. PC for B := old PC; FL := code of dest.reg.;
-- returns preceding stack frame ret. SR for B := old SR; if available registers ≥
if stack frame contained FP := FP + reg.code (required + 10) registers then
in local registers then of ret. PC; next instruction
 next instruction; FL := 6; else
else -- reg.code of ret. PC = 9 push contents of
 pull contents of differential words differential number of
 from memory part of the stack; registers to memory
 part of stack;
 -- code of source reg. = 2
 -- code of dest.reg. = 11

L0
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
L13
L14
L15

Frame
Pointer
(FP)

current
length
of
frame A
FL = 13

parameters
for

must not
be usedFP+FL

L0
L1
L2
L3
L4
L5

New
FP

current
length
of
frame B
FL = 6

parameters
for frame B

ret. PC for A
ret. SR for A

reserved
for

maximum
number of
variables

in frame A

ret. PC for B
ret. SR for B

FP+FL

reserved for
max. number
of variables
in frame B

parameters
for

ret. PC for A
ret. SR for A

New
FP

current
length
of
frame B
FL = 11

parameters
for frame B

ret. PC for B
ret. SR for B

FP+FL

parameters
for

ret. PC for A
ret. SR for A

reserved
for

maximum
number of
variables

in frame B

L0
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10

frame A frame A frame A

 before Call and after CALL L9, 0, dest; after FRAME L11, L2
 after Return

Figure 1.9: Stack frame handling (register part)

1-24 CHAPTER 1

1.8. Stack (continued)

register part
of the stack

A and X
overlap modulo 64

memory part
of the stack

register part
of the stack

memory part
of the stack

before Frame Instruction for frame X after Frame Instruction for frame X

A
words
to be

pushed

X
additional

space for X
required

pushed number
of words

according to
space required

for frame X

stack
space

appended

before Return Instruction to frame A after Return Instruction to frame A

frame
words for A

required

words
to be

overwritten

words
to be
pulled

pulled number
of words

completes
stack frame A!

frame
words
pulled

stack
space
freed

FP

SP

FP

additional
space for X
available

SP

A

X

FP

SP

SPFP

stack
space

required
rest of frame A

various
frames

various
frames

rest of frame A

space
available for X

rest of frame A

various
frames

A

rest of frame A

various
frames

= available part of a frame

Figure 1.10: Stack frame pushing and popping

ARCHITECTURE 1-25

1.9. Instruction Cache
The instruction cache is transparent to programs. A program executes correctly even if it
ignores the cache, whereby it is assumed that a program does not modify the instruction
code in the local range contained in the cache.

The instruction cache holds a total of up to 128 bytes (32 unstructured 32-bit words of in-
structions). It is implemented as a circular buffer which is guarded by a look-ahead counter
and a look-back counter. The look-ahead counter holds the highest and the look-back
counter the lowest address of the instruction words available in the cache. The cache-mode
flag M is used to optimize special cases in loops (see details below). The cache can be re-
garded as a temporary local window into the instruction sequence, moving along with in-
struction execution and being halted by the execution of a program loop.

Its function is as follows:

The prefetch control loads unstructured 32-bit instruction words (without regard to instruc-
tion boundaries) from memory into the cache. The load operation is pipelined to a depth of
two stages (see section 3.1. Memory Instructions for details of the load pipeline). The look-
ahead counter is incremented by four at each prefetch cycle. It always contains the address
of the last instruction word for which an address bus cycle is initiated, regardless of
whether the addressed instruction word is in the load pipeline or already loaded into the
instruction cache.

The prefetched instruction word is placed in the cache word location addressed by bits 6..2
of the look-ahead counter. The look-back counter remains unchanged during prefetch un-
less the cache word location it addresses with its bits 6..2 is overwritten by a prefetched
instruction word. In this case, it is incremented by four to point to the then lowest-
addressed usable instruction word in the cache. Since the cache is implemented as a circu-
lar buffer, the cache word addresses derived from bits 6..2 of the look-ahead and look-back
counter wrap around modulo 32.

The prefetch is halted:

❒ When eight words are prefetched, that is, eight words are available (including those
pending in the load pipeline) in the prefetch sequence succeeding the instruction word
addressed by the program counter PC through the instruction word addressed by the
look-ahead counter. Prefetch is resumed when the PC is advanced by instruction execu-
tion.

❒ In the cycle preceding the execution cycle of an instruction accessing memory or I/O or
any potentially branch-causing instruction (regardless of whether the branch is taken)
except a forward Branch or Delayed Branch instruction with an instruction length of one
half-word and a branch target contained in the cache. Halting the prefetch in these cases
avoids filling the load pipeline with demands for potentially unnecessary instruction
words. The prefetch is also halted during the execution cycle of any instruction acces-
sing memory or I/O.

1-26 CHAPTER 1

1.9. Instruction Cache (continued)
The cache is read in the decode cycle by using bits 6..1 of the PC as an address to the first
half-word of the instruction presently being decoded. The instruction decode needs and
uses only the number (1, 2 or 3) of instruction half-words defined by the instruction format.
Since only the bits 6..1 of the PC are used for addressing, the half-word addresses wrap
around modulo 64. Idle wait cycles are inserted when the instruction is not or not fully
available in the cache.

At an explicit Branch or Delayed Branch instruction (except when placed as delay instruc-
tion) with an instruction length of one half-word, the location of the branch target is
checked. The branch target is treated as being in the cache when the target address of a
backward branch is not lower than the address in the look-back counter and the target ad-
dress of a forward branch is not higher than two words above the address in the look-ahead
counter. That is, the two instruction words succeeding the instruction word addressed by
the content of the look-ahead counter are treated by a forward branch as being in the cache.
Their actual fetch overlaps in most cases with the execution of the branch instruction and
thus, no cycles are wasted. When the branch target is in the cache, the look-back counter
and the look-ahead counter remain unchanged.

When a branch is taken by a Delayed Branch instruction with an instruction length of one
half-word to a forward branch target not in the cache and the cache mode flag M is enabled
(1), the look-back counter and the look-ahead counter remain unchanged. Wait cycles are
then inserted until the ongoing prefetch has loaded the branch target instruction into the
cache.

Any other branch taken flushes the cache by placing the branch address in the look-back
and the look-ahead counter. Prefetch then starts immediately at the branch address. Instruc-
tion decoding waits until the branch target instruction is fully available in the cache.

The cache mode flag M (bit four of the SR) can be set or cleared by logical instructions. It
is automatically cleared by a Frame instruction and by any branch taken except a branch
caused by a Delayed Branch or Return instruction; a Delayed Branch instruction leaves the
M flag unchanged and a Return instruction restores the M flag from the saved status regis-
ter SR.

Note: Since up to eight instruction words can be loaded into the cache by the prefetch, only
24 instruction words are left to be contained in a program loop. Thus, a program loop can
have a maximum length of 96 or 94 bytes including the branch instruction closing the loop,
depending on the even or odd half-word address location of the first instruction of the loop
respectively.

A forward Branch or Delayed Branch instruction with an instruction length of one half-
word into up to two instruction words succeeding the word addressed by the look-ahead
counter treats the branch target as being in the cache and does not flush the cache. Thus,
three or four instruction half-words, depending on the odd or even half-word address loca-
tion of the branch instruction respectively, can always be skipped without flushing the
cache.

ARCHITECTURE 1-27

1.9. Instruction Cache (continued)
Enabling the cache-mode flag M is only required when a program loop to be contained in
the cache contains a forward branch to a branch target in the program loop and more than
three (or four, see above) instruction half-words are to be skipped. In this case, the enabled
M flag in combination with a Delayed Branch instruction with an instruction length of one
half-word inhibits flushing the cache when the branch target is not yet prefetched.

Since a single-word memory instruction halts the prefetch for two cycles, any sequence of
memory instructions, even with interspersed one-cycle non-memory instructions, halts the
prefetch during its execution. Thus, alternating between instruction and data memory pages
is avoided. If the number of instruction half-words required by such a sequence is not guar-
anteed to be in the cache at the beginning of the sequence, a Fetch instruction enforcing the
prefetch of the sequence may be used. A Fetch instruction may also be used preceding a
branch into a program loop; thus, flushing the cache by the first branch repeating the loop
can be avoided.

A branch taken caused by a Branch or Delayed Branch instruction with an instruction
length of two half-words always flushes the instruction cache, even if the branch target is in
the cache. Thus, branches can be forced to bypass the cache, thereby reducing the cache to
a prefetch buffer. This reduced function can be used for testing.

1.10. On-Chip Memory (IRAM)
16 KBytes of memory are provided on-chip. The on-chip memory (IRAM) is mapped to
the hex address C000 0000 of the memory address space and wraps around modulo 16K up
to DFFF FFFF. The IRAM is implemented as a fully static memory block.

An access to the IRAM bypasses the access pipeline of the external memory. Thus, pend-
ing external memory accesses do not delay accesses to the IRAM. The IRAM can hold data
as well as instructions. Instruction words from the IRAM are automatically transferred to
the instruction cache on demand; these transfers do not interfere with external memory
accesses. Besides bypassing of the external memory pipeline, memory instructions access-
ing the IRAM behave exactly alike those accessing external memory. The minimum delay
for a load access is one cycle; that is, the data is not available in the cycle after the load
instruction. One or more wait cycles are automatically inserted if the target register of the
load is addressed before the data is loaded into the target register.

Attention: For selection between an internal and external memory access, bits 31..29 of the
specified address register are used before calculation of the effective address. Therefore,
the content of the specified address register must point into the IRAM address range. The
IRAM address range boundary must not be crossed when the effective memory address is
calculated in the displacement address mode.

1-28 CHAPTER 1

This page is intentionally left blank.

INSTRUCTIONS GENERAL 2-1

2. Instructions General

2.1. Instruction Notation
In the following instruction-set presentation, an informal description of an instruction is
followed by a formal description in the form:

Format Notation Operation

Format denotes the instruction format.

Notation gives the assembler notation of the instruction.

Operation describes the operation with the following symbols:

Ls denotes any of the local registers L0..L15 used as source register or as source oper-
and. At memory Load instructions, Ls denotes the load destination register.

Ld denotes any of the local registers L0..L15 used as destination register or as destina-
tion operand.

Rs denotes any of the local registers L0..L15 or any of the global registers G0..G15
used as source register or as source operand. At memory Load instructions, Rs de-
notes the load destination register.

Rd denotes any of the local registers L0..L15 or any of the global registers G0..G15
used as destination register or as destination operand.

Lsf, Ldf, Rsf and Rdf denote the register or operand following after (with a register address
one higher than) Ls, Ld, Rs and Rd respectively.

imm, const, dis, lim, rel, adr and n denote immediate operands (constants) of various for-
mats and ranges.

Operand(x) denotes a single bit at the bit position x of an operand.
Example: Ld(31) denotes bit 31 of Ld.

Operand(x..y) denotes bits x through y of an operand.
Example: Ls(4..0) denotes bits 4 through 0 of Ls.

Expression^ denotes an operand at a location addressed by the value of the expression.
Depending on the context, the expression addresses a memory location or a local
register.
Example: Ld^ denotes a memory operand whose memory address is the operand
Ld. (FP + FL)^ denotes a local register operand whose register address is FP + FL.

:= signifies the assignment symbol, read as "is replaced by".

// signifies the concatenation symbol. It denotes concatenation of two operand words
to a double-word operand or concatenation of bits and bitstrings.
Examples: Ld//Ldf denotes a double-word operand, 16 zeros//imm1 denotes ex-
panding of an immediate half-word by 16 leading zeros.

=, ≠, > and < denote the equal, unequal, greater than and less than relations.
Example: The relation Ld = 0 evaluates to one if Ld is equal to zero, otherwise it
evaluates to zero.

2-2 CHAPTER 2

2.2. Instruction Execution
On instruction execution, all bits of the operands participate in the operations, except on
the Shift and Rotate instructions (whereat only the 5 least significant bits of the source op-
erand are used) and except on the byte and half-word Store instructions.

Instructions are executed by a two-stage pipeline. In the first stage, the instruction is
fetched from the instruction cache and decoded. In the second stage, the instruction is exe-
cuted while the next instruction in the first stage is already decoded.

On register instructions executing in one or two cycles, the corresponding source and desti-
nation operand words are read from their registers and evaluated in each cycle in which
they are used. Then the result word is placed in the corresponding destination register in the
same cycle. Thus, on all single-word register instructions executing in one cycle, the source
operand register and the destination operand register may coincide without changing the
effect of the instruction. On all other instructions, the effect of a register coincidence de-
pends on execution order and must be examined specifically for each such instruction.

The content of a source register remains unchanged unless it is used coincidentally as a
destination register (except on memory Load instructions).

Some instructions set or clear condition flags according to the result and special conditions
occuring during their execution. The conditions may be expressed by single bits, relations
or logical combinations of these. If a condition evaluates to one (true), the corresponding
condition flag is set to one, if it evaluates to zero (false), the corresponding condition flag
is cleared to zero. If the conditions for a Range Error are met, a trap to Range Error occurs
after the flags and the destination are updated.

All instructions may use the result and any flags updated by the preceding instruction. A
time penalty occurs only if the result of a memory Load instruction is not yet available
when needed as destination or source operand. In this case one or more (depending on the
memory access time) idle wait cycles are enforced by a hardware interlock.

An instruction must not use any local register of the register sequence beginning with L0
beyond the number of usable registers specified by the current value of the frame length FL
(FL = 0 is interpreted as FL = 16). That is, the value of the corresponding register code
(0..15) addressing a local register must be lower than the interpreted value of the FL (ex-
cept with a Call or Frame instruction or some restricted cases). Otherwise, an exception
could overwrite the contents of such a register or the beginning of the register part of the
stack at the SP could be overwritten without any warning when a result is placed in such a
register.

Double-word instructions denote the high-order word (at the lower address). The low-order
word adjacently following it (at the higher address) is implied.

"Old" denotes the state before the execution of an instruction.

INSTRUCTIONS GENERAL 2-3

2.3. Instruction Formats
Instructions have a length of one, two or three half-words and must be located on half-word
boundaries. The following formats are provided:

Format

LL

LR

RR

Ln

Rn

PCadr

PCrel

PCrel

OP-code Ld-code Ls-code

OP-code n Ld-code n

 OP-Code d n Rd-code n

OP-code adr-byte

OP-code 0 low-rel S

OP-code 1 high-rel

low-rel S

915 8 7 4 3 0

10 915 8 7 4 3 0

915 8 7 4 3 0

15 8 7 0

Ls-code encodes L0..L15 for Ls
Ld-code encodes L0..L15 for Ld

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Ld-code encosed L0..L15 for Ld

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd

Ld-code encodes L0..L15 for Ld
Bit 8//bits 3..0 encode n = 0..31

Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
Bit 8//bits 3..0 encode n = 0..31

adr = 24 ones's//adr-byte(7..2)//00

sign bit of rel
rel = 9 S//high-rel//low-rel//0
range -8 388 608..8 388 606

sign bit of rel
rel = 25 S//low-rel//0
range -128..126

 10 915 8 7 4 3 0

15 8 7 06 1

15 8 7 06 1

OP-Code d s Rd-code Rs-code

15 8 7 4 3 0

OP-code s Ld-code Rs-code

Configuration

S:

S:

d = 0:
d = 1:
n:

n:

s = 0:
s = 1:
d = 0:
d = 1:

s = 0:
s = 1:

LLext OP-code

OP-code extension

15 8
Ld-code Ls-code
7 4 3 0 Ls-code encodes L0..L15 for Ls

Ld-code encodes L0..L15 for Ld
OP-code extension encodes the
EXTEND instructions

Table 2.1: Instruction Formats, Part 1

2-4 CHAPTER 2

2.3. Instruction Formats (continued)

Configuration

LRconst

RRconst

915 8 7 4 3 0 Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Ld-code encodes L0..L15 for Ld
Sign bit of const
const = 18 S//const1
range -16 384..16 383
const = 2 S//const1//const2
range -1 073 741 824..1 073 741 8

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
Sign bit of const
const = 18 S//const 1
range -16 384..16 383
const = 2 S//const1//const2
range -1 073 741 824..1 073 741 8

Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
Bit 8//bits 3..0 encode n = 0..31
see Table 2.3. Encoding of
Immediate Values for encoding of
imm

 10 915 8 7 4 3 0
d

OP-code s Ld-code Rs-code

OP-code s Rd-code Rs-code

RRdis
 10 915 8 7 4 3 0

dOP-code s Rd-code Rs-code
Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
Sign bit of dis
dis = 20 S//dis1
range -4 096..4 095
dis = 4 S//dis1//dis2
range -268 435 456..268 435 455
D-code, D13..D12 encode data
types at memory instructions

 10 915 8 7 4 3 0
dOP-code n Rd-code n

 10 915 8 7 4 3 0
dOP-code s Rd-code Rs-code

Rs-code encodes G0..G15 for Rs
Rs-code encodes L0..L15 for Rs
Rd-code encodes G0..G15 for Rd
Rd-code encodes L0..L15 for Rd
X-code, X14..X12 encode Index
instructions
lim = 20 zeros//lim1
range 0..4 095
lim = 4 zeros//lim1//lim2
range 0..268 435 455

14

14

14

Rimm

RRlim

e S const1

const2

e const1

const2

e S

S

D D dis1

dis2

imm1

imm2

e X X X lim1

lim2

Format

s = 0:
s = 1:

S:
e = 0:

e = 1:

s = 0:
s = 1:
d = 0:
d = 1:
S:
e = 0:

e = 1:

s = 0:
s = 1:
d = 0:
d = 1:
S:
e = 0:

e = 1:

DD:

d = 0:
d = 1:
n:

s = 0:
s = 1:
d = 0:
d = 1:
XXX:

e = 0:

e = 1:

14

Table 2.2: Instruction Formats, Part 2

INSTRUCTIONS GENERAL 2-5

2.3.1. Table of Immediate Values

n immediate value imm Comment

0..16 0..16 at CMPBI, n = 0 encodes ANYBZ
at ADDI and ADDSI n = 0 encodes CZ

17 imm1//imm2 range = 0..232-1 or -231..231-1

18 16 zeros//imm1 range = 0..65 535

19 16 ones//imm1 range = -65 536..-1

20 32 bit 5 = 1, all other bits = 0

21 64 bit 6 = 1, all other bits = 0

22 128 bit 7 = 1, all other bits = 0

23 231 bit 31 = 1, all other bits = 0

24 -8

25 -7

26 -6

27 -5

28 -4

29 -3

30 -2

31 231-1 at CMPBI and ANDNI
bit 31 = 0, all other bits = 1

31 -1 at all other instructions using imm

Table 2.3: Encoding of Immediate Values

Note: 231 provides clear, set and invert of the floating-point sign bit at ANDNI, ORI and
XORI respectively.

231-1 provides a test for floating-point zero at CMPBI and extraction of the sign bit at
ANDNI.

See CMPBI for ANYBZ and ADDI, ADDSI for CZ.

2-6 CHAPTER 2

2.3.2. Table of Instruction Codes

C
H
K
, C

H
K
Z,

 N
O

P

X
M

x,
 X

Xx

C
M

P

C
M

P
B

M
O

V
D
, R

E
T

M
A
S
K

M
O

V

A
N
D

N

D
IV

U

S
U
M

A
D
D

O
R

D
IV

S

S
U
M

S

A
D
D

S

X
O

R

S
U
B
S

N
EG

S

A
D
D

SI

X
O

R
I

S
U
B

N
EG

A
D
D

I

O
R

I

N
O

T

A
N
D

M
O

V
I

A
N
D

N
I

S
U
B
C

A
D
D

C

C
M

P
I

C
M

P
BI

S
H
R

D
I

S
H
R

D
S
H
R

LD
xx

.D
/A

/IO
D

/IO
A

S
H
R

I

M
U

LU

FS
U

B
FS

U
BD

D
BE B
E

D
BN

E

B
N
E

FA
D

D
D

FA
D

D

D
BN

V
D

BV

B
N
V

B
VLD

W
.R

LD
D

.R

S
AR

D
I

S
AR

D
S
AR

LD
xx

.N
/S

S
AR

I

M
U

LS

FD
IV

FD
IV

D

D
BS

E

B
SE

D
BH

T

B
H
T

FM
U

LD
FM

U
L

D
BN

C
D

BC

B
N
C

B
CLD

W
.P

LD
D

.P

S
H
LD

I
S
H
LD

S
H
L

S
Tx

x.
D

/A
/IO

D
/IO

A

S
H
LI

S
ET

xx
, S

E
TA

D
R
, F

E
TC

H

FC
M

PU
FC

M
PU

D

D
BL

E

B
LE

D
BG

T

B
G

T

FC
M

PD
FC

M
P

D
BN

N
D

BN

B
N
N

B
NS

TW
.R

S
TD

.R

R
ES

ER
VE

D
TE

S
TL

Z
R

O
L

S
Tx

x.
N

/S

R
ES

ER
VE

D

M
U

L E
XT

EN
D

D
O

C
AL

L

FC
V
TD

FC
V
T

FR
A
M

E
D

BR B
RS

TW
.P

S
TD

.P

TR
A
Px

x,
 T

R
A
P

2
3

1
0

6
7

5
4

A
B

9
8

D
C

F
E

O
P-

co
de

 B
its

 1
1.

.8

0 1 2 3 4 5 6 7 8 9 A B C D E F

O
P-

co
de

 B
its

 1
5.

.1
2

Table 2.4: Table of Instruction Codes

INSTRUCTIONS GENERAL 2-7

2.3.3. Table of Extended DSP Instruction Codes
The Extended DSP instructions are specified by a 16-bit OP-code extension succeeding the
instruction op-code for the EXTEND instruction. See section 3.32. Extended DSP Instruc-
tions.

Instruction OP-code exten-
sion (hex)

EMUL 0102

EMULU 0104

EMULS 0106

EMAC 010A

EMACD 010E

EMSUB 011A

EMSUBD 011E

EHMAC 002A

EHMACD 002E

EHCMULD 0046

EHCMACD 004E

EHCSUMD 0086

EHCFFTD 0096

EHCFFTSD 0296

Table 2.5: Extended DSP Instruction Codes

2-8 CHAPTER 2

2.4. Entry Tables
Spacing of the entries for the Trap instructions and exceptions is four bytes. These entries
are intended to each contain an instruction branching to the associated function. The entries
for the TRAPxx instructions are the same as for TRAP. Table 2.6 shows the trap entries
when the entry table is mapped to the end of memory area MEM3 (default after Reset):

Address (Hex) Entry Description

FFFF FF00 TRAP 0

FFFF FF04 TRAP 1

: :

FFFF FFC0 TRAP 48 IO2 Interrupt -- priority 15

FFFF FFC4 TRAP 49 IO1 Interrupt -- priority 14

FFFF FFC8 TRAP 50 INT4 Interrupt -- priority 13

FFFF FFCC TRAP 51 INT3 Interrupt -- priority 11

FFFF FFD0 TRAP 52 INT2 Interrupt -- priority 9

FFFF FFD4 TRAP 53 INT1 Interrupt -- priority 7

FFFF FFD8 TRAP 54 IO3 Interrupt -- priority 5

FFFF FFDC TRAP 55 Timer Interrupt -- priority selectable as 6, 8, 10, 12

FFFF FFE0 TRAP 56 Reserved -- priority 17 (lowest)

FFFF FFE4 TRAP 57 Trace Exception -- priority 16

FFFF FFE8 TRAP 58 Parity Error -- priority 4

FFFF FFEC TRAP 59 Extended Overflow -- priority 3

FFFF FFF0 TRAP 60 Range, Pointer, Frame and Privilege Error -- priority 2

FFFF FFF4 TRAP 61 Reserved -- priority 1

FFFF FFF8 TRAP 62 Reset -- priority 0 (highest)

FFFF FFFC TRAP 63 Error entry for instruction code of all ones

Table 2.6: Trap entry table mapped to the end of MEM3

INSTRUCTIONS GENERAL 2-9

2.4. Entry Tables (continued)
Table 2.7 shows the trap entries when the entry table is mapped to the beginning of mem-
ory areas MEM0, MEM1, MEM2 or IRAM. x is 0, 4, 8 or C corresponding to the mapping
to MEM0, MEM1, MEM2 or IRAM respectively.

Address (Hex) Entry Description

x000 0000 TRAP 63 Error entry for instruction code of all ones

x000 0004 TRAP 62 Reserved -- priority 0 (highest)

x000 0008 TRAP 61 Reserved -- priority 1

x000 000C TRAP 60 Range, Pointer, Frame and Privilege Error -- priority 2

x000 0010 TRAP 59 Extended Overflow -- priority 3

x000 0014 TRAP 58 Parity Error -- priority 4

x000 0018 TRAP 57 Trace Exception -- priority 16

x000 001C TRAP 56 Reserved -- priority 17 (lowest)

x000 0020 TRAP 55 Timer Interrupt -- priority selectable as 6, 8, 10, 12

x000 0024 TRAP 54 IO3 Interrupt -- priority 5

x000 0028 TRAP 53 INT1 Interrupt -- priority 7

x000 002C TRAP 52 INT2 Interrupt -- priority 9

x000 0030 TRAP 51 INT3 Interrupt -- priority 11

x000 0034 TRAP 50 INT4 Interrupt -- priority 13

x000 0038 TRAP 49 IO1 Interrupt -- priority 14

x000 003C TRAP 48 IO2 Interrupt -- priority 15

: :

x000 00F8 TRAP 1

x000 00FC TRAP 0

Table 2.7: Trap entry table mapped to the beginning of MEM0, MEM1, MEM2 or IRAM

2-10 CHAPTER 2

2.4. Entry Tables (continued)
Table 2.8 below shows the addresses of the first instruction of the emulator code associated
with the floating-point instructions when the trap entry tables are mapped to the end of
memory area MEM3. Spacing of the entries for the Software instructions FADD..DO is 16
bytes.

Address (Hex) Entry Description

FFFF FE00 FADD Floating-point Add, single word

FFFF FE10 FADDD Floating-point Add, double-word

FFFF FE20 FSUB Floating-point Subtract, single word

FFFF FE30 FSUBD Floating-point Subtract, double-word

FFFF FE40 FMUL Floating-point Multiply, single word

FFFF FE50 FMULD Floating-point Multiply, double-word

FFFF FE60 FDIV Floating-point Divide, single word

FFFF FE70 FDIVD Floating-point Divide, double-word

FFFF FE80 FCMP Floating-point Compare, single word

FFFF FE90 FCMPD Floating-point Compare, double-word

FFFF FEA0 FCMPU Floating-point Compare Unordered, single word

FFFF FEB0 FCMPUD Floating-point Compare Unordered, double-word

FFFF FEC0 FCVT Floating-point Convert single word ⇒ double-word

FFFF FED0 FCVTD Floating-point Convert double-word ⇒ single word

FFFF FEE0 Reserved

FFFF FEF0 DO Do instruction

Table 2.8: Floating-Point entry table mapped to the end of MEM3

INSTRUCTIONS GENERAL 2-11

2.4. Entry Tables (continued)
Table 2.9 below shows the addresses of the first instruction of the emulator code associated
with the floating-point instructions when the trap entry tables are mapped to the beginning
of memory areas MEM0, MEM1, MEM2 or IRAM. x is 0, 4, 8 or C corresponding to the
mapping to MEM0, MEM1, MEM2 or IRAM respectively.

Address (Hex) Entry Description

x000 010C DO Do instruction

x000 011C Reserved

x000 012C FCVTD Floating-point Convert double-word ⇒ single word

x000 013C FCVT Floating-point Convert single word ⇒ double-word

x000 014C FCMPUD Floating-point Compare Unordered, double-word

x000 015C FCMPU Floating-point Compare Unordered, single word

x000 016C FCMPD Floating-point Compare, double-word

x000 017C FCMP Floating-point Compare, single word

x000 018C FDIVD Floating-point Divide, double-word

x000 019C FDIV Floating-point Divide, single word

x000 01AC FMULD Floating-point Multiply, double-word

x000 01BC FMUL Floating-point Multiply, single word

x000 01CC FSUBD Floating-point Subtract, double-word

x000 01DC FSUB Floating-point Subtract, single word

x000 01EC FADDD Floating-point Add, double-word

x000 01FC FADD Floating-point Add, single word

Table 2.9: Floating-Point entry table mapped to the beginning of MEM0, MEM1, MEM2 or IRAM

2-12 CHAPTER 2

2.5. Instruction Timing
The following execution times are given in number of processor clock cycles.

All instructions not shown below: 1 cycle
Move double-word: 2 cycles

Shift double-word: 2 cycles

Test Leading Zeros: 2 cycles

Multiply word:
when both operands are in the range of -215..215-1: 3 cycles
all other cases: 5 cycles

Multiply double-word signed:
when both operands are in the range of -215..215-1: 4 cycles
all other cases: 6 cycles

Multiply double-word unsigned:
when both operands are in the range of 0..216-1: 4 cycles
all other cases: 6 cycles

Divide unsigned and signed: 36 cycles

Branch instructions when branch not taken: 1 cycle
when branch taken and target in on-chip cache: 2 cycles
when branch taken and target in memory : 2 + memory read latency cycles
(see next page)

Delayed Branch instructions when branch not taken: 1 cycle
when branch taken and target in on-chip cache: 1 cycle
when branch taken and target in memory: 1 + memory read latency cycles exceeding
(delay instruction cycles - 1)

Call and Trap instructions when branch not taken: 1 cycle
when branch taken: 2 + memory read latency cycles

Software instructions: 6 + memory read latency cycles exceeding 4 cycles

Frame when not pushing words on the stack: 3 cycles
additionally when pushing n words on the stack: memory write latency cycles
+ n * bus cycles per access
-- write latency = cycles elapsed until write access cycle of first word stored (mini-

mum = 1 at a non-RAS access and no pipeline congestion)

Return:
4 + memory read latency cycles exceeding 2 cycles
additionally when pulling n words from the stack: memory RAS latency
+ n * bus cycles per access
(RAS latency applies only at n > 2, otherwise RAS latency is always 0)
-- RAS latency = RAS precharge cycles + RAS to CAS delay cycles

INSTRUCTIONS GENERAL 2-13

2.5. Instruction Timing (continued)
Fetch instruction:

when the required number of instruction half-words are already prefetched in the in-
struction cache: 1 cycle
otherwise
1 + (required number of half-words - number of half-words already prefetched)/2
* bus cycles per access

Memory word instructions, non-stack address mode:
1 cycle

Memory word instructions, stack address mode:
3 cycles

Memory double-word instructions:
2 cycles

For timing calculations, double-word memory instructions are treated like a sequence of
two single-word memory instructions.

Idle wait cycles are transparently inserted when a memory instruction has to wait for exe-
cution because the two-stage address pipeline is full.

Instruction execution proceeds after the execution of a Load instruction until the data re-
quested is needed (that is, the register into which the data is to be loaded is addressed) by a
further instruction.

The cycles executed between the memory instruction cycle requesting the data and the first
cycle at which the data are available are called read latency cycles. These read latency cy-
cles can be filled with instructions which do not need the requested data. When, after the
execution of these optional fill instruction cycles, the data is still not available in the cycle
needing it, idle wait cycles are inserted until the data is available. The idle wait cycles are
inserted transparently to the program by an on-chip hardware interlock. The read latency is:

On an IRAM access:
read latency = 1 cycle

On a non-RAS external memory or I/O access:
read latency = address setup cycles + access cycles + 1

On a RAS memory access:
read latency = RAS precharge cycles + RAS to CAS delay cycles +

access cycles + 1

Additional cycles are also inserted and add to the latency when the address pipeline is con-
gested, these cycles must then also be taken into calculation.

A switch from an external memory or I/O read access to an immediately succeeding write
access inserts one additional bus cycle.

Extended DSP instructions:
The instruction issue time is always 1 cycle. After the issue of an Extended DSP instruc-
tion, execution of non-Extended-DSP instructions proceeds while the Extended DSP in-
struction is executed in the multiply/accumulate unit.

2-14 CHAPTER 2

2.5. Instruction Timing (continued)
Latency cycles are defined as the time that the multiply-accumulate execution unit is busy
executing the Extended DSP instruction. In the last latency cycle of an Extended DSP in-
struction that is currently executed, the issue cycle of the next Extended DSP instruction
may take place. An Extended DSP instruction succeeding a currently running Extended
DSP instruction after less than the latency cycles for the running instructions is delayed
until the last latency cycle of the running instruction is reached.

One additional latency cycle passes until the instruction result is available in the register
G15 or register pair G14//G15 to an ALU instruction referencing that result. Any instruc-
tion referencing the Extended DSP instruction result earlier is delayed until the result is
available in G15 or G14//G15.

The latency cycles are as follows:

EMUL instruction:
when both operands are in the range of -215..215-1: 1 cycle
all other cases: 3 cycles

EMULU instruction:
when both operands are in the range of 0..216-1: 1 cycle
all other cases: 4 cycles

EMULS instruction:
when both operands are in the range of -215..215-1: 1 cycle
all other cases: 4 cycles

EMAC instruction:
when both operands are in the range of -215..215-1: 1 cycle
all other cases: 3 cycles

EMACD instruction:
when both operands are in the range of -215..215-1: 1 cycle
all other cases: 4 cycles

EMSUB instruction:
when both operands are in the range of -215..215-1: 1 cycle
all other cases: 3 cycles

EMSUBD instruction:
when both operands are in the range of -215..215-1: 1 cycle
all other cases: 4 cycles

EHMAC, EHMACD instructions: 2 cycles

EHCMULD, EHCMACD instructions: 4 cycles

EHCSUMD instruction: 1 cycles

EHCFFTD, EHCFFTSD instructions: 1 cycles

Thus, after issue of for example a EHCMULD instruction, there are three clock cycles
available for the issue of ALU instructions until the next Extended DSP instruction can be
issued, and the result of the EHCMULD instruction is available in G14//G15 five clock
cycles after instruction issue.

INSTRUCTION SET 3-1

3. Instruction Set

3.1. Memory Instructions
The memory instructions load data from memory in a register Rs (or a register pair
Rs//Rsf) or store data from Rs (or Rs//Rsf) to memory using the data types byte un-
signed/signed, half-word unsigned/signed, word or double-word. Since I/O devices are also
addressed by memory instructions, "memory" stands here interchangeably also for I/O un-
less memory or I/O address space is specifically denoted.

The memory address is either specified by the operand Rd or Ld, by the sum Rd plus a
signed displacement or by the displacement alone, depending on the address mode. Mem-
ory accesses to words and double-words ignore bits one and zero of the address, memory
accesses to half-words ignore bit zero of the address, (since these operands are located at
word or half-word boundaries respectively, these address bits are redundant).

If the content of any register Rd except SR is zero, the memory is not accessed and a trap to
Pointer Error occurs (see section 4. Exceptions). Thus, uninitialized pointers are automati-
cally checked.

Load and Store instructions are pipelined to a total depth of two word entries for Load and
Store, thus, a double-word Load or a double-word Store instruction can be executed with-
out halting the processor in a wait state. (The address pipeline provides a depth of two ad-
dresses common to load and store).

Double-word memory instructions insert two separate word and address entries into the
pipeline and start two independent memory cycles. The first memory cycle, loading or stor-
ing the high-order word, uses the address specified by the address mode, the second cycle
uses this address incremented by four and also places it on the address bus.

Accessing data in the same DRAM memory page by any number of succeeding memory
cycles is performed in page mode.

Memory instructions leave all condition flags unchanged.

3-2 CHAPTER 3

3.1.1. Address Modes

Register Address Mode:

Notation: LDxx.R, STxx.R -- xx: word or double-word data type

The content of the destination register Ld is used as an address into memory address space.

Postincrement Address Mode:

Notation: LDxx.P, STxx.P -- xx: word or double-word data type

The content of the destination register Ld is used as an address into memory address space,
then Ld is incremented according to the specified data size of a word or double-word
memory instruction by 4 or 8 respectively, regardless of any exception occuring. In the case
of a double-word data type, Ld is incremented by 8 at the first memory cycle.

Displacement Address Mode:

Notation: LDxx.D, STxx.D -- xx: any data type

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an address into memory address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the absolute address mode.

In the case of all data types except byte, bit zero of dis is treated as zero for the calculation
of Rd + dis.

Note: Specification of the PC for Rd provides addressing relative to the address of the first
byte after the memory instruction.

Absolute Address Mode:

Notation: LDxx.A, STxx.A -- xx: any data type

The displacement dis is used as an address into memory address space. Rd must denote the
SR to differentiate this mode from the displacement address mode; the content of the SR is
not used.

In the case of all data types except byte, address bit zero is supplied as zero.

Note: The displacement provides absolute addressing at the beginning and the end (MEM3
area) of the memory.

INSTRUCTION SET 3-3

I/O Displacement Address Mode:

Notation: LDxx.IOD, STxx.IOD -- xx: word or double-word data type

The sum of the contents of the destination register Rd plus a signed displacement dis is
used as an address into I/O address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this mode
from the I/O absolute address mode.

Bits one and zero of dis are treated as zero for the calculation of Rd + dis.

Execution of a memory instruction with I/O displacement address mode does not disrupt
any page mode sequence.

Note: The I/O displacement address mode provides dynamic addressing of peripheral de-
vices.

When on a load instruction only a byte or half-word is placed on the (lower part) of the
data bus, the higher-order bits are undefined and must be masked out before the loaded
operand is used further.

I/O Absolute Address Mode:

Notation: LDxx.IOA, STxx.IOA -- xx: word or double-word data type

The displacement dis is used as an address into I/O address space.

Rd must denote the SR to differentiate this mode from the I/O displacement address mode;
the content of the SR is not used.

Address bits one and zero are supplied as zero.

Execution of a memory instruction with I/O address mode does not disrupt any page mode
sequence.

Note: The I/O absolute address mode provides code efficient absolute addressing of pe-
ripheral devices and allows simple decoding of I/O addresses.

When on a load instruction only a byte or a half-word is placed on the (lower part) of the
data bus, the higher-order bits are undefined and must be masked out before the loaded
operand is used further.

3-4 CHAPTER 3

Next Address Mode:

Notation: LDxx.N, STxx.N -- xx: any data type

The content of the destination register Rd is used as an address into memory address space,
then Rd is incremented by the signed displacement dis regardless of any exception occur-
ring. At a double-word data type, Rd is incremented at the first memory cycle.

Rd must not denote the PC or the SR.

In the case of all data types except byte, bit zero of dis is treated as zero for the calculation
of Rd + dis.

Stack Address Mode:

Notation: LDW.S, STW.S -- only word data type

The content of the destination register Rd is used as stack address, then Rd is incremented
by dis regardless of any exception occurred.

A stack address addresses memory address space if it is lower than the stack pointer SP;
otherwise bits 7..2 of it (higher bits are ignored) address a register in the register part of the
stack absolutely (not relative to the frame pointer FP).

Bits one and zero of dis are treated as zero for the calculation of Rd + dis.

Rd must not denote the PC or the SR.

Note: The stack address mode must be used to address an operand in the stack regardless of
its present location either in the memory part or in the register part of the stack. Rd may be
set by the Set Stack Address instruction.

INSTRUCTION SET 3-5

Address Mode Encoding:

The encoding of the displacement and absolute address mode types of memory instructions
is shown in table 3.1:

 LDxx.D/A/IOD/IOA STxx.D/A/IOD/IOA

D-code dis(1) dis(0) Rd does not
denote SR

Rd denotes SR Rd does not
denote SR

Rd denotes SR

0 X X LDBS.D LDBS.A STBS.D STBS.A

1 X X LDBU.D LDBU.A STBU.D STBU.A

2 X 0 LDHU.D LDHU.A STHU.D STHU.A

2 X 1 LDHS.D LDHS.A STHS.D STHS.A

3 0 0 LDW.D LDW.A STW.D STW.A

3 0 1 LDD.D LDD.A STD.D STD.A

3 1 0 LDW.IOD LDW.IOA STW.IOD STW.IOA

3 1 1 LDD.IOD LDD.IOA STD.IOD STD.IOA

Table 3.1: Encoding of Displacement and Absolute Address Mode

The encoding of the next and stack address mode types of memory instructions is shown in
table 3.2:

 With the instructions below, Rd must not denote the PC or the SR

D-code dis(1) dis(0) LDxx.N/S STxx.N/S

0 X X LDBS.N STBS.N

1 X X LDBU.N STBU.N

2 X 0 LDHU.N STHU.N

2 X 1 LDHS.N STHS.N

3 0 0 LDW.N STW.N

3 0 1 LDD.N STD.N

3 1 0 Reserved Reserved

3 1 1 LDW.S STW.S

Table 3.2: Encoding of Next and Stack Address Mode

3-6 CHAPTER 3

3.1.2. Load Instructions
The Load instructions transfer data from the addressed memory location into a register Rs
or a register pair Rs//Rsf.

In the case of data types word and double-word, one or two words are read from memory
and transferred unchanged into Rs or Rs//Rsf respectively.

In the case of byte and half-word data types, up to one word (depending on bus size) is read
from memory, the byte or half-word addressed by bits one and zero or bit one of the mem-
ory address respectively is extracted, right adjusted, expanded to 32 bits and placed in Rs.
Unsigned bytes and half-words are expanded by leading zeros; signed bytes and half-words
are expanded by leading sign bits.

Execution of a Load instruction enters the register address of Rs, memory address bits one
and zero and a code for the data type into the load pipeline, places the memory address
onto the address bus and starts a memory cycle. A double-word Load instruction enters the
register address of Rsf and the same control information into the load pipeline as a second
entry, places the memory address incremented by four onto the address bus and starts a
second memory cycle.

After execution of a Load instruction, the next instructions are executed without waiting
for the data to be loaded. A wait is enforced only if an instruction uses a register whose
register address is still in the load pipeline. The data read from memory is placed in the
register whose register address is at the head of the load pipeline, its pipeline entry is then
deleted.

Rs must not denote the PC, the SR, G14 or G15; these registers cannot be loaded
from memory.

INSTRUCTION SET 3-7

3.1.2. Load Instructions (continued)

Format Notation Operation Data Type xx

LR LDxx.R Ld, Rs Rs := Ld^; W,D
 [Rsf := (Ld + 4)^;]
 -- register address mode

LR LDxx.P Ld, Rs Rs := Ld^; Ld := Ld + size; -- size = 4 or 8 W,D
 [Rsf := (old Ld + 4)^;]
 -- post-increment address mode

RRdis LDxx.D Rd, Rs, dis Rs := (Rd + dis)^; BU,BS,HU,HS,W,D
 [Rsf := (Rd + dis + 4)^;]
 -- displacement address mode

RRdis LDxx.A 0, Rs, dis Rs := dis^; BU,BS,HU,HS,W,D
 [Rsf := (dis + 4)^;]
 -- absolute address mode

RRdis LDxx.IOD Rd, Rs, dis Rs := (Rd + dis)^; W,D
 [Rsf := (Rd + dis + 4)^;]
 -- I/O displacement address mode

RRdis LDxx.IOA 0, Rs, dis Rs := dis^; W,D
 [Rsf := (dis + 4)^;]
 -- I/O absolute address mode

RRdis LDxx.N Rd, Rs, dis Rs := Rd^; Rd := Rd + dis; BU,BS,HU,HS,W,D
 [Rsf := (old Rd + 4)^;]
 -- next address mode

RRdis LDxx.S Rd, Rs, dis Rs := Rd^; Rd := Rd + dis; W
 -- stack address mode

The expressions in brackets are only executed at double-word data types.

Data Type xx is with:

 BU: byte unsigned; HU: half-word unsigned; W: word;
 BS: byte signed; HS: half-word signed; D: double-word;

3-8 CHAPTER 3

3.1.3. Store Instructions
The Store instructions transfer data from the register Rs or the register pair Rs//Rsf to the
addressed memory location.

In the case of data types word or double-word, one or two words are placed unchanged
from Rs or Rs//Rsf respectively onto the data bus to be stored in the memory.

In the case of byte and half-word data types, the low-order byte or half-word is placed onto
the data bus at the byte or half-word position addressed by bits one and zero or bit one of
the memory address respectively; it is implied to be merged (via byte write enable) with the
other data in the same memory word.

In the case of signed byte and signed half-word data types, any content of Rs exceeding the
value range of the specified data type causes a trap to Range Error. The byte or half-word is
stored regardless of a Range Error.

If Rs denotes the SR, zero is stored regardless of the content of SR (or of SR//G2 at dou-
ble-word).

Execution of a Store instruction enters the contents of Rs, memory address bits one and
zero and a code for the data type into the store pipeline, places the memory address onto
the address bus and starts a memory cycle. A double-word Store instruction enters the con-
tents of Rsf and the same control information into the store pipeline as a second entry,
places the memory address incremented by four onto the address bus and starts a second
memory cycle.

After execution of a Store instruction, the next instructions are executed without waiting
for the store memory cycle to finish. The data at the head of the store pipeline is put on the
data bus on demand from the on-chip memory control logic and its pipeline entry is de-
leted.

When Rsf denotes the same register as Rd (or Ld) at double-word instructions with next
address or post-increment address mode, the incremented content of Rsf is stored in the
second memory cycle; in all other cases, the unchanged content of Rs or Rsf is stored.

INSTRUCTION SET 3-9

3.1.3. Store Instructions (continued)

Format Notation Operation Data Type xx

LR STxx.R Ld, Rs Ld^ := Rs; W,D
 [(Ld + 4)^ := Rsf;]
 -- register address mode

LR STxx.P Ld, Rs Ld^ := Rs; Ld := Ld + size; -- size = 4 or 8 W,D
 [(old Ld + 4)^ := Rsf;]
 -- post-increment address mode

RRdis STxx.D Rd, Rs, dis (Rd + dis)^ := Rs; BU,BS,HU,HS,W,D
 [(Rd + dis + 4)^ := Rsf;]
 -- displacement address mode

RRdis STxx.A 0, Rs, dis dis^ := Rs; BU,BS,HU,HS,W,D
 [(dis + 4)^ := Rsf;]
 -- absolute address mode

RRdis STxx.IOD Rd, Rs, dis (Rd + dis)^ := Rs; W,D
 [(Rd + dis + 4)^ := Rsf;]
 -- I/O displacement address mode

RRdis STxx.IOA 0, Rs, dis dis^ := Rs; W,D
 [(dis + 4)^ := Rsf;]
 -- I/O absolute address mode

RRdis STxx.N Rd, Rs, dis Rd^ := Rs; Rd := Rd + dis; BU,BS,HU,HS,W,D
 [(old Rd + 4)^ := Rsf;]
 -- next address mode

RRdis STxx.S Rd, Rs, dis Rd^ := Rs; Rd := Rd + dis; W
 -- stack address mode

The expressions in brackets are only executed at double-word data types.

In the case of signed byte and half-word data types, a trap to Range Error occurs when the
value of the operand to be stored exceeds the value range of the specified data type; the
byte or half-word is stored regardless of a Range Error.

Data Type xx is with:

 BU: byte unsigned; HU: half-word unsigned; W: word;
 BS: byte signed; HS: half-word signed; D: double-word;

3-10 CHAPTER 3

3.2. Move Word Instructions
The source operand or the immediate operand is copied to the destination register and the
condition flags are set or cleared accordingly.

Format Notation Operation

RR MOV Rd, Rs Rd := Rs;
 Z := Rd = 0;
 N := Rd(31);
 V := undefined;

Rimm MOVI Rd, imm Rd := imm;
 Z := Rd = 0;
 N := Rd(31);
 V := undefined;

3.3. Move Double-Word Instruction
The double-word source operand is copied to the double-word destination register pair and
the condition flags are set or cleared accordingly. The high-order word in Rs is copied first.

When the SR is denoted as a source operand, the source operand is supplied as zero regard-
less of the content of SR//G2. When the PC is denoted as destination, the Return instruc-
tion RET is executed instead of the Move Double-Word instruction.

Format Notation Operation

RR MOVD Rd, Rs if Rd does not denote PC and Rs does not denote SR then
 Rd := Rs;
 Rdf := Rsf;
 Z := Rd//Rdf = 0;
 N := Rd(31);
 V := undefined;

RR MOVD Rd, 0 if Rd does not denote PC and Rs denotes SR then
 Rd := 0;
 Rdf := 0;
 Z := 1;
 N := 0;
 V := undefined;

RR RET PC, Rs if Rd denotes PC then
 execute the RET instruction;

INSTRUCTION SET 3-11

3.4. Logical Instructions
The result of a bitwise logical AND, AND not (ANDN), OR or exclusive OR (XOR) of the
source or immediate operand and the destination operand is placed in the destination regis-
ter and the Z flag is set or cleared accordingly. At ANDN, the source operand is used in-
verted (itself remaining unchanged).

All operands and the result are interpreted as bit strings of 32 bits each.

Format Notation Operation

RR AND Rd, Rs Rd := Rd and Rs; -- logical AND
 Z := Rd = 0;

RR ANDN Rd, Rs Rd := Rd and not Rs; -- logical AND with source
 Z := Rd = 0; used inverted

RR OR Rd, Rs Rd := Rd or Rs; -- logical OR
 Z := Rd = 0;

RR XOR Rd, Rs Rd := Rd xor Rs; -- logical exclusive OR
 Z := Rd = 0;

Rimm ANDNI Rd, imm Rd := Rd and not imm; -- logical AND with imm
 Z := Rd = 0; used inverted

Rimm ORI Rd, imm Rd := Rd or imm; -- logical OR
 Z := Rd = 0;

Rimm XORI Rd, imm Rd := Rd xor imm; -- logical exclusive OR
 Z := Rd = 0;

Note: ANDN and ANDNI are the instructions complementary to OR and ORI: Where OR
and ORI set bits, ANDN and ANDNI clear bits at bit positions with a "one" bit in the
source or immediate operand, thus obviating the need for an inverted mask in most cases.

3-12 CHAPTER 3

3.5. Invert Instruction
The source operand is placed bitwise inverted in the destination register and the Z flag is
set or cleared accordingly.

The source operand and the result are interpreted as bit strings of 32 bits each.

Format Notation Operation

RR NOT Rd, Rs Rd := not Rs;
 Z := Rd = 0;

3.6. Mask Instruction
The result of a bitwise logical AND of the source operand and the immediate operand is
placed in the destination register and the Z flag is set or cleared accordingly.

All operands and the result are interpreted as bit strings of 32 bits each.

Format Notation Operation

RRconst MASK Rd, Rs, const Rd := Rs and const;
 Z := Rd = 0;

Note: The Mask instruction may be used to move a source operand with bits partly masked
out by an immediate operand used as mask. The immediate operand const is constrained in
its range by bits 31 and 30 being either both zero or both one (see format RRconst). If these
bits are required to be different, the instruction pair MOVI, AND may be used instead of
MASK.

INSTRUCTION SET 3-13

3.7. Add Instructions
The source operand, the source operand + C or the immediate operand is added to the des-
tination operand, the result is placed in the destination register and the condition flags are
set or cleared accordingly.

At ADD, ADDC and ADDI, both operands and the result are interpreted as either all
signed or all unsigned integers. At ADDS and ADDSI, both operands and the result are
signed integers and a trap to Range Error occurs at overflow.

Format Notation Operation

RR ADD Rd, Rs Rd := Rd + Rs; -- signed or unsigned Add
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := carry;

RR ADDS Rd, Rs Rd := Rd + Rs; -- signed Add with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

RR ADDC Rd, Rs Rd := Rd + Rs + C; -- signed or unsigned Add
 Z := Z and (Rd = 0); with carry
 N := Rd(31); -- sign
 V := overflow;
 C := carry;

When the SR is denoted as a source operand at ADD, ADDS and ADDC, C is added in-
stead of the SR. The notation is then:

Format Notation Operation

RR ADD Rd, C Rd := Rd + C; -- signed or unsigned Add C

RR ADDS Rd, C Rd := Rd + C; -- signed Add C with trap

RR ADDC Rd, C Rd := Rd + C;

The flags and the trap condition are treated as defined by ADD, ADDS or ADDC.

3-14 CHAPTER 3

3.7. Add Instructions (continued)
Format Notation Operation

Rimm ADDI Rd, imm Rd := Rd + imm; -- signed or unsigned Add
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := carry;

Rimm ADDSI Rd, imm Rd := Rd + imm; -- signed Add with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

The following instructions are special cases of ADDI and ADDSI differentiated by n = 0
(see section 2.3.1. Table of Immediate Values):

Format Notation Operation

Rimm ADDI Rd, CZ Rd := Rd + (C and (Z = 0 or Rd(0))); -- round to
 even

Rimm ADDSI Rd, CZ Rd := Rd + (C and (Z = 0 or Rd(0))); -- round to
 even

The flags and the trap condition are treated as defined by ADDI or ADDSI.

Note: At ADDC, Z is cleared if Rd ≠ 0, otherwise left unchanged; thus, Z is evaluated cor-
rectly for multi-precision operands.

The effect of a Subtract immediate instruction can be obtained by using the negated 32-bit
value of the immediate operand to be subtracted (except zero). At unsigned, C = 0 indicates
then a borrow (the unsigned number range is exceeded below zero).

At "round to even", C is only added to the destination operand if Z = 0 or Rd(0) is one. The
Z flag is assumed to be set or cleared by a preceding Shift Left instruction. "Round to even"
provides a better averaging of rounding errors than "add carry".

"Round to even" is equivalent to the "round to nearest" Floating-Point rounding mode and
may be used to implement it efficiently.

INSTRUCTION SET 3-15

3.8. Sum Instructions
The sum of the source operand and the immediate operand is placed in the destination reg-
ister and the condition flags are set or cleared accordingly. At SUM, both operands and the
result are interpreted as either all signed or all unsigned integers. At SUMS, both operands
and the result are signed integers and a trap to Range Error occurs at overflow.

Format Notation Operation

RRconst SUM Rd, Rs, const Rd := Rs + const; -- signed or unsigned Sum
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := carry;

RRconst SUMS Rd, Rs, const Rd := Rs + const; -- signed Sum with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

When the SR is denoted as a source operand at SUM and SUMS, C is added instead of the
SR. The notation is then:

Format Notation Operation

RRconst SUM Rd, C, const Rd := C + const; -- signed or unsigned Sum C

RRconst SUMS Rd, C, const Rd := C + const; -- signed Sum C

The flags are treated as defined by SUM or SUMS. A trap cannot occur.

Note: The effect of a Subtract immediate instruction can be obtained by using the negated
32-bit value of the immediate operand to be subtracted (except zero). At unsigned, C = 0
indicates then a borrow (the unsigned number range is exceeded below zero).

The immediate operand is constrained to the range of const. The instruction pair MOV,
ADDI or MOV, ADDSI may be used where the full integer range is required.

3-16 CHAPTER 3

3.9. Subtract Instructions
The source operand or the source operand + C is subtracted from the destination operand,
the result is placed in the destination register and the condition flags are set or cleared ac-
cordingly.

At SUB and SUBC, both operands and the result are interpreted as either all signed or all
unsigned integers. At SUBS, both operands and the result are signed integers and a trap to
Range Error occurs at overflow.

Format Notation Operation

RR SUB Rd, Rs Rd := Rd - Rs; -- signed or unsigned Subtract
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := borrow;

RR SUBS Rd, Rs Rd := Rd - Rs; -- signed Subtract with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

RR SUBC Rd, Rs Rd := Rd - (Rs + C); -- signed or unsigned Subtract
 Z := Z and (Rd = 0); with borrow
 N := Rd(31); -- sign
 V := overflow;
 C := borrow;

When the SR is denoted as a source operand at SUB, SUBS and SUBC, C is subtracted
instead of the SR. The notation is then:

Format Notation Operation

RR SUB Rd, C Rd := Rd - C; -- signed or unsigned Subtract C

RR SUBS Rd, C Rd := Rd - C; -- signed Subtract C with trap

RR SUBC Rd, C Rd := Rd - C;

The flags and the trap condition are treated as defined by SUB, SUBS or SUBC.

Note: At SUBC, Z is cleared if Rd ≠ 0, otherwise left unchanged; thus, Z is evaluated cor-
rectly for multi-precision operands.

INSTRUCTION SET 3-17

3.10. Negate Instructions
The source operand is subtracted from zero, the result is placed in the destination register
and the condition flags are set or cleared accordingly.

At NEG and NEGS, the source operand and the result are interpreted as either both signed
or both unsigned integers. At NEGS, the source operand and the result are signed integers
and a trap to Range Error occurs at overflow.

Format Notation Operation

RR NEG Rd, Rs Rd := - Rs; -- signed or unsigned Negate
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 C := borrow;

RR NEGS Rd, Rs Rd := - Rs; -- signed Negate with trap
 Z := Rd = 0;
 N := Rd(31); -- sign
 V := overflow;
 if overflow then
 trap ⇒ Range Error;

When the SR is denoted as a source operand at NEG and NEGS, C is negated instead of
the SR. The notation is then:

Format Notation Operation

RR NEG Rd, C Rd := - C; -- signed or unsigned Negate C
 if C is set then
 Rd := -1;
 else
 Rd := 0;

RR NEGS Rd, C Rd := - C; -- signed Negate C
 if C is set then
 Rd := -1;
 else
 Rd := 0;

The flags are treated as defined by NEG or NEGS. A trap cannot occur.

3-18 CHAPTER 3

3.11. Multiply Word Instruction
The source operand and the destination operand are multiplied, the low-order word of the
product is placed in the destination register (the high-order product word is not evaluated)
and the condition flags are set or cleared according to the single-word product.

Both operands are either signed or unsigned integers, the product is a single-word integer.

Note that the low-order word of the product is identical regardless of whether the operands
are signed or unsigned.

The result is undefined if the PC or the SR is denoted.

Format Notation Operation

RR MUL Rd, Rs Rd := low order word of product Rd ∗ Rs;
 Z := single-word product = 0;
 N := Rd(31);
 -- sign of single-word product;
 -- valid for signed operands;
 V := undefined;
 C := undefined;

3.12. Multiply Double-Word Instructions
The source operand and the destination operand are multiplied, the double-word product is
placed in the destination register pair (the destination register expanded by the register fol-
lowing it) and the condition flags are set or cleared according to the double-word product.

At MULS, both operands are signed integers and the product is a signed double-word inte-
ger. At MULU, both operands are unsigned integers and the product is an unsigned double-
word integer.

The result is undefined if the PC or the SR is denoted.

Format Notation Operation

RR MULS Rd, Rs Rd//Rdf := signed double-word product of Rd ∗ Rs;
 Z := Rd//Rdf = 0;
 -- double-word product is zero
 N := Rd(31);
 -- double-word product is negative
 V := undefined;
 C := undefined;

RR MULU Rd, Rs Rd//Rdf := unsigned double-word product of Rd ∗ Rs;
 Z := Rd//Rdf = 0;
 -- double-word product is zero
 N := Rd(31);
 V := undefined;
 C := undefined;

INSTRUCTION SET 3-19

3.13. Divide Instructions
The double-word destination operand (dividend) is divided by the single-word source oper-
and (divisor), the quotient is placed in the low-order destination register (Rdf), the remain-
der is placed in the high-order destination register (Rd) and the condition flags are set or
cleared according to the quotient.

A trap to Range Error occurs if the divisor is zero or the value of the quotient exceeds the
integer value range (quotient overflow). The result (in Rd//Rdf) is then undefined. At
DIVS, a trap to Range Error also occurs and the result is undefined if the dividend is nega-
tive.

At DIVS, the dividend is a non-negative signed double-word integer, the divisor, the quo-
tient and the remainder are signed integers; a non-zero remainder has the sign of the divi-
dend.

At DIVU, the dividend is an unsigned double-word integer, the divisor, the quotient and
the remainder are unsigned integers.

The result is undefined if Rs denotes the same register as Rd or Rdf or if the PC or the SR
is denoted.

Format Notation Operation

RR DIVS Rd, Rs if Rs = 0 or quotient overflow or Rd(31) = 1 then
 -- dividend is negative
 Rd//Rdf := undefined;
 Z := undefined;
 N := undefined;
 V := 1;
 trap ⇒ Range Error;
 else
 remainder Rd, quotient Rdf := (Rd//Rdf) / Rs;
 Z := Rdf = 0; -- quotient is zero
 N := Rdf(31); -- quotient is negative
 V := 0;

RR DIVU Rd, Rs if Rs = 0 or quotient overflow then
 Rd//Rdf := undefined;
 Z := undefined;
 N := undefined;
 V := 1;
 trap ⇒ Range Error;
 else
 remainder Rd, quotient Rdf := (Rd//Rdf) / Rs;
 Z := Rdf = 0; -- quotient is zero
 N := Rdf(31);
 V := 0;

3-20 CHAPTER 3

3.14. Shift Left Instructions
The destination operand is shifted left by a number of bit positions specified

at SHLI, SHLDI by n = 0..31 as a shift by 0..31;

at SHL, SHLD by bits 4..0 of the source operand as a shift by 0..31.

The higher-order bits of the source operand are ignored.

The destination operand is interpreted

at SHL and SHLI as a bit string of 32 bits or as a signed or unsigned integer;

at SHLD and SHLDI as a double-word bit string of 64 bits or as a signed or un-
signed double-word integer.

All Shift Left instructions insert zeros in the vacated bit positions at the right.

The double-word Shift Left instructions execute in two cycles. The low-order operand in
Ldf is shifted first. At SHLD, the result is undefined if Ls denotes the same register as Ld
or Ldf.

Format Notation Operation insert

Rn SHLI Rd, n Rd := Rd << by n; -- 0..31 zeros

Ln SHLDI Ld, n Ld//Ldf := Ld//Ldf << by n; -- 0..31 zeros

LL SHL Ld, Ls Ld := Ld << by Ls(4..0); -- 0..31 zeros

LL SHLD Ld, Ls Ld//Ldf := Ld//Ldf << by Ls(4..0); -- 0..31 zeros

The condition flags are set or cleared by all Shift Left instructions as follows:
 Z := Ld = 0 or Rd = 0 on single-word;
 Z := Ld//Ldf = 0 on double-word;
 N := Ld(31) or Rd(31);
 V := any bit ≠ new Ld(31) or Rd(31) is shifted out; -- significant bits lost
 C := undefined;

Note: The symbol << signifies "shifted left".

INSTRUCTION SET 3-21

3.15. Shift Right Instructions
The destination operand is shifted right by a number of bit positions specified

at SARI, SARDI, SHRI, SHRDI by n = 0..31 as a shift by 0..31.

at SAR, SARD, SHR, SHRD by bits 4..0 of the source operand as a shift by 0..31.

The higher-order bits of the source operand are ignored.

The destination operand is interpreted

at SAR and SARI as a signed integer;

at SARD and SARDI as a signed double-word integer;

at SHR and SHRI as a bit string of 32 bits or as an unsigned integer;

at SHRD and SHRDI as a double-word bit string of 64 bits or as an unsigned dou-
ble-word integer.

All Shift Right instructions which interpret the destination operand as signed insert sign
bits, all others insert zeros in the vacated bit positions at the left.

The double-word Shift Right instructions execute in two cycles. The high-order operand in
Ld is shifted first. At SARD and SHRD, the result is undefined if Ls denotes the same reg-
ister as Ld or Ldf.

Format Notation Operation insert

Rn SARI Rd, n Rd := Rd >> by n; -- 0..31 sign bits

Ln SARDI Ld, n Ld//Ldf := Ld//Ldf >> by n; -- 0..31 sign bits

LL SAR Ld, Ls Ld := Ld >> by Ls(4..0); -- 0..31 sign bits

LL SARD Ld, Ls Ld//Ldf := Ld//Ldf >> by Ls(4..0); -- 0..31 sign bits

Rn SHRI Rd, n Rd := Rd >> by n; -- 0..31 zeros

Ln SHRDI Ld, n Ld//Ldf := Ld//Ldf >> by n; -- 0..31 zeros

LL SHR Ld, Ls Ld := Ld >> by Ls(4..0); -- 0..31 zeros

LL SHRD Ld, Ls Ld//Ldf := Ld//Ldf >> by Ls(4..0); -- 0..31 zeros

The condition flags are set or cleared by all Shift Right instructions as follows:
 Z := Ld = 0 or Rd = 0 on single-word;
 Z := Ld//Ldf = 0 on double-word;
 N := Ld(31) or Rd(31);
 C := last bit shifted out is "one";

Note: The symbol >> signifies "shifted right".

3-22 CHAPTER 3

3.16. Rotate Left Instruction
The destination operand is shifted left by a number of bit positions and the bits shifted out
are inserted in the vacated bit positions; thus, the destination operand is rotated. The condi-
tion flags are set or cleared accordingly. Bits 4..0 of the source operand specify a rotation
by 0..31 bit positions; bits 31..5 of the source operand are ignored.

The destination operand is interpreted as a bit string of 32 bits.

Format Notation Operation

LL ROL Ld, Ls Ld := Ld rotated left by Ls(4..0);
 Z := Ld = 0;
 N := Ld(31);
 V := undefined;
 C := undefined;

INSTRUCTION SET 3-23

3.17. Index Move Instructions
The source operand is placed shifted left by 0, 1, 2 or 3 bit positions in the destination reg-
ister, corresponding to a multiplication by 1, 2, 4 or 8. At XM1..XM8, a trap to Range Er-
ror occurs if the source operand is higher than the immediate operand lim (upper bound).

All condition flags remain unchanged. All operands and the result are interpreted as un-
signed integers.

The SR must not be denoted as a source nor as a destination, nor the PC as a destination
operand; these notations are reserved for future expansion. When the PC is denoted as a
source operand, a trap to Range Error occurs if PC ≥ lim.

X-code Format Notation Operation

 0 RRlim XM1 Rd, Rs, lim Rd := Rs ∗ 1;
 if Rs > lim then
 trap ⇒ Range Error;

 1 RRlim XM2 Rd, Rs, lim Rd := Rs ∗ 2;
 if Rs > lim then
 trap ⇒ Range Error;

 2 RRlim XM4 Rd, Rs, lim Rd := Rs ∗ 4;
 if Rs > lim then
 trap ⇒ Range Error;

 3 RRlim XM8 Rd, Rs, lim Rd := Rs ∗ 8;
 if Rs > lim then
 trap ⇒ Range Error;

 4 RRlim XX1 Rd, Rs, 0 Rd := Rs ∗ 1; -- Move without flag change

 5 RRlim XX2 Rd, Rs, 0 Rd := Rs ∗ 2;

 6 RRlim XX4 Rd, Rs, 0 Rd := Rs ∗ 4;

 7 RRlim XX8 Rd, Rs, 0 Rd := Rs ∗ 8;

Note: The Index Move instructions move an index value scaled (multiplied by 1, 2, 4 or 8).
XM1..XM8 check also the unscaled value for an upper bound, optionally also excluding
zero. If the lower bound is not zero, it may be mapped to zero by subtracting it from the
index value before applying an Index Move instruction.

3-24 CHAPTER 3

3.18. Check Instructions
The destination operand is checked and a trap to Range Error occurs

at CHK if the destination operand is higher than the source operand,

at CHKZ if the destination operand is zero.

All registers and all condition flags remain unchanged. All operands are interpreted as un-
signed integers.

CHKZ shares its basic OP-code with CHK, it is differentiated by denoting the SR as source
operand.

Format Notation Operation

RR CHK Rd, Rs if Rs does not denote SR and Rd > Rs then
 trap ⇒ Range Error;

RR CHKZ Rd, 0 if Rs denotes SR and Rd = 0 then
 trap ⇒ Range Error;

When Rs denotes the PC, CHK traps if Rd ≥ PC. Thus, CHK, PC, PC always traps. Since
CHK, PC, PC is encoded as 16 zeros, an erroneous jump into a string of zeros causes a trap
to Range Error, thus trapping some address errors.

Note: CHK checks the upper bound of an unsigned value range, implying a lower bound of
zero. If the lower bound is not zero, it can be mapped to zero by subtracting it from the
value to be checked and then checking against a corrected upper bound (lower bound also
subtracted). When the upper bound is a constant not exceeding the range of lim, the Index
instructions may be used for bounds checks.

CHKZ may be used to trap on uninitialized pointers with the value zero.

3.19. No Operation Instruction
The instruction CHK, L0, L0 cannot cause any trap. Since CHK leaves all registers and
condition flags unchanged, it can be used as a No Operation instruction with the notation:

Format Notation Operation

RR NOP no operation;

Note: The NOP instruction may be used as a fill instruction.

INSTRUCTION SET 3-25

3.20. Compare Instructions
Two operands are compared by subtracting the source operand or the immediate operand
from the destination operand. The condition flags are set or cleared according to the result;
the result itself is not retained. Note that the N flag indicates the correct compare result
even in the case of an overflow.

All operands and the result are interpreted as either all signed or all unsigned integers.

Format Notation Operation

RR CMP Rd, Rs result := Rd - Rs;
 Z := Rd = Rs; -- result is zero
 N := Rd < Rs signed; -- result is true negative
 V := overflow;
 C := Rd < Rs unsigned; -- borrow

Rimm CMPI Rd, imm result := Rd - imm;
 Z := Rd = imm; -- result is zero
 N := Rd < imm signed; -- result is true negative
 V := overflow;
 C := Rd < imm unsigned; -- borrow

When the SR is denoted as a source operand at CMP, C is subtracted instead of SR. The
notation is then:

Format Notation Operation

RR CMP, Rd, C result := Rd - C;
 Z := Rd = C; -- result is zero
 N := Rd < C signed; -- result is true negative
 V := overflow;
 C := Rd < C unsigned; -- borrow

3-26 CHAPTER 3

3.21. Compare Bit Instructions
The result of a bitwise logical AND of the source or immediate operand and the destination
operand is used to set or clear the Z flag accordingly; the result itself is not retained.

All operands and the result are interpreted as bit strings of 32 bits each.

Format Notation Operation

RR CMPB Rd, Rs Z := (Rd and Rs) = 0;

Rimm CMPBI Rd, imm Z := (Rd and imm) = 0;

The following instruction is a special case of CMPBI differentiated by n = 0 (see section
2.3.1. Table of Immediate Values):

Format Notation Operation

Rimm CMPBI Rd, ANYBZ Z := Rd(31..24) = 0 or Rd(23..16) = 0 or
 Rd(15..8) = 0 or Rd(7..0) = 0;
 -- any Byte of Rd = 0

3.22. Test Leading Zeros Instruction
The number of leading zeros in the source operand is tested and placed in the destination
register. A source operand equal to zero yields 32 as a result. All condition flags remain
unchanged.

Format Notation Operation

LL TESTLZ Ld, Ls Ld := number of leading zeros in Ls;

INSTRUCTION SET 3-27

3.23. Set Stack Address Instruction
The frame pointer FP is placed, expanded to the stack address, in the destination register.
The FP itself and all condition flags remain unchanged. The expanded FP address is the
address at which the content of L0 would be stored if pushed onto the memory part of the
stack.

The Set Stack Address instruction shares the basic OP-code SETxx, it is differentiated by
n = 0 and not denoting the SR or the PC.

n Format Notation Operation

0 Rn SETADR Rd Rd := SP(31..9)//SR(31..25)//00 + carry into bit 9
 -- SR(31..25) is FP
 -- carry into bit 9 := (SP(8) = 1 and SR(31) = 0)

Note: The Set Stack Address instruction calculates the stack address of the beginning of the
current stack frame. L0..L15 of this frame can then be addressed relative to this stack ad-
dress in the stack address mode with displacement values of 0..60 respectively.

Provided the stack address of a stack frame has been saved, for example in a global regis-
ter, any data in this stack frame can then be addressed also from within all younger genera-
tions of stack frames by using the saved stack address. (Addressing of local variables in
older generations of stack frames is required by all block oriented programming languages
like Pascal, Modula-2 and Ada.)

The basic OP-code SETxx is shared as indicated:

❒ n = 0 while not denoting the SR or the PC differentiates the Set Stack Address instruc-
tion.

❒ n = 1..31 while not denoting the SR or the PC differentiates the Set Conditional instruc-
tions.

❒ Denoting the SR differentiates the Fetch instruction.

❒ Denoting the PC is reserved for future use.

3.24. Set Conditional Instructions
The destination register is set or cleared according to the states of the condition flags speci-
fied by n. The condition flags themselves remain unchanged.

The Set Conditional instructions share the basic OP-code SETxx, they are differentiated by
n = 1..31 and not denoting the SR or the PC.

3-28 CHAPTER 3

3.24. Set Conditional Instructions (continued)
Format is Rn

 n Notation or Alternative Operation

 1 Reserved

 2 SET1 Rd Rd := 1;

 3 SET0 Rd Rd := 0;

 4 SETLE Rd if N = 1 or Z = 1 then Rd := 1 else Rd := 0;

 5 SETGT Rd if N = 0 and Z = 0 then Rd := 1 else Rd := 0;

 6 SETLT Rd SETN Rd if N = 1 then Rd := 1 else Rd := 0;

 7 SETGE Rd SETNN Rd if N = 0 then Rd := 1 else Rd := 0;

 8 SETSE Rd if C = 1 or Z = 1 then Rd := 1 else Rd := 0;

 9 SETHT Rd if C = 0 and Z = 0 then Rd := 1 else Rd := 0;

 10 SETST Rd SETC Rd if C = 1 then Rd := 1 else Rd := 0;

 11 SETHE Rd SETNC Rd if C = 0 then Rd := 1 else Rd := 0;

 12 SETE SETZ if Z = 1 then Rd := 1 else Rd := 0;

 13 SETNE SETNZ if Z = 0 then Rd := 1 else Rd := 0;

 14 SETV Rd if V = 1 then Rd := 1 else Rd := 0;

 15 SETNV Rd if V = 0 then Rd := 1 else Rd := 0;

 16 Reserved

 17 Reserved

 18 SET1M Rd Rd := -1;

 19 Reserved

 20 SETLEM Rd if N = 1 or Z = 1 then Rd := -1 else Rd := 0;

 21 SETGTM Rd if N = 0 and Z = 0 then Rd := -1 else Rd := 0;

 22 SETLTM Rd SETNM Rd if N = 1 then Rd := -1 else Rd := 0;

 23 SETGEM Rd SETNNM Rd if N = 0 then Rd := -1 else Rd := 0;

 24 SETSEM Rd if C = 1 or Z = 1 then Rd := -1 else Rd := 0;

 25 SETHTM Rd if C = 0 and Z = 0 then Rd := -1 else Rd := 0;

 26 SETSTM Rd SETCM Rd if C = 1 then Rd := -1 else Rd := 0;

 27 SETHEM Rd SETNCM Rd if C = 0 then Rd := -1 else Rd := 0;

 28 SETEM SETZM if Z = 1 then Rd := -1 else Rd := 0;

 29 SETNEM SETNZM if Z = 0 then Rd := -1 else Rd := 0;

 30 SETVM Rd if V = 1 then Rd := -1 else Rd := 0;

 31 SETNVM Rd if V = 0 then Rd := -1 else Rd := 0;

INSTRUCTION SET 3-29

3.25. Branch Instructions
The Branch instruction BR, and any of the conditional Branch instructions when the branch
condition is met, place the branch address PC + rel (relative to the address of the first byte
after the Branch instruction) in the program counter PC and clear the cache-mode flag M;
all condition flags remain unchanged. Then instruction execution proceeds at the branch
address placed in the PC.

When the branch condition is not met, the M flag and the condition flags remain un-
changed and instruction execution proceeds sequentially.

Besides these explicit Branch instructions, the instructions MOV, MOVI, ADD, ADDI,
SUM, SUB may denote the PC as a destination register and thus be executed as an implicit
branch; the M flag is cleared and the condition flags are set or cleared according to the
specified instruction. All other instructions, except Compare instructions, must not be used
with the PC as destination, otherwise possible Range Errors caused by these instructions
would lead to ambiguous results on backtracking.

Format is PCrel

Notation or alternative Operation Comment

BLE rel if N = 1 or Z = 1 then BR; -- Less or Equal signed

BGT rel if N = 0 and Z = 0 then BR; -- Greater Than signed

BLT rel BN rel if N = 1 then BR; -- Less Than signed

BGE rel BNN rel if N = 0 then BR; -- Greater or Equal signed

BSE rel if C = 1 or Z = 1 then BR; -- Smaller or Equal unsigned

BHT rel if C = 0 and Z = 0 then BR; -- Higher Than unsigned

BST rel BC rel if C = 1 then BR; -- Smaller Than unsigned

BHE rel BNC rel if C = 0 then BR; -- Higher or Equal unsigned

BE rel BZ rel if Z = 1 then BR; -- Equal

BNE rel BNZ rel if Z = 0 then BR; -- Not Equal

BV rel if V = 1 then BR; -- oVerflow

BNV rel if V = 0 then BR; -- Not oVerflow

BR rel PC := PC + rel; M := 0;

Note: rel is signed to allow forward or backward branches.

3-30 CHAPTER 3

3.26. Delayed Branch Instructions
The Delayed Branch instruction DBR, and any of the conditional Delayed Branch in-
structions when the branch condition is met, place the branch address PC + rel (relative to
the address of the first byte after the Delayed Branch instruction) in the program counter
PC. All condition flags and the cache mode flag M remain unchanged.

Then the instruction after the Delayed Branch instruction, called the delay instruction, is
executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular in-
struction. The PC and the ILC are updated accordingly and instruction execution proceeds
sequentially.

When the delayed branch is taken, the delay instruction is executed before execution pro-
ceeds at the branch target. The PC (containing the delayed-branch target address) is not
updated by the delay instruction. Any reference to the PC by the delay instruction refer-
ences the delayed-branch target address.

In the case of an Error exception caused by a delay instruction succeeding a delayed branch
taken, the location of the saved return PC contains the address of the first byte of the delay
instruction. The saved ILC contains the length (1 or 2 half-words) of the Delayed Branch
instruction. In the case of all other exceptions following a delay instruction succeeding a
delayed branch taken, the location of the saved return PC contains the branch target address
of the delayed branch and the saved ILC is invalid.

The following restrictions apply to delay instructions:

The sum of the length of the Delayed Branch instruction and the delay instruction must not
exceed three half-words, otherwise an arbitrary bit pattern may be supplied and erroneously
used for the second or third half-word of the delay instruction without any warning.

Only a Reset exception can occur between a Delayed Branch instruction and a delay in-
struction, all other exceptions are locked out.

A Fetch or any branching instruction must not be placed as a delay instruction. A mis-
placed Delayed Branch instruction would be executed like the corresponding non-delayed
Branch instruction to inhibit a permanent exception lock-out.

INSTRUCTION SET 3-31

3.26. Delayed Branch Instructions (continued)
Format is PCrel

Notation or alternative Operation Comment

DBLE rel if N = 1 or Z = 1 then DBR; -- Less or Equal signed

DBGT rel if N = 0 and Z = 0 then DBR; -- Greater Than signed

DBLT rel DBN rel if N = 1 then DBR; -- Less Than signed

DBGE rel DBNN rel if N = 0 then DBR; -- Greater or Equal signed

DBSE rel if C = 1 or Z = 1 then DBR; -- Smaller or Equal unsigned

DBHT rel if C = 0 and Z = 0 then DBR; -- Higher Than unsigned

DBST rel DBC rel if C = 1 then DBR; -- Smaller Than unsigned

DBHE rel DBNC rel if C = 0 then DBR; -- Higher or Equal unsigned

DBE rel DBZ rel if Z = 1 then DBR; -- Equal

DBNE rel DBNZ rel if Z = 0 then DBR; -- Not Equal

DBV rel if V = 1 then DBR; -- oVerflow

DBNV rel if V = 0 then DBR; -- Not oVerflow

DBR rel PC := PC + rel;

Note: rel is signed to allow forward or backward branches.

Attention: Since the PC seen by the delay instruction depends on the delayed branch
taken or not taken, a delay instruction after a conditional Delayed Branch instruction
must not reference the PC.

3-32 CHAPTER 3

3.27. Call Instruction
The Call instruction causes a branch to a subprogram.

The branch address Rs + const, or const alone if Rs denotes the SR, is placed in the pro-
gram counter PC. The old PC containing the return address is saved in Ld; the old supervi-
sor-state flag S is also saved in bit zero of Ld. The old status register SR is saved in Ldf;
the saved instruction-length code ILC contains the length (2 or 3) of the Call instruction.

Then the frame pointer FP is incremented by the value of the Ld-code (Ld-code = 0 is in-
terpreted as Ld-code = 16) and the frame length FL is set to six, thus creating a new stack
frame. The cache-mode flag M is cleared. All condition flags remain unchanged. Then in-
struction execution proceeds at the branch address placed in the PC.

The value of the Ld-code must not exceed the value of the old FL (FL = 0 is interpreted as
FL = 16), otherwise the beginning of the register part of the stack at the SP could be over-
written without any warning. Bit zero of const must be 0.

Rs and Ld may denote the same register.

Format Notation Operation

LRconst CALL Ld, Rs, const if Rs denotes not SR then
 or CALL Ld, 0, const PC := Rs + const;
 else
 PC := const;
 Ld := old PC(31..1)//old S;
 -- Ld-code 0 selects L16
 Ldf := old SR;
 FP := FP + Ld code;
 -- Ld-code 0 is treated as 16
 FL := 6;
 M := 0;

Note: At the new stack frame, the saved PC is located in L0 and the saved SR is located in
L1.

A Frame instruction must be executed immediately after a Call instruction, otherwise an
Interrupt, Parity Error, Extended Overflow or Trace exception could separate the Call from
the corresponding Frame instruction before the frame pointer FP is decremented to include
(optionally) passed parameters. After a Call instruction, an Interrupt, Parity Error, Extended
Overflow or Trace exception is locked out for one instruction regardless of the interrupt
lock flag L.

INSTRUCTION SET 3-33

3.28. Trap Instructions
The Trap instructions TRAP and any of the conditional Trap instructions when the trap
condition is met, cause a branch to one out of 64 supervisor subprogram entries (see sec-
tion 2.4. Entry Tables).

When the trap condition is not met, instruction execution proceeds sequentially.

When the subprogram branch is taken, the subprogram entry address adr is placed in the
program counter PC and the supervisor-state flag S is set to one. The old PC containing the
return address is saved in the register addressed by FP + FL; the old S flag is also saved in
bit zero of this register. The old status register SR is saved in the register addressed by
FP + FL + 1 (FL = 0 is interpreted as FL = 16); the saved instruction-length code ILC con-
tains the length (1) of the Trap instruction.

Then the frame pointer FP is incremented by the old frame length FL and FL is set to six,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag L is set to one. All condition flags remain unchanged. Then
instruction execution proceeds at the entry address placed in the PC.

The trap instructions are differentiated by the 12 code values given by the bits 9 and 8 of
the OP-code and bits 1 and 0 of the adr-byte (code = OP(9..8)//adr-byte(1..0)). Since
OP(9..8) = 0 does not denote Trap instructions (the code is occupied by the BR instruc-
tion), trap codes 0..3 are not available.

3-34 CHAPTER 3

3.28. Trap Instructions (continued)
Format is PCadr

Code Notation Operation

 4 TRAPLE trapno if N = 1 or Z = 1 then execute TRAP else execute next instruction;

 5 TRAPGT trapno if N = 0 and Z = 0 then execute TRAP else execute next instruction;

 6 TRAPLT trapno if N = 1 then execute TRAP else execute next instruction;

 7 TRAPGE trapno if N = 0 then execute TRAP else execute next instruction;

 8 TRAPSE trapno if C = 1 or Z = 1 then execute TRAP else execute next instruction;

 9 TRAPHT trapno if C = 0 and Z = 0 then execute TRAP else execute next instruction;

 10 TRAPST trapno if C = 1 then execute TRAP else execute next instruction;

 11 TRAPHE trapno if C = 0 then execute TRAP else execute next instruction;

 12 TRAPE trapno if Z = 1 then execute TRAP else execute next instruction;

 13 TRAPNE trapno if Z = 0 then execute TRAP else execute next instruction;

 14 TRAPV trapno if V = 1 then execute TRAP else execute next instruction;

 15 TRAP trapno PC := adr;
 S := 1;
 (FP + FL)^ := old PC(31..1)//old S;
 (FP + FL + 1)^ := old SR;
 FP := FP + FL; -- FL = 0 is treated as FL = 16
 FL := 6;
 M := 0;
 T := 0;
 L := 1;

trapno indicates one of the traps 0..63.

Note: At the new stack frame, the saved PC is located in L0 and the saved SR is located in
L1; L2..L5 are free for use as required.

A Frame instruction must be executed before executing any other Trap, Call or Software
instruction or before the interrupt-lock flag L is being cleared, otherwise the beginning of
the register part of the stack at the SP could be overwritten without any warning.

INSTRUCTION SET 3-35

3.29. Frame Instruction
A Frame instruction restructures the current stack frame by

❒ decrementing the frame pointer FP to include (optionally) passed parameters in the local
register addressing range; the first parameter passed is then addressable as L0;

❒ resetting the frame length FL to the actual number of registers needed for the current
stack frame.

It also restores the reserve number of 10 registers in the register part of the stack to allow
any further Call, Trap or Software instructions and clears the cache mode flag M.

The frame pointer FP is decremented by the value of the Ls-code and the Ld-code is placed
in the frame length FL (FL = 0 is always interpreted as FL = 16). Then the difference
(available number of registers) - (required number of registers + 10) is evaluated and inter-
preted as a signed 7-bit integer.

If the difference is not negative, all the registers required plus the reserve of 10 fit into the
register part of the stack; no further action is needed and the Frame instruction is finished.

If the difference is negative, the content of the old stack pointer SP is compared with the
address in the upper stack bound UB. If the value in the SP is equal or higher than the
value in the UB, a temporary flag is set. Then the contents of the number of local registers
equal to the negative difference evaluated are pushed onto the memory part of the stack,
beginning with the content of the local register addressed absolutely by SP(7..2) being
pushed onto the location addressed by the SP. After each memory cycle, the SP is incre-
mented by four until the difference is eliminated. A trap to Frame Error occurs after com-
pletion of the push operation when the temporary flag is set.

All condition flags remain unchanged.

3-36 CHAPTER 3

3.29. Frame Instruction (continued)
Format Notation Operation

LL FRAME Ld, Ls FP := FP - Ls code;
 FL := Ld code;
 M := 0;
 difference(6..0) := SP(8..2) + (64 - 10) - (FP + FL);
 -- FL = 0 is treated as FL = 16
 -- difference is signed, difference(6) = sign bit
 -- 64 = number of local registers
 -- 10 = number of reserve registers
 if difference ≥ 0 then
 continue at next instruction;
 -- Frame is finished
 else
 temporary flag := SP ≥ UB;
 repeat
 memory SP^ := register SP(7..2)^;
 -- local register ⇒ memory
 SP := SP + 4;
 difference := difference + 1;
 until difference = 0;
 if temporary flag = 1 then
 trap ⇒ Frame Error;

Note: Ls also identifies the same source operand which must be denoted by the Return in-
struction to address the saved return PC.

Ld (L0 is interpreted as L16) also identifies the register in which the return PC is being
saved by a Trap or Software instruction or by an exception; therefore only local registers
with a lower register code than the interpreted Ld-code of the Frame instruction may be
used after execution of a Frame instruction.

The reserve of 10 registers is to be used as follows:

❒ A Call, Trap or Software instruction uses six registers.

❒ A subsequent exception, occurring before a Frame instruction is executed, uses another
two registers.

❒ Two registers remain in reserve.

Note that the Frame instruction can write into the memory stack at address locations up to
37 words higher than indicated by the address in the UB. This is due to the fact that the
upper bound is checked before the execution of the Frame instruction.

Attention: The Frame instruction must always be the first instruction executed in a func-
tion entered by a Call instruction, otherwise the Frame instruction could be separated from
the preceding Call instruction by an Interrupt, Parity Error, Extended Overflow or Trace
exception (see section 3.27. Call instruction).

INSTRUCTION SET 3-37

3.30. Return Instruction
The Return instruction returns control from a subprogram entered through a Call, Trap or
Software instruction or an exception to the instruction located at the return address and
restores the status from the saved return status.

The source operand pair Rs//Rsf is placed in the register pair PC//SR. The program counter
PC is restored first from Rs. Then all bits of the status register SR are replaced by Rsf, ex-
cept the supervisor flag S, which is restored from bit zero of Rs and except the instruction
length code ILC, which is cleared to zero.

If the return occurred from user to supervisor state or if the interrupt-lock flag L was
changed from zero to one on return from any state to user state, a trap to Privilege Error
occurs. Exception processing saves the restored contents of the register pair PC//SR; an
illegally set S or L flag is also saved.

Then the difference between frame pointer FP - stack pointer SP(8..2) is evaluated and in-
terpreted as a signed 7-bit integer. If the difference is not negative, the register pointed to
by FP(5..0) is in the register part of the stack; no further action is then required and the Re-
turn instruction is completed.

If the difference is negative, the number of words equal to the negative difference are
pulled from the memory part of the stack and transferred to the register part of the stack,
beginning with the contents of the memory location SP - 4 being transferred to the local
register addressed absolutely by bits 7..2 of SP - 4. After each memory cycle, the SP is dec-
remented by four until the difference is eliminated.

The Return instruction shares its basic OP-code with the Move Double-Word instruction. It
is differentiated from it by denoting the PC as destination register Rd.

The PC or the SR must not be denoted as a source operand; these notations are reserved for
future expansion.

3-38 CHAPTER 3

3.30. Return Instruction (continued)
Format Notation Operation

RR RET PC, Rs old S := S;
 old L := L;
 PC := Rs(31..1)//0;
 SR := Rsf(31..21)//00//Rs(0)//Rsf(17..0);
 -- ILC := 0;
 -- S := Rs(0);
 if old S = 0 and S = 1 or
 S = 0 and old L = 0 and L = 1 then
 trap ⇒ Privilege Error;
 difference(6..0) := FP - SP(8..2);
 -- difference is signed, difference(6) = sign bit
 if difference ≥ 0 then
 continue at next instruction;
 -- RET is finished
 else
 repeat
 SP := SP - 4;
 register SP(7..2)^ := memory SP^;
 -- memory ⇒ local register
 difference := difference + 1;
 until difference = 0;

INSTRUCTION SET 3-39

3.31. Fetch Instruction
The instruction execution is halted until a number of at least n/2 + 1 (n = 0, 2, 4..30) in-
struction half-words succeeding the Fetch instruction are prefetched in the instruction
cache. Since instruction words are fetched, one more half-word may be fetched. The num-
ber n/2 is derived by using bits 4..1 of n, bit 0 of n must be zero.

The Fetch instruction must not be placed as a delay instruction; when the preceding branch
is taken, the prefetch is undefined.

The Fetch instruction shares the basic OP-code SETxx, it is differentiated by denoting the
SR for the Rd-code (see section 2.3. Instruction Formats).

 n Format Notation Operation

 0 Rn FETCH 1 Wait until 1 instruction half-word is fetched;
 . . .
 . . .
 . . .

 30 Rn FETCH 16 Wait until 16 instruction half-words are fetched

Note: The Fetch instruction supplements the standard prefetch of instruction words. It may
be used to speed up the execution of a sequence of memory instructions by avoiding alter-
nating between instruction and data memory pages. By executing a Fetch instruction pre-
ceding a sequence of memory instructions addressing the same data memory page, the
memory accesses can be constrained to the data memory page by prefetching all required
instructions in advance.

A Fetch instruction may also be used preceding a branch into a program loop; thus, flush-
ing the cache by the first branch repeating the loop can be avoided.

3-40 CHAPTER 3

3.32. Extended DSP Instructions
The Extended DSP instructions use the on-chip multiply-accumulate unit. Single word re-
sults always use register G15 as destination register, while double-word results are always
placed in G14 and G15. The condition flags remain unchanged.

Format Notation Operation

LLext EMUL Ld, Ls G15 := Ld * Ls;
 -- signed or unsigned multiplication, single word product

LLext EMULU Ld, Ls G14//G15 := Ld * Ls;
 -- unsigned multiplication, double word product

LLext EMULS Ld, Ls G14//G15 := Ld * Ls;
 -- signed multiplication, double word product

LLext EMAC Ld, Ls G15 := G15 + Ld * Ls;
 -- signed multiply/add, single word product sum

LLext EMACD Ld, Ls G14//G15 := G14//G15 + Ld * Ls;
 -- signed multiply/add, double word product sum

LLext EMSUB Ld, Ls G15 := G15 - Ld * Ls;
 -- signed multiply/subtract, single word product difference

LLext EMSUBD Ld, Ls G14//G15 := G14//G15 - Ld * Ls;
 -- signed multiply/subtract, double word product difference

LLext EHMAC Ld, Ls G15 := G15 + Ld(31..16) * Ls(31..16) + Ld(15..0) * Ls(15..0);
 -- signed half-word multiply/add, single word product sum

LLext EHMACD Ld, Ls G14//G15 := G14//G15 + Ld(31..16) * Ls(31..16) +
 Ld(15..0) * Ls(15..0);
 -- signed half-word multiply/add, double word product sum

LLext EHCMULD Ld, Ls G14 := Ld(31..16) * Ls(31..16) - Ld(15..0) * Ls(15..0);
 G15 := Ld(31..16) * Ls(15..0) + Ld(15..0) * Ls(31..16);
 -- half-word complex multiply

LLext EHCMACD Ld, Ls G14 := G14 + Ld(31..16) * Ls(31..16) - Ld(15..0) * Ls(15..0);
 G15 := G15 + Ld(31..16) * Ls(15..0) + Ld(15..0) * Ls(31..16);
 -- half-word complex multiply/add

LLext EHCSUMD Ld, Ls G14(31..16) := Ld(31..16) + G14;
 G14(15..0) := Ld(15..0) + G15;
 G15(31..16) := Ld(31..16) - G14;
 G15(15..0) := Ld(15..0) - G15;
 -- half-word (complex) add/subtract
 -- Ls is not used and should denote the same register as Ld

LLext EHCFFTD Ld, Ls G14(31..16) := Ld(31..16) + (G14 >> 15);
 G14(15..0) := Ld(15..0) + (G15 >> 15);
 G15(31..16) := Ld(31..16) - (G14 >> 15);
 G15(15..0) := Ld(15..0) - (G15 >> 15);
 -- half-word (complex) add/subtract with fixed-point
 adjustment
 -- Ls is not used and should denote the same register as Ld

INSTRUCTION SET 3-41

3.32. Extended DSP Instructions (continued)
Format Notation Operation

LLext EHCFFTSD Ld, Ls G14(31..16) := (Ld(31..16) + (G14 >> 15)) >> 1;
 G14(15..0) := (Ld(15..0) + (G15 >> 15)) >> 1;
 G15(31..16) := (Ld(31..16) - (G14 >> 15)) >> 1;
 G15(15..0) := (Ld(15..0) - (G15 >> 15)) >> 1;
 -- half-word (complex) add/subtract with fixed-point
 adjustment and shift
 -- Ls is not used and should denote the same register as Ld

The instructions EMAC through EHCFFTSD can cause an Extended Overflow exception
when the Extended Overflow Exception flag is enabled (FCR(16) = 0). Note that this over-
flow occurs asynchronously to the execution of the Extended DSP instruction and any suc-
ceeding instructions.

Attention: A new Extended DSP instruction can be started before the Extended Overflow
exception trap is executed!

An Extended DSP instruction is issued in one cycle; the processor starts execution of the
next instructions before the Extended DSP instruction is finished. The execution of suc-
ceeding non-Extended-DSP instructions is only stopped and wait cycles are inserted when
an instruction addresses G15 or G14//G15 respectively before a preceding Extended DSP
instruction placed its result into G15 or G14//G15. Thus, DSP programs can place
Load/Store or loop administration instructions into the slot cycles between issue of an Ex-
tended DSP instruction and availability of its result. See also section 2.5. Instruction Tim-
ing.

3-42 CHAPTER 3

3.33. Software Instructions
The Software instructions cause a branch to the subprogram associated with each Software
instruction. Its entry address (see section 2.4. Entry Tables), deduced from the OP-code of
the Software instruction, is placed in the program counter PC. Data is saved in the register
sequence beginning at register address FP + FL (FL = 0 is interpreted as FL = 16) in as-
cending order as follows:

❒ Stack address of the destination operand

❒ High-order word of the source operand

❒ Low-order word of the source operand

❒ Old program counter PC, containing the return address and the old S flag in bit zero

❒ Old status Register SR, ILC contains the instruction-length code (ILC = 1) of the soft-
ware instruction

Then the frame pointer FP is incremented by the old frame length FL and FL is set to six,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag L is set to one. All condition flags remain unchanged.

Instruction execution then proceeds at the entry address placed in the PC.

Ls or Lsf and Ld may denote the same register.

Format Notation Operation

LL see specific if (trap table in Mem3) then
instructions PC := 23 ones//0//OP(11..8)//4 zeros;
 else
 PC = MCR(13..12)//21 zeros//1//~OP(11..8)//1100;
 (FP + FL)^ := stack address of Ld;
 (FP + FL + 1)^ := Ls;
 (FP + FL + 2)^ := Lsf;
 (FP + FL + 3)^ := old PC(31..1)//old S;
 (FP + FL + 4)^ := old SR;
 FP := FP + FL; -- FL = 0 is treated as FL = 16
 FL := 6;
 M := 0;
 T := 0;
 L := 1;

Note: At the new stack frame, the stack address of the destination operand can be ad-
dressed as L0, the source operand as L1//L2, the saved PC as L3 and the saved SR as L4;
L5 is free for use as required.

A Frame instruction must be executed before executing any other Software instruction,
Trap or Call instruction or before the interrupt-lock flag L is being cleared, otherwise the
beginning of the register part of the stack at SP could be overwritten without any warning.

INSTRUCTION SET 3-43

3.33.1. Do Instruction
The Do instruction is executed as a Software instruction. The associated subprogram is
entered, the stack address of the destination operand and one double-word source operand
are passed to it (see section 3.33. Software Instructions for details).

The half-word succeeding the Do instruction will be used by the associated subprogram to
differentiate branches to subordinate routines; the associated subprogram must increment
the saved return program counter PC by two.

Format Notation Operation

LL DO xx... Ld, Ls execute Software instruction;

"xx..." stands for the mnemonic of the differentiating half-word after the OP-code of the
Do instruction.

The Do instruction must not be placed as delay instruction since then xx... cannot be lo-
cated.

Note: The Do instruction provides very code efficient passing of parameters to routines
executing software implemented extensions of the instruction set.

Branching to unimplemented subordinate routines with the interrupt-lock flag L set to one
must be excluded by bounds checks of the differentiating half-word at runtime; out-of-
range values cannot be securely excluded at the assembly level.

The L flag must be cleared when the execution of a subordinate routine exceeds the regular
interrupt latency time.

Application Note: The definition of subprograms entered via the Do instruction is reserved
for system implementations. The values assigned to the differentiating half-word xx... after
the OP-code of the Do instruction must be in ascending and contiguous order, starting with
zero. This order enables fast range checking for an upper bound and also avoids unused
space in the differentiating branch table.

3-44 CHAPTER 3

3.33.2. Floating-Point Instructions
The Floating-Point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions. The following description pro-
vides a general overview of the architectural integration.

The basic instructions use single-precision (single-word) and double-precision (double-
word) operands. Floating-Point instructions must not be placed as delay instructions (see
3.26. Delayed Branch Instructions).

Except at the Floating-Point Compare instructions, all condition flags remain unchanged to
allow future concurrent execution.

The rounding modes FRM are encoded as:

SR(14) SR(13) Description

0 0 Round to nearest

0 1 Round toward zero

1 0 Round toward - infinity

1 1 Round toward + infinity

The floating-point trap enable flags FTE and the exception flags are assigned as:

floating-point
trap enable FTE

accrued
exceptions

actual
exceptions

exception type

SR(12) G2(4) G2(12) Invalid Operation

SR(11) G2(3) G2(11) Division by Zero

SR(10) G2(2) G2(10) Overflow

SR(9) G2(1) G2(9) Underflow

SR(8) G2(0) G2(8) Inexact

The reserved bits G2(31..13) and G2(7..5) must be zero.

A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the operand
word containing the exponent; all other bits of the operand are ignored for differentiating a
NaN from a non-NaN.

In the case of an operand word containing a NaN, bit zero = 0 differentiates a quiet NaN,
bit zero = 1 differentiates a signalling NaN; the bits 18..1 may be used to encode further
information.

INSTRUCTION SET 3-45

3.33.2. Floating-Point Instructions (continued)

Format Notation Operation

LL FADD Ld, Ls Ld := Ld + Ls;

LL FADDD Ld, Ls Ld//Ldf := (Ld//Ldf) + (Ls//Lsf);

LL FSUB Ld, Ls Ld := Ld - Ls;

LL FSUBD Ld, Ls Ld//Ldf := (Ld//Ldf) - (Ls//Lsf);

LL FMUL Ld, Ls Ld := Ld ∗ Ls;

LL FMULD Ld, Ls Ld//Ldf := (Ld//Ldf) ∗ (Ls//Lsf);

LL FDIV Ld, Ls Ld := Ld / Ls;

LL FDIVD Ld, Ls Ld//Ldf := (Ld//Ldf) / (Ls//Lsf);

LL FCVT Ld, Ls Ld := Ls//Lsf; -- Convert double ⇒ single

LL FCVTD Ld, Ls Ld//Ldf := Ls; -- Convert single ⇒ double

LL FCMP Ld, Ls result := Ld - Ls;
 Z := Ld = Ls and not unordered;
 N := Ld < Ls or unordered;
 C := Ld < Ls and not unordered;
 V := unordered;
 if unordered then
 Invalid Operation exception;

LL FCMPD Ld, Ls result := (Ld//Ldf) - (Ls//Lsf);
 Z := (Ld//Ldf) = (Ls//Lsf) and not unordered;
 N := (Ld//Ldf) < (Ls//Lsf) or unordered;
 C := (Ld//Ldf) < (Ls//Lsf) and not unordered;
 V := unordered;
 if unordered then
 Invalid Operation exception;

LL FCMPU Ld, Ls result := Ld - Ls;
 Z := Ld = Ls and not unordered;
 N := Ld < Ls or unordered;
 C := Ld < Ls and not unordered;
 V := unordered; -- no exception

LL FCMPUD Ld, Ls result := (Ld//Ldf) - (Ls//Lsf);
 Z := (Ld//Ldf) = (Ls//Lsf) and not unordered;
 N := (Ld//Ldf) < (Ls//Lsf) or unordered;
 C := (Ld//Ldf) < (Ls//Lsf) and not unordered;
 V := unordered; -- no exception

3-46 CHAPTER 3

3.33.2. Floating-Point Instructions (continued)
A floating-point instruction, except a Floating-point Compare, can raise any of the excep-
tions Invalid Operation, Division by Zero, Overflow, Underflow or Inexact. FCMP and
FCMPD can raise only the Invalid Operation exception (at unordered). FCMPU and
FCMPUD cannot raise any exception.

At an exception, the following additional action is performed:

❒ Any corresponding accrued-exception flag whose corresponding trap-enable flag is zero
(not enabled) is set to one; all other accrued-exception flags remain unchanged.

❒ If a corresponding trap-enable flag is one (enabled), any corresponding actual-exception
flag is set to one; all other actual-exception flags are cleared. The destination remains
unchanged.
In the present software version, the software emulation routine must branch to the corre-
sponding user-supplied exception trap handler. The (modified) result, the source oper-
and, the stack address of the destination operand and the address of the floating-point
instruction are passed to the trap handler. In the future hardware version, a trap to Range
Error will occur; the Range Error handler will then initiate re-execution of the floating-
point instruction by branching to the entry of the corresponding software emulation rou-
tine, which will then act as described before.

The only exceptions that can coincide are Inexact with Overflow and Inexact with Under-
flow. An Overflow or Underflow trap, if enabled, takes precedence over an Inexact trap;
the Inexact accrued-exception flag G2(0) must then be set as well.

INSTRUCTION SET 3-47

3.33.2. Floating-Point Instructions (continued)
The table below shows the combinations of Floating-Point Compare and Branch in-
structions to test all 14 floating-point relations:

relation Compare Branch
on true

Branch
on false

exception
if unordered

= FCMPU BE BNE --

?≠ FCMPU BNE BE --

> FCMP BGT BLE x

≥ FCMP BGE BLT x

< FCMP BLT BGE x

≤ FCMP BLE BGT x

? FCMPU BV BNV --

≠ FCMP BNE BE x

<=> FCMP -- -- x

?> FCMPU BHT BSE --

?≥ FCMPU BHE BST --

?< FCMPU BLT BGE --

?≤ FCMPU BLE BGT --

?= FCMPU BE, BV BST, BGT --

The symbol ? signifies unordered.

Note: At the test <=> (ordered), no branch after FCMP is required since the result of the
test is an Invalid Operation exception occurred or not occurred.

3-48 CHAPTER 3

This page is intentionally left blank.

EXCEPTIONS 4-1

4. Exceptions

4.1. Exception Processing
Exceptions are events which redirect the flow of control to a supervisor subprogram asso-
ciated with the type of exception, that is, a trap occurs as a response to the exception. (See
a detailed description of exceptions further below.) If exceptions coincide, the exception
with the highest priority takes precedence over all exceptions with lower priority.

Processing of an exception proceeds as follows:

The entry address (see section 2.4. Entry Tables) of the associated subprogram is placed in
the program counter PC and the supervisor-state flag S is set to one. The old PC is saved in
the register addressed by FP + FL; the old S flag is also saved in bit zero of this register.
The old status register SR is saved in the register addressed by FP + FL + 1 (FL = 0 is in-
terpreted as FL = 16); the saved instruction-length code ILC contains (in general, see sec-
tion 4.3. Exception Backtracking). the instruction-length code of the preceding instruction.

Then the frame pointer FP is incremented by the old frame length FL and FL is set to two,
thus creating a new stack frame. The cache-mode flag M and the trace-mode flag T are
cleared, the interrupt-lock flag L is set to one. All condition flags remain unchanged.

Operation

PC := entry address of exception subprogram;
S := 1;
(FP + FL)^ := old PC(31..1)//old S;
(FP + FL + 1)^ := old SR;
FP := FP + FL; -- FL = 0 is treated as FL = 16
FL := 2;
M := 0;
T := 0;
L := 1;

Note: At the new stack frame, the saved PC can be addressed as L0 and the saved SR as
L1. Since FL = 2, no other local registers are free for use.

A Frame instruction must be executed before the interrupt-lock flag L is cleared, before any
Call, Trap, Software instruction or any instruction with the potential to cause an exception
is executed. Otherwise, the beginning of the register part of the stack at the SP could be
overwritten without any warning.

An entry caused by an exception can be differentiated from an entry caused by a Trap in-
struction by the value of FL: FL is set to two by an exception and set to six by a Trap in-
struction.

4-2 CHAPTER 4

4.2. Exception Types
The following exception are types ordered by priorities, Reset has the highest priority. In
case of coincidental exceptions, higher-priority exceptions overrule lower-priority excep-
tions.

4.2.1. Reset
A Reset exception occurs on a transition of the RESET# signal from low to high or as a
result of a watchdog overrun in IO3 Watchdog mode or after a reset following a clock-
down command. The Reset exception overrules all other exceptions and is used to start
execution at the Reset entry.

The load and store pipelines are cleared. The BCR, MCR, FCR and TPR initialization in
the three reset cases is specified in the table 4.1; all other registers and flags, except those
set or cleared explicitly by the exception processing itself, remain undefined and must be
initialized by software.

In the reset handler, ISR bits 9 and 10 can be used to discriminate between the three reset
sources.

Reset source BCR MCR FCR TPR

RESET# initialized initialized initialized initialized

Watchdog initialized initialized initialized preserved

Clock-Down initialized initialized preserved initialized

Table 4.1: BCR, MCR, FCR, TPR initialization on Reset

The FCR is preserved on a clock-down reset in order to have the correct interrupt mask and
polarity for the wakeup from clock-down. TPR is preserved on a watchdog reset to allow
the use of the watchdog reset as a controlled time-out without losing the time base. The
other registers are initialized to their specific reset value.

Note: The frame pointer FP can only be set to a defined value by restoring it from the FP in
the return SR through a Return instruction.

4.2.2. Range, Pointer, Frame and Privilege Error
These exceptions share a common entry since they cannot occur coincidentally at the same
instruction. The error-causing instruction can be identified by backtracking.

A Range Error exception occurs when an operand or result exceeds its value range.

A Pointer Error is caused by an attempted memory access using an address register (Rd or
Ld) with the content zero. The memory is not accessed, but the content of the address reg-
ister is updated in case of a post-increment or next address mode.

A Frame Error occurs when the restructuring of the stack frame reaches or exceeds the up-
per bound UB of the memory part of the stack. No further Frame instruction must be exe-
cuted by the error routine for Pointer, Frame and Privilege Error before the UB is set to a
higher value and thus, an expanded stack frame fits into the higher stack bound.

A Privilege Error occurs when a privileged operation is executed in user or on return to
user state (see section 1.5. Privilege States for details).

EXCEPTIONS 4-3

4.2.3. Extended Overflow
An Extended Overflow condition is raised on an overflow caused by an add or subtract
operation as part of the execution of one of the Extended instructions EMAC through
EHCFFTSD when the Extended Overflow exception is enabled. The Extended Overflow
exception is enabled by clearing bit 16 of the function control register FCR to zero.

When the Extended Overflow exception is blocked by a higher-priority exception or by the
L flag being set, the Extended Overflow condition is saved internally; the exception trap
occurs then when the blocking is released.

The Extended Overflow condition is cleared by the exception trap or by setting FCR(16) to
one (disabled).

The Extended Overflow exception trap occurs asynchronously to the causing instruction;
thus, the causing instruction cannot be identified by backtracking. Usually, there is only
one instruction in a loop which can cause an Extended Overflow exception; thus, a handler
can identify that instruction. When a second Extended Overflow condition is raised before
the first one caused a trap, it is ored and only one trap is taken.

4.2.4. Parity Error
A Parity Error exception can be enabled individually for each of the memory areas
MEM0..MEM3. When enabled, a parity error on an access to the corresponding memory
area causes a Parity Error exception.

When the Parity Error exception is blocked by a higher-priority exception or by the L flag
being set, the Parity Error condition is saved internally, the exception trap occurs then
when the blocking is released.

The Parity Error condition is cleared only by the exception trap; it is not cleared by setting
any of the disable bits 31..28 in the BCR after a Parity Error condition is saved internally.

The Parity Error exception trap occurs asynchronously to the causing memory instruction.
Since memory accesses are pipelined, a Parity Error exception cannot be related to a spe-
cific memory instruction.

4.2.5. Interrupt
An Interrupt exception is caused by an external interrupt signal, by the timer interrupt or by
an IO3 Control Mode. Since the interrupt-lock flag L is set by the exception processing, no
further interrupts can occur until the L flag is cleared. The interrupt exception processing
sets also the interrupt-mode flag I to one. See also sections 2.4. Entry Tables, 5. Timer and
CPU Clock Modes and 6.9. Bus Signals.

The I flag is used by the operating system, it must not be cleared by the interrupt handler. A
Return instruction restores the old value from the saved SR automatically.

4-4 CHAPTER 4

4.2.6. Trace Exception
A Trace exception occurs after each execution of an instruction except a Delayed Branch
instruction when the trace mode is enabled (trace flag T = 1) and the trace pending flag P is
one. After a Call instruction, a Trace exception is suppressed until the next instruction is
executed regardless of the trace mode being enabled; the T flag is not affected.

The P flag in the saved return status register SR must be cleared by the trace handler to
prevent tracing the same instruction again.

The instruction preceding the Trace exception cannot be backtracked since only potentially
error-causing instructions can and need be backtracked.

4.3. Exception Backtracking
In the case of a Pointer, Frame, Privilege and Range Error exception caused by a delay in-
struction succeeding a delayed branch taken, the location of the saved PC contains the ad-
dress of the delay instruction and the saved instruction length code ILC contains the length
of the Delayed Branch instruction (in half-words).

In the case of all other exceptions, the location of the saved PC contains the return address,
that is, the address of the instruction which would have been executed next if the exception
had not occurred. The saved ILC contains the length of the last instruction except when the
last instruction executed was a branch taken; a Return instruction clears the ILC and thus,
the saved ILC after a Return instruction contains zero.

An exception caused by a Pointer, Frame, Privilege or Range Error, except following a
Return instruction, can be backtracked. For backtracking, the content of the adjusted saved
ILC is subtracted from the address contained in the location of the saved PC.

If the backtrack-address calculated in this way points to a Delayed Branch instruction, the
error-causing instruction is a delay instruction with a preceding delayed branch taken and
the address contained in the location of the saved PC points to the address of this delay
instruction.

If the backtrack-address calculated does not point to a Delayed Branch instruction, it points
directly to the error-causing instruction. This instruction is then either not a delay instruc-
tion or a delay instruction with the preceding delayed branch not taken.

The error-causing instruction can then be inspected and the cause of an error analyzed in
detail.

In the case of a Privilege Error, the ILC must be tested for zero to single out an exception
caused by a Return instruction before backtracking. Thus, an exception caused by a Return
instruction can be identified. However, it cannot be backtracked to the instruction address
of the Return instruction because the return address saved does not succeed the address of
the Return instruction. All other branching instructions cannot be backtracked either. Since
these instructions cause no errors, backtracking is not required.

EXCEPTIONS 4-5

The stack address of a local register denoted by a backtracked instruction can be calculated
according to the following formula:

stack address of preceding stack frame := stack address of
current stack frame - (((FP - saved FP) modulo 64) * 4);

-- bits 5..0 of the difference (FP - saved FP) are used zero-expanded
-- * 4 converts word difference ⇒ byte difference
-- the stack address of the current stack frame is provided by the

Set Stack Address instruction
stack address of local register := stack address of preceding
stack frame + (local register address code * 4);

-- * 4 converts local register word offset ⇒ byte offset

Note: Backtracking allows a much more detailed analysis of error causes than a more dif-
ferentiated trapping could provide. Exception handlers can get more information about
error causes and the precise messages required by most programming languages can be
easily generated.

4-6 CHAPTER 4

This page is intentionally left blank.

TIMER 5-1

5. Timer and CPU Clock Modes

5.1. Overview
The on-chip timer is controlled via three registers:

Timer prescaler register TPR G21

Timer register TR G23

Timer compare register TCR G22

The timer prescaler register also controls the processor clock output of the PLL circuit.

G21..G23 can be addressed only via the high global flag H by a MOV or MOVI instruc-
tion. The content of G21 (timer prescaler register) cannot be read.

Additionally, two different power saving modes are implemented: power-down mode and
sleep mode (clock-down mode).

5.1.1. Timer Prescaler Register TPR
Global register G21 is the write-only Timer Prescaler Register TPR. The TPR adapts the
timer clock to different processor clock frequencies and controls the PLL clock output.

Bits 26 to 28 select the processor clock. Bits 23..16 determine the basic time unit via
frequency of timer clock = frequency of processor clock divided by (n+2)

n is the value of bits 23..16, n is in the range from 0 to 255 yielding division factors from 2
to 257. Given a basic time unit, n can be calculated as

n = (time unit * frequency of processor clock) - 2.

Bit 31 determines the effect of a write to TPR. If bit 31 is 0, a write to TPR takes effect
immediately, the processor clock divider is changed and the timer prescaler divider is re-
loaded. If bit 31 is 1, the processor clock divider and timer prescaler divider update is de-
layed until the current basic time unit ends. At the end of the current time unit, the proces-
sor clock divider and the timer prescaler divider are updated with the new values. This al-
lows keeping absolute timing even when the processor clock is changed by simultaneously
changing the processor clock divider and the timer prescaler divider.

The TPR is initialized to bit 28=0, 27..26=1, and 23..16=0 on reset (from the RESET# pin
or by a Clock-Down reset), i.e. the processor starts with CPU clock = XTAL1 clock, the
prescaler divides by 2. During a Watchdog (IO3 Timer) Reset, the TPR is preserved. This
allows the use of the Watchdog as a controlled time-out without losing the time base.

Bits 30..29, 25..24 and 15..0 are reserved and must be zero on a move to TPR.

The processor clock divider control can be used to slow down the CPU clock in order to
save power during times when only a part of the processing power of the CPU is needed.
Whenever the full processing power is needed, the CPU clock can be switched back to full
speed.

5-2 CHAPTER 5

Bits Name Description

31 LoadEnable 1 = TPR update is delayed until current prescaler time unit ends
0 = TPR update is performed immediately

30..29 reserved

28..26 ClockDivider CPU Clock Divider Control
111 = reserved
110 = reserved
101 = reserved
100 = CPU clock = XTAL1 clock / 2
011 = CPU clock = XTAL1 clock
010 = CPU clock = XTAL1 clock * 2
001 = CPU clock = XTAL1 clock * 4
000 = CPU clock = XTAL1 clock * 8

25..24 reserved

23..16 TimerPrescaler Timer Prescaler Division factor n
Range n = 0..255, Timer Prescaler divides by n+2

15..0 reserved

Table 5.1: Timer Prescaler Register TPR

5.1.2. Timer Register TR
The TR is a 32-bit register which is incremented by one on each time unit modulo 232. Its
content can be used as the lower word of a double-word integer, representing the time in-
clusive date.

The TPR and the TR should be set only once on system initialization, whereby the follow-
ing instruction sequence must be observed strictly (interrupts must be locked out):
 :
 :
 FETCH 4
 ORI SR, $20 ; set H-flag
 MOV TPR, Lx ; load prescaler register from local register x
 ORI SR, $20 ; set H-flag
 MOV TR, Ly ; load timer register from local register y
 :
 :

Note: The Fetch instruction is necessary to prevent insertion of idle cycles during the pre-
scribed instruction sequence.

TIMER 5-3

5.1.3. Timer Compare Register TCR
The content of the TCR is compared continuously with the content of the timer register TR.
An unsigned modulo comparison is performed according to:

result(31..0) := TR(31..0) - TCR(31..0)

On result(31) = 0, the TR is higher than or equal to the TCR.

When the timer interrupt is enabled (FCR(23) = 0) and the value in the TR is higher than or
equal to the value in the TCR, a timer interrupt is generated. This interrupt is cleared by
loading the TCR with a value higher than the current content of the TR.

Timer interrupts can be masked out by FCR(23) = 1; FCR(23) is set to one on Reset. The
timer interrupt disable bit FCR(23) does not affect the timer and compare function.

A delay time in the TCR is calculated according to the formula:
TCR := current content of TR + number of delay time units

The maximum number of delay time units allowed for this calculation is 231-1.

For example:

TR(31..0) = hex FFFF FF00

delay time units (= 1000) = hex 0000 03E8

TCR(31..0) = hex 0000 02E8

Since the modulo comparison is an unsigned operation, only unsigned arithmetic must be
used for calculations with timer and timer compare values. Do not use the N or C flag to
test for the result of the comparison TR - TCR, use only result bit 31!

5.1.4. Power-Down Mode
When the power-down mode is entered, the execution pipeline of the processor is halted.
Only the logic for the timer, IO3 control modes, interrupt and refresh is being clocked, all
other clocks are disabled. The processor is temporarily activated for refresh and bus arbi-
tration cycles, no instructions are executed during these temporary clock cycles. The proc-
essor resumes execution by any interrupt or on a reset.

Power-down mode can be entered by executing an I/O write instruction with address bits
A(27) and A(25..23) set to one and A(22) set to zero.

When power-down mode is entered via the I/O write instruction, the power-down mode
takes effect at the time when the I/O access is performed. Until this time, instruction exe-
cution continues. To ensure that the power-down mode takes effect, the power-down I/O
access must be followed by a dummy I/O load accesses to the same address with 2 access
and 2 hold cycles. A following dependent instruction then waits until both I/O accesses are
performed. Thus, instructions following the MOV instruction are not executed until
wakeup. Note that even though the power-down request is an internal operation of the
processor, bus grant must be given so that the power-down I/O access can be performed.

5-4 CHAPTER 5

Power-down mode can be set by a program sequence as in the following example:
PowerDownIO EQU 1 << 27 | %1110 << 22 ; Bits 27, 25..23, 22

 ...
 STW.IOA 0, 0, PowerDownIO ; set power-down mode
 LDW.IOA 0, L4, PowerDownIO | 8 ; wait until power-down
 MOV L4, L4 ; I/O is executed
 ... ; execution continues

; here after wakeup

5.1.5. Additional Power Saving
The CPU clock divider control can be used for example to switch the CPU to a slow clock
during power-down for additional power savings. In the following example, the XTAL1
clock is 10 MHz, the CPU runs at 80 MHz and is switched back to 10 MHz during power-
down. The timer prescaler setting is changed so that a time unit of 1 µs is kept through the
power-down sequence. Using the “delayed TPR update” feature, the 1 µs absolute time is
maintained even for the time units where the TPR setting changes.

Interrupts are locked out during power-down using the L bit in SR. This is done so that the
TPR setting can be changed back to fast clock and corresponding prescaler setting after
wakeup from power-down before the interrupt handler is called. The interrupt occurs at the
time the lock bit L in SR is cleared.

The power-down is initiated by executing the power-down I/O access. The power-down is
guaranteed to be effective before the next (dummy) I/O load access is done, thus the fol-
lowing MOV instruction is not executed until wakeup. The instructions to restore the CPU
clock speed and the prescaler setting can thus be placed after the dummy load and MOV
instructions.
TPR_fast EQU %000 << 26 | 78 << 16 ; fast TPR, divide by 80
TPR_slow EQU %011 << 26 | 8 << 16 ; slow TPR, divide by 10
DelayTPRUpd EQU 1 << 31 ; delayed TPR update
L_Bit EQU 1 << 15 ; Interrupt Lock in SR
H_Bit EQU 1 << 5 ; High-Global Bit in SR
PowerDownIO EQU 1 << 27 | %1110 << 22 ; Power-Down I/O address

 ...

 MOVI L5, TPR_slow ; TPR for power-down
 MOVI L6, TPR_fast ; TPR after power-down
 ORI L5, DelayTPRUpd ; set delayed TPR update
 ORI L6, DelayTPRUpd ; set delayed TPR update

 ORI SR, L_Bit | H_Bit ; set Interrupt Lock
 MOV TPR, L5 ; set slow clock

 STW.IOA 0, 0, PowerDownIO ; set power-down mode
 LDW.IOA 0, L4, PowerDownIO | 8 ; dummy load
 MOV L4, L4 ; wait till done

; next instruction is
; executed after wakeup

 ORI SR, H_Bit
 MOV TPR, L6 ; restore fast clock
 ANDNI SR, L_Bit ; allow interrupt now

 ... ; continue here after
; interrupt routine has
; been executed

TIMER 5-5

5.1.6. Sleep Mode
To further reduce power dissipation, the processor can be set into sleep mode. In this case,
the clock of the processor is completely switched off. When a quartz crystal is used for
processor clock generation, it is also switched off. An external reset signal or an interrupt
awakes the processor from sleep mode and the processor continues with the standard reset
procedure. Bit 10 in ISR indicates that the reset was caused by a wakeup from sleep mode.
The sleep mode can be entered by an I/O write instruction with address bits A(27) and
A(25..22) set to one. Note that any content of the internal RAM and the external DRAM as
well as the timer count will be lost during sleep mode.

The sleep mode takes effect when the I/O access is performed. After this, the processor
behaves as in reset, i.e. the bus request is deactivated until wakeup by an interrupt or reset.
On wakeup by an interrupt, the FCR setting is preserved through the reset sequence. As
with the power-down I/O access, a dummy load access could be placed after the sleep
mode I/O access to ensure that the sleep mode takes effect. Since the processor continues
with a reset at wakeup from sleep mode, an empty loop can be used as well to wait until the
sleep mode I/O access has taken effect. Note that even though sleep mode is an internal
operation of the processor, bus grant must be given so that the sleep mode set I/O access
can be performed.

An interrupt signal awaking the processor from sleep mode must stay active at least until
the processor has begun executing its reset sequence. This latency time includes the startup
time of the crystal oscillator and of the PLL circuit. If the interrupt goes inactive before this
latency time has elapsed, the processor may fall back into sleep mode. In order to have the
effect of causing a processor interrupt, the interrupt signal should stay active until it is ac-
knowledged by the interrupt handler.

The sleep mode can be set by a program sequence as in the following example:
SleepModeIO EQU 1 << 27 | %1111 << 22 ; Bits 27, 25..22

 ...
 STW.IOA 0, 0, SleepModeIO ; set sleep mode

SleepWait: BR SleepWait ; wait until sleep
 ; mode I/O is executed

5-6 CHAPTER 5

 This page is intentionally left blank.

BUS INTERFACE 6-1

6. Bus Interface

6.1. Bus Control General
The processor provides on-chip all functions for controlling memory and peripheral de-
vices, including RAS-CAS multiplexing, DRAM refresh and parity generation and check-
ing. Supported DRAM types include Fast Page Mode, EDO, and Synchronous DRAM. The
number of bus cycles used for a memory or I/O access is also defined by the processor,
thus, no external bus controllers are required. All memory and peripheral devices can be
connected directly, pin by pin, without any glue logic.

The memory address space is divided into five partitions as follows:

Address (Hex) Address Space Memory Type

0000 0000..3FFF FFFF MEM0 ROM, SRAM, DRAM

4000 0000..7FFF FFFF MEM1 ROM, SRAM

8000 0000..BFFF FFFF MEM2 ROM, SRAM

C000 0000..DFFF FFFF IRAM Internal RAM (IRAM)

E000 0000..FFFF FFFF MEM3 ROM, SRAM

Table 6.1: Memory Address Spaces

The bus timing, refresh control and parity error disable for memory access is defined in the
Bus Control Register BCR. The bus timing for I/O Bus Access is defined by address bits in
the I/O address.

On a memory or I/O access, the address bus signals are valid through the whole access. On
a memory access, the chip select signal for the selected memory area MEM0..MEM3 is
switched to low through the whole access. On a write access to memory or I/O, the data
bus and the parity signals are also activated and the write enable signal WE# is switched to
low through the whole access.

A bus wait cycle is inserted automatically to guarantee a minimum of one idle cycle be-
tween the end of an output enable signal (OE#, IORD#, CASx# at read) and the beginning
of a subsequent write access. After a DRAM read access with an access time > 2 cycles,
two bus wait cycles are inserted before a subsequent write access.

6-2 CHAPTER 6

6.1.1. Boot Width Selection
The processor provides two pins (BOOTW and BOOTB) for selecting the data bus width
for memory area MEM3 (boot memory area). Table 6.2 shows the encoding for selecting
the desired data bus width. The pin state is sampled during reset.

BOOTW BOOTB Data Bus Width

HIGH HIGH 8-bit

LOW LOW 16-bit

HIGH LOW 32-bit

LOW HIGH reserved

Table 6.2: Data bus width encoding for memory area MEM3

For the E1-16XS processor the BOOTW pin is connected to the BOOTB pin internally.
Thus the BOOTB pin can be used to select between 8-bit and 16-bit MEM3 bus width.

6.1.2. SRAM and ROM Bus Access
On a one-cycle SRAM or EPROM read access, the output enable signal OE# is switched to
low during the second half of the access cycle; on a multi-cycle read access, OE# is
switched to low after the first access cycle and remains low through the rest of the specified
access cycles. On a SRAM write access, the write enable signals WE0#..WE3# corre-
sponding to the bytes to be written are switched to low analogous to the OE# signal for
single and multiple access cycles.

For memory area MEM0, MEM2 and MEM3, an address setup cycle preceding the access
cycles can be specified. For MEM0..MEM3, bus hold cycles can be specified. Bus hold
cycles are additional cycles succeeding the access cycles where neither OE# nor
WE0#..WE3# is low but all other bus signals are asserted. The bus hold cycles can be
specified to be skipped or enforced. (see section 6.4.6. MEMx Bus Hold Break).

6.1.3. DRAM Bus Access, Fast Page Mode or EDO DRAM
A DRAM access to the same DRAM page as addressed by the previous DRAM access is
executed as fast page mode access. See Bus Control Register BCR(17..16) for the access
time and low-cycles of the CASx# signals. CAS0#..CAS3# signals enable the correspond-
ing memory bytes 0..3.

A RAS access occurs when the DRAM page is different from the previously accessed
DRAM page. The RAS# signal is switched to high for the number of specified precharge
cycles. The high-order row address bits are multiplexed to the bit positions of the low-order
column address bits according to the specified page size after the first bus cycle until the
end of the specified RAS-to-CAS delay cycles. After the RAS-to-CAS delay cycles, the
column address bits are available on the low-order bit positions and the CAS access cycle
begins.

The row address bits are available at the high-order bit positions for the whole DRAM ac-
cess. After a DRAM access, the addressed DRAM page is being available for fast page
mode accesses to the same page until either a new DRAM page is addressed, the processor

BUS INTERFACE 6-3

is released to another bus master for DMA or a DRAM refresh takes place (see also section
6.11. Bus Cycles).

For Fast Page Mode DRAM, the OE# processor signal is not switched, it always remains
high during DRAM accesses. The DRAM’s OE# signal must be connected to ground. For
EDO DRAM, the processor’s OE# signal must be connected to the corresponding DRAM
signal.

6.1.3.1. DRAM Row Address Bits Multiplexing

Table 6.3 shows the DRAM address bit multiplexing for Fast Page or EDO DRAM. The
page size code (PSC) is specified in the Bus Control Register BCR. The grey fields denote
the multiplexed DRAM address bits. The white fields denote the DRAM address bits
which are not multiplexed. R denotes a row access, C denotes a column access.

Address Bits of the Address Bus
PSC 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R – 29 28 27 26 25 24 23 29 27 25 21 21 19 17 28 26 24 22 20 18 16 – –
0 C

25 24
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 – –

R – 29 28 27 26 25 24 23 22 27 25 23 21 19 17 15 26 24 22 20 18 16 28 29
1 C

25 24
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R – 29 28 27 26 25 24 23 22 21 25 23 21 19 17 15 14 24 22 20 18 16 26 27
2 C

25 24
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R – 29 28 27 26 25 24 23 22 21 20 23 21 19 17 15 14 13 22 20 18 16 24 25
3 C

25 24
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 28 27 26 25 24 23 22 21 20 19 21 19 17 15 14 13 12 20 18 16 22 23
4 C

25 24 23 22
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 26 25 24 23 22 21 20 19 18 19 17 15 14 13 12 11 18 16 20 21
5 C

25 24 23 22 21 20
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 24 23 22 21 20 19 18 17 17 15 14 13 12 11 10 16 18 19
6 C

25 24 23 22 21 20 19 18
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 22 21 20 19 18 17 16 15 14 13 12 11 10 9 16 17
7 C

25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 6.3: FPM and EDO DRAM Row Address Bits Multiplexing

Note: DRAM can only be connected to memory area MEM0. The address bit A0 of the
address bus is not used in case of a 16-bit bus size for memory area MEM0. The address
bits A1 and A0 of the address bus are not used in case of a 32-bit bus size for memory area
MEM0. In case of page size code 0, only a 32-bit bus size for memory area MEM0 can be
used. Memory area MEM0 is only selected if address bits A31 and A30 of a memory ad-
dress are zero.

6.1.4. SDRAM Bus Access
The E1-32XS processor supports the direct connection of up to 512 Mbyte of SDRAM, ad-
dressed using address bits A0 to A28. Address line A29 is used for SDRAM configuration
as indicated in the following table.

6-4 CHAPTER 6

A31..A30 A29 A28 A27..A0 Function

00 0 address address SDRAM access

00 1 0 * set SDRAM Mode Register (from address bits)

00 1 1 * set SDRAM Control Register SDCR (from address bits)

Table 6.4: SDRAM memory and configuration access select

The address bits for the SDRAM bank addresses can be selected from address bits A20 to
A28. The E1-32XS processor supports the generation of two SDRAM chip select signals so
that two SDRAM banks can be connected directly. The address bit that discriminates be-
tween the two SDRAM chip selects can be selected from address bits A21 to A28. The
second SDRAM chip select signal is not available on the E1-16XS. See the SDRAM Con-
trol Register description in section 6.5.

6.1.4.1. SDRAM Row Address Bits Multiplexing

For row access and column access, the address bits are multiplexed corresponding to the
SDRAM address mapping table given below depending on the Page Size Code (PSC). At a
column access, additional to the address bits in the column address range, the bank address
bits are also enabled. The remaining address bits are forced to zero for normal accesses or
forced to 1 for the “precharge all” command used during refresh, respectively. Page Size
Code 0 is reserved, page size code 1 is not allowed for 8 bit bus size. Address bus bits
23..25 always carry address bits 23..25. The grey fields denote the multiplexed SDRAM
address bits. The white fields denote the SDRAM address bits which are not multiplexed.
R denotes a row access, C denotes a column access.

Address Bits of the Address Bus
PSC 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 C

reserved

R 0 28 27 26 25 24 23 22 27 25 23 21 19 17 15 26 24 22 20 18 16 28 –
1 C 0 28|0 27|0 26|0 25|0 24|0 23|0 22|0 14 13 12 11 10 9 8 7 6 5 4 3 2 1 –

R 0 28 27 26 25 24 23 22 21 25 23 21 19 17 15 14 24 22 20 18 16 26 27
2 C 0 28|0 27|0 26|0 25|0 24|0 23|0 22|0 21|0 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 28 27 26 25 24 23 22 21 20 23 21 19 17 15 14 13 22 20 18 16 24 25
3 C 0 28|0 27|0 26|0 25|0 24|0 23|0 22|0 21|0 20|0 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 28 27 26 25 24 23 22 21 20 19 21 19 17 15 14 13 12 20 18 16 22 23
4 C 0 28|0 27|0 26|0 25|0 24|0 23|0 22|0 21|0 20|0 19|0 11 10 9 8 7 6 5 4 3 2 1 0

R 0 28 27 26 25 24 23 22 21 20 19 18 19 17 15 14 13 12 11 18 16 20 21
5 C 0 28|0 27|0 26|0 25|0 24|0 23|0 22|0 21|0 20|0 19|0 18|0 10 9 8 7 6 5 4 3 2 1 0

R 0 28 27 26 25 24 23 22 21 20 19 18 17 17 15 14 13 12 11 10 16 18 19
6 C 0 28|0 27|0 26|0 25|0 24|0 23|0 22|0 21|0 20|0 19|0 18|0 17|0 9 8 7 6 5 4 3 2 1 0

R 0 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 16 17
7 C 0 28|0 27|0 26|0 25|0 24|0 23|0 22|0 21|0 20|0 19|0 18|0 17|0 16|0 8 7 6 5 4 3 2 1 0

Table 6.5: SDRAM Row Address Bits Multiplexing

6.1.4.2. SDRAM Mode Register Setting

The SDRAM Mode Register (internal to the SDRAM devices) specifies SDRAM access
parameters like burst length, burst type and CAS latency. The SDRAM mode register is set

BUS INTERFACE 6-5

from the SDRAM address bits on a Mem0 write access with address bits 29 set to 1 and
address bit 28 set to 0.

The E1-32XS SDRAM interface does not use the burst capability of the SDRAM devices.
Thus, for correct operation, the SDRAM mode register setting must specify a burst length
of 1 and a CAS latency of 1 or 2 according to the SDRAM Control Register CASLatency
setting.

6.1.4.3. SDRAM Connection

The connection of SDRAM devices to the E1-32XS and E1-16XS is specified in the follow-
ing table. The table lists the SDRAM pins and the corresponding E1-32XS or E1-16XS pins
for all the SDRAM signals.
SDRAM pin E1-32XS pin E1-16XS pin Signal

CLK CAS3# CAS1# SDRAM Clock signal SDCLK

CKE DP3 DP1 SDRAM Clock Enable signal

CS DP2
DP1

DP0
—

SDRAM first bank chip select CS0#
SDRAM second bank chip select CS1#

RAS RAS# RAS# SDRAM Row Address Strobe

CAS CAS2# CAS0# SDRAM Column Address Strobe

WE WE# WE# SDRAM Write Enable

DQM, L/UDQM WE0#..WE3# WE0#..WE1# SDRAM Data Mask

A0… A… A… SDRAM Address Input

BA0… A… A… SDRAM Bank Address Input

DQ0… D… D… SDRAM Data Input/Output

Table 6.6: SDRAM Connection

The E1-32XS WE0#..WE3# signals act as the Data Mask SDRAM signals. WE0# is the
DQM signal corresponding to data bits 31..24, WE1# corresponds to data bits 23..16,
WE2# corresponds to data bits 15..8, and WE3# corresponds to data bits 7..0.

The E1-16XS WE0# and WE1# signals act as the Data Mask SDRAM signals. WE0# is the
DQM signal corresponding to data bits 15..8, and WE1# corresponds to data bits 7..0.

The SDRAM address signals connect to the address pins of the E1-32XS/E1-16XS starting at
address bit 2 for a memory bus width of 32 bits, starting at address bit 1 for a memory bus
width of 16 bits, and starting with address bit 0 for 8 bit memory bus width. The Page Size
Code in BCR is selected based on the number of column address bits. The remaining ad-
dress bits (including A10/AP) and the bank address pins are connected to the higher E1-
32XS addresses.

If the bus grant is removed from the E1-32XS, all SDRAM control lines return to the high
state before the bus is released. The E1-32XS assumes that it will get the bus back in the
same state.

The E1-32XS uses the memory parity signals DP1..DP3 (DP0 and DP1 for the E1-16XS) for
the SDRAM chip select and clock enable signals. Thus, these signals can not be used as
memory parity signals if SDRAM is connected to the E1-32XS. All four parity disable bits
in MCR must be set to 1 if SDRAM is used.

6-6 CHAPTER 6

6.2. I/O Bus Access
Hyperstone provides a completely separate I/O address range which makes it possible to
connect numerous peripheral devices each with individual behavior.

Bus timing and access mode for an I/O access is specified by bits 11..3 of the I/O address.

On an I/O access, the I/O read strobe IORD# or the I/O write strobe IOWR# is switched
low for a read or write access respectively after the first access cycle, and it remains low for
the rest of the specified access cycles. The beginning of the IORD# or IOWR# signal can
be delayed by more than one cycle by specifying additional address setup cycles preceding
the access cycles. The beginning of the next bus access can be delayed by specifying bus
hold cycles succeeding the access cycles. Bus hold cycles are required by many I/O devices
due to the time required to switch from driving the data bus to three-state.

Bit 11 of the I/O address enables a wait-pin controlled I/O access. The INT3/WAIT input
of the processor is sampled after the first three access cycles of the specified I/O access
time. The I/O access will be extended by inserting further access cycles as long as the sig-
nal at the WAIT input is asserted. When the WAIT signal becomes deasserted, the access
will be terminated. Note that there is latency of about 2..3 processor cycles until a signal
change at the WAIT input becomes effective. The polarity of the WAIT signal can be pro-
grammed via bit 26 of the Function Control Register FCR. When FCR(26) is set to 1 (de-
fault after reset), the WAIT signal is high asserted; when FCR(26) is set to 0, the WAIT
signal is low asserted. A minimum of four I/O access cycles must be specified when the I/O
wait mode is being enabled.

When an I/O device requires R/W# direction and data strobe control, IORD# can be speci-
fied (by address bit 10 = 1) as data strobe. WE# is then used as R/W# signal.

For normal I/O accesses, address bits 31..26 must be zero. Address bit 27 = 1 indicates an
internal I/O access of the processor. This is currently only used for the power-down and
sleep modes (see Timer and CPU Clock Modes).

BUS INTERFACE 6-7

For I/O accesses, address setup, access and bus hold time can be specified by bits in the I/O
address as described in Figure 6.1. Reserved bits must always be supplied as zero when
specifying an I/O address in a program.

0234578910

Reserved (must be 0)

Address Setup Time before Read or Write Access
00 = 0 cycles
01 = 2 cycles
10 = 4 cycles
11 = 6 cycles

Access Time for Read or Write Access
000 = 2 cycles
001 = 4 cycles
010 = 6 cycles
011 = 8 cycles
100 = 10 cycles
101 = 12 cycles
110 = 14 cycles
111 = 16 cycles

Bus Hold Time after Read or Write Access
00 = 0 cycles
01 = 2 cycles
10 = 4 cycles
11 = 6 cycles

Reserved for System Peripheral

11

Peripheral Device Control Mode
0 = IORD# / IOWR# Strobe Control
1 = R/W# / Data Strobe Control

2125

I/O Address and/or I/O Chip Select
E1-16X: 6 Bits
E1-32X: 10 Bits

1213

Wait Enable

Reserved for Internal Use (must be 0)

I/O Register Address

15

Figure 6.1: I/O Bus Control

6-8 CHAPTER 6

6.3. Bus Control Register BCR
Global register G20 is the write-only bus control register BCR. The BCR defines the pa-
rameters (bus timing, refresh control) for accessing external memory located in address
spaces MEM0..MEM3.

All bits of the BCR are set to one on Reset. They are intended to be initialized according to
the hardware environment.

Bits Name Description

31..28 Mem3Access Access time for address space MEM3
1111 = 16 clock cycles
1110 = 15 clock cycles
1101 = 14 clock cycles
1100 = 13 clock cycles
1011 = 12 clock cycles
1010 = 11 clock cycles
1001 = 10 clock cycles
1000 = 9 clock cycles
0111 = 8 clock cycles
0110 = 7 clock cycles
0101 = 6 clock cycles
0100 = 5 clock cycles
0011 = 4 clock cycles
0010 = 3 clock cycles
0001 = 2 clock cycles
0000 = 1 clock cycle

27..24 Mem2Access Access time for address space MEM2
1111 = 16 clock cycles
1110 = 15 clock cycles
1101 = 14 clock cycles
1100 = 13 clock cycles
1011 = 12 clock cycles
1010 = 11 clock cycles
1001 = 10 clock cycles
1000 = 9 clock cycles
0111 = 8 clock cycles
0110 = 7 clock cycles
0101 = 6 clock cycles
0100 = 5 clock cycles
0011 = 4 clock cycles
0010 = 3 clock cycles
0001 = 2 clock cycles
0000 = 1 clock cycle

BUS INTERFACE 6-9

6.3. Bus Control Register BCR (continued)
Bits Name Description

23 Mem1Hold Bus hold time for address space MEM1
When BCR(22) = 1:
1 = 2 clock cycles
0 = 1 clock cycle

When BCR(22) = 0:
1 = 1 clock cycle
0 = 0 clock cycles

22..20 Mem1Access Access time for address space MEM1
111 = 8 clock cycles
110 = 7 clock cycles
101 = 6 clock cycles
100 = 5 clock cycles
011 = 4 clock cycles
010 = 3 clock cycles
001 = 2 clock cycles
000 = 1 clock cycle

MEM0 = Non-DRAM (MCR(21) = 1):

19..16 Mem0Access Access time for address space MEM0
1111 = 16 clock cycles
1110 = 15 clock cycles
1101 = 14 clock cycles
1100 = 13 clock cycles
1011 = 12 clock cycles
1010 = 11 clock cycles
1001 = 10 clock cycles
1000 = 9 clock cycles
0111 = 8 clock cycles
0110 = 7 clock cycles
0101 = 6 clock cycles
0100 = 5 clock cycles
0011 = 4 clock cycles
0010 = 3 clock cycles
0001 = 2 clock cycles
0000 = 1 clock cycle

15..14 Mem0Setup Address setup time for address space MEM0
11 = 3 clock cycles
10 = 2 clock cycles
01 = 1 clock cycle
00 = 0 clock cycles

13..11 Mem0Hold Bus hold time for address space MEM0
111 = 7 clock cycles
110 = 6 clock cycles
101 = 5 clock cycles
100 = 4 clock cycles
011 = 3 clock cycles
010 = 2 clock cycles
001 = 1 clock cycle
000 = 0 clock cycles

6-10 CHAPTER 6

6.3. Bus Control Register BCR (continued)
Bits Name Description

MEM0 = DRAM (MCR(21) = 0):

19..18 RasPrecharge RAS precharge time for address space MEM0
 when MCR(8)=0 when MCR(8)=1
11 = 4 clock cycles 6 clock cycles
10 = 3 clock cycles 5 clock cycles
01 = 2 clock cycles 4 clock cycles
00 = 1 clock cycle 3 clock cycles

17..16 CASAccess CAS access time for address space MEM0
 when MCR(8)=0 when MCR(8)=1
11 = 4 clock cycles 6 clock cycles
10 = 3 clock cycles 5 clock cycles
01 = 2 clock cycles 4 clock cycles
00 = 1 clock cycle 3 clock cycles

15..14 RasToCas RAS to CAS delay time
11 = 4 clock cycles
10 = 3 clock cycles
01 = 2 clock cycles
00 = 1 clock cycle

13..11 RefreshSelect Refresh rate select (CAS before RAS refresh)
111 = Refresh disabled
110 = Refresh every 4 prescaler time units
101 = Refresh every 8 prescaler time units
100 = Refresh every 16 prescaler time units
011 = Refresh every 32 prescaler time units
010 = Refresh every 64 prescaler time units
001 = Refresh every 128 prescaler time units
000 = Refresh every 256 prescaler time units

10..8 Mem3Hold Bus hold time for address space MEM3
111 = 7 clock cycles
110 = 6 clock cycles
101 = 5 clock cycles
100 = 4 clock cycles
011 = 3 clock cycles
010 = 2 clock cycles
001 = 1 clock cycle
000 = 0 clock cycles

7 Mem3Setup Address setup time for address space MEM3
1 = 1 clock cycle
0 = 0 clock cycles

6..4 PageSizeCode Page size code

BUS INTERFACE 6-11

6.3. Bus Control Register BCR (continued)
Bits Name Description

3 Mem2Setup Address setup time for address space MEM2
1 = 1 clock cycle
0 = 0 clock cycles

2..0 Mem2Hold Bus hold time for address space MEM2
111 = 7 clock cycles
110 = 6 clock cycles
101 = 5 clock cycles
100 = 4 clock cycles
011 = 3 clock cycles
010 = 2 clock cycles
001 = 1 clock cycle
000 = 0 clock cycles

Table 6.7: Bus Control Register BCR

The DRAM type used and the physical page size of the DRAM are specified by bits 6..4 in
the BCR. Table 6.8 shows the encoding of BCR(6..4) and the associated column address
ranges for memory areas with bus sizes of 32, 16 and 8 bits.

Column Address Range

BCR(6..4) 32-bit Bus Size 16-bit Bus Size 8-bit Bus Size

000 A15..A2 A15..A1 A15..A0

001 A14..A2 A14..A1 A14..A0

010 A13..A2 A13..A1 A13..A0

011 A12..A2 A12..A1 A12..A0

100 A11..A2 A11..A1 A11..A0

101 A10..A2 A10..A1 A10..A0

110 A9..A2 A9..A1 A9..A0

111 A8..A2 A8..A1 A8..A0

Table 6.8: Column Address Ranges

6-12 CHAPTER 6

6.4. Memory Control Register MCR
Global register G27 is the write-only memory control register MCR. The MCR controls
additional parameters for the external memory and the mapping of the entry table. All bits
of the MCR are set to one on Reset except for the MEM3BusSize bits that are initialized
from the BOOTW and BOOTB pads. The MCR bits must be initialized according to the
hardware environment and the desired function.

Bits Name Description

31 MEM3ParityDisable Parity check disable for address space MEM3
1 = disabled
0 = enabled

30 MEM2ParityDisable Parity check disable for address space MEM2
1 = disabled
0 = enabled

29 MEM1ParityDisable Parity check disable for address space MEM1
1 = disabled
0 = enabled

28 MEM0ParityDisable Parity check disable for address space MEM0
1 = disabled
0 = enabled

27 reserved

26 MEM2WaitDisable Wait signal disable for address space MEM2
1 = disabled
0 = enabled

25..24 reserved

23 MEM2ByteMode Byte write access mode for address space MEM2
1 = WE0# .. WE3# act as byte write strobe
0 = WE0# .. WE3# act as byte enable signal

MEM0 = Non-DRAM (MCR(21) = 1):

22 reserved

MEM0 = DRAM (MCR(21) = 0):

22 DRAMType2 1 = Mem0 DRAM type is according to MCR(15)
0 = Mem0 DRAM type is SDRAM

21 MEM0MemoryType 1 = Non-DRAM
0 = DRAM

20 reserved

19 MEM1ByteMode Byte write access mode for address space MEM1
1 = WE0# .. WE3# act as byte write strobe
0 = WE0# .. WE3# act as byte enable signal

18..16 reserved

BUS INTERFACE 6-13

6.4. Memory Control Register MCR (continued)

Bits Name Description

MEM0 = Non-DRAM (MCR(21) = 1):

15 MEM0ByteMode Byte write access mode for address space MEM0
1 = WE0# .. WE3# act as byte write strobe
0 = WE0# .. WE3# act as byte enable signal

MEM0 = DRAM (MCR(21) = 0):

15 DRAMType 1 = Fast Page Mode DRAMs
0 = EDO DRAMs

14..12 EntryTableMap 111 = MEM3
110 = reserved
101 = reserved
100 = reserved
011 = Internal RAM (IRAM)
010 = MEM2
001 = MEM1
000 = MEM0

11 MEM3BusHoldBreak 1 = Break Disabled
0 = Break Enabled

10 MEM2BusHoldBreak 1 = Break Disabled
0 = Break Enabled

9 MEM1BusHoldBreak 1 = Break Disabled
0 = Break Enabled

MEM0 = Non-DRAM (MCR(21) = 1):

8 MEM0BusHoldBreak 1 = Break Disabled
0 = Break Enabled

MEM0 = DRAM (MCR(21) = 0):

8 DRAMBusHold 1 = Break Enabled, Bus Hold time 1 cycle
0 = Break Enabled, Bus Hold time 0 cycles

6-14 CHAPTER 6

6.4. Memory Control Register MCR (continued)

Bits Name Description

7..6 MEM3BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

5..4 MEM2BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

3..2 MEM1BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

1..0 MEM0BusSize 11 = 8 bit
10 = 16 bit
01 = reserved
00 = 32 bit

Table 6.9: Memory Control Register MCR

6.4.1. MEMx Parity Disable
Bits 31..28 of the MCR control parity generation and parity check for each memory area.
The default setting is parity check disabled. The appropriate MCR bit must be cleared to
enable the parity check for that memory area.

Since the SDRAM interface uses the data parity signals as SDRAM control signals, the
MEMxParityDisable bits must all be set to 1 when the SDRAM interface is used.

6.4.2. MEM2 Wait Disable
Bit 26 of the MCR controls the wait pin function for the memory area MEM2. The default
setting is wait function disabled. The MCR bit must be cleared to enable the wait function
for the MEM2 memory area. When this function is enabled, the INT3/WAIT input of the
processor is used as wait pin. Any MEM2 memory access remains active as long as the
signal at the WAIT input is asserted (the WAIT input is sampled after the first three access
cycles of the memory access). The access will be terminated after the WAIT input becomes
deasserted. Whether the input is low-asserted or high-asserted can be programmed via bit
26 of the Function Control Register FCR. A minimum access time of four cycles must be
specified for a memory area with the wait function enabled.

If the INT3/WAIT input is used as wait pin, bit 30 of the FCR (INT3Mask) should be set to
1 so that no interrupts are generated on the assertion of WAIT.

6.4.3. MEMx Byte Mode
Bit 23, 19, and 15 of the MCR control the byte write access mode for memory areas
MEM2, MEM1, and MEM0, respectively. The default setting is byte-write-strobe, meaning
that the signals WE0#..WE3# are used as write strobe signals for writing the appropriate

BUS INTERFACE 6-15

data byte to the external memory. When the MCR bit is cleared, the signals WE0#..WE3#
act as a byte enable signal and the general WE# signal must be used for writing the data to
the memory.

Note: Most SRAM chips with 16-bit or 32-bit wide data interface require a single write-
enable signal and dedicated enable signals for each byte. The setting MEMxByteMode = 0
is intended specifically for those types of memories.

6.4.4. DRAMType and DRAMType2
When the MEM0 memory type is set to DRAM (MCR(21) = 0), bits 15 and 22 of the MCR
act as control bits for selecting the DRAM type as specified in the following table. The
default setting is Fast Page Mode DRAM.

MCR(22) MCR(15) DRAM Type

1 1 Fast Page Mode

1 0 EDO

0 1 SDRAM

0 0 reserved

Table 6.9: DRAM Type Selection

When the DRAM type indicates Fast-Page-Mode DRAMs, the OE# signal of the processor
is left deasserted during DRAM accesses. The OE# pin of the DRAMs must then be tied
low for correct DRAM operation.

When the DRAM type indicates EDO DRAMs, OE# must be connected to the DRAMs
and is asserted on DRAM read accesses. OE# stays active for one half clock cycle past the
end of the CAS# signals, the read data is sampled at the end of OE#. Thus, the processor
can take advantage of the EDO feature.

When the DRAM type indicates SDRAM, SDRAM accesses are enabled through the
SDRAM Control Register SDCR. Since the SDRAM interface uses the data parity signals
as SDRAM control signals, the MEMxParityDisable bits must all be set to 1 when the
SDRAM interface is used.

6.4.5. Entry Table Map
Bits 14..12 of the MCR map the entry table to one of the memory areas MEM0..MEM3 or
to the IRAM. With a mapping to MEM3 (default setting), the entry table is mapped to the
end of MEM3, with all other settings, the entry table is mapped to the beginning of the
specified memory area.

6.4.6. MEMx Bus Hold Break
Bits 11..8 specify a memory bus hold break for MEM3..MEM0 respectively. The default
setting is disabled. With enabled, bus hold cycles are skipped when the next memory access
addresses the same memory area. Regularly, the bus hold break should be enabled; it must
only be left disabled to accommodate (rare) SRAMs or ROMs which need all specified cy-
cles before a new access can be started (e.g. for charge restore).

6-16 CHAPTER 6

If the MEM0 memory type is DRAM, MCR bit 8 changes the RasPrecharge and CASAc-
cess cycle counts specified in BCR, and specifies a bus hold time of 0 or 1 cycles. Bus hold
break for DRAM is always enabled.

6.4.7. MEMx Bus Size
Bits 7..0 specify the bus size for each of the four memory areas.

BUS INTERFACE 6-17

6.5. SDRAM Control Register SDCR
The SDRAM Control Register SDCR specifies the SDRAM access parameters. This reg-
ister must be set before the first SDRAM access (SDRAM mode register set) is performed.
All bits of this register are initialized to 1 on reset. The SDCR is set from the address bits
of a Mem0 write access with address bits 29 and 28 set to 1 (see section 6.1.4 SDRAM Bus
Access).

Bits Name Description

31..28 Must be 0011

27..21 Reserved, must be 0

20..12 BankAddrEnable Enable bits for Bank Address bits 28..20
1 = corresponding address bit is a bank address bit
0 = corresponding address bit is not a bank address bit

11 CS1Enable Enable for second SDRAM chip select output
1 = second SDRAM chip select CS1# is disabled
0 = second SDRAM chip select CS1# is enabled

10..8 CS1Select Code for selection between SDRAM chip selects CS0# and CS1#
111 = address bit 28 selects between CS0# and CS1#
110 = address bit 27 selects between CS0# and CS1#
…
000 = address bit 21 selects between CS0# and CS1#
If the corresponding address bit is 0, CS0# is activated, if the
address bit is 1, CS1# is activated.

7 Reserved, must be 1

6 CASLatency 1 = CAS Latency 2 clock cycles
0 = CAS Latency 1 clock cycle

5..4 Reserved, must be 1

3 SDCLKSelect SDCLK Clock Rate Select
1 = SDCLK is CPU clock / 2
0 = SDCLK is CPU clock

2 Reserved, must be 0

1..0 Must be 00

6.5.1. BankAddrEnable
The BankAddrEnable parameter specifies which of the CPU address bits 28..20 are
SDRAM bank address bits. For SDRAM devices with two memory banks, only one of
these bits should be set. For SDRAM devices with four memory banks, two of these bits
should be set. If the second SDRAM Chip Select is used, the corresponding BankAddrEn-
able bit must also be set.

The E1-32XS supports holding two different SDRAM banks active.

6.5.2. CS1Enable
Normally, a single SDRAM chip select signal CS0# is generated. In systems with a second
(identical) bank of SDRAM devices, setting CS1Enable to 0 enables the generation of the
chip select signal CS1# for this second bank of SDRAM devices. This feature is not sup-
ported on the E1-16XS, the CS1Enable bit must be set to 1 in this case.

6-18 CHAPTER 6

6.5.3. CS1Select
On systems with two banks of identical SDRAM devices, the CS1Select bits specify which
address bit should be used to discriminate between the chip select signals CS0# and CS1#.
The bit corresponding the CS1Select address line must also be set in the BankAddrEnable
field.

6.5.4. CASLatency
The CASLatency bit specifies the CAS latency of the SDRAM devices. This bit must re-
flect the CAS latency setting in the SDRAM Mode Register.

6.5.5. SDCLKSelect
The SDCLKSelect bit specifies the SDRAM clock signal rate. The SDCLK signal can be
selected to run at the full CPU clock rate or at half the CPU clock rate. For a CPU clock of
more than 40 MHz, the SDRAM clock rate must be set to half the CPU clock rate.

The CAS access time in BCR must be set according to the SDCLKSelect bit in SDCR. If
SDCLK is the CPU clock, the CAS access time must be set to 1 clock cycle, if SDCLK is
CPU clock / 2, the CAS access time must be set to 2 clock cycles.

The RAS precharge time and RAS-to-CAS delay time settings in BCR must be set to a
multiple of two (2, 4 or 6) if SDCLK is CPU clock / 2. The RAS precharge setting controls
the time for the SDRAM precharge command, the RAS-to-CAS delay setting controls the
time for the SDRAM row activate command.

6.5.6. SDRAM Connection Example
One 64 Mbit SDRAM device (4 banks × 1M × 16 bits) is connected to the E1-16XS to form
a 16 bit wide 8 Mbyte SDRAM memory space. Column addresses are SDRAM pins A0 to
A7, row address pins are SDRAM pins A0 to A11. There are two bank address pins BA0
and BA1.

Since the memory system is 16 bit wide, the SDRAM is connected to the E1-16XS starting
with E1-16XS address pin 1. There are 8 column addresses, so the page size code is 7.

The SDRAM address pins A0..A7 carry E1-16XS address bits 1..8 on a column access, and
E1-16XS address bits 9..16 on a row access. SDRAM pins A8, A9, A10/AP and A11 must
be connected to E1-16XS address bits 17..20. These are available on E1-16XS address pins
A10 to A13. The bank address pins BA0 and BA1 are connected to E1-16XS address bits 21
and 22 on pins A14 and A15.

The data bus connects E1-16XS D0..D15 to DQ0..DQ15, LDQM connects to WE1#, and
UDQM to WE0#.

The SDCR settings are thus:
BankAddrEnable 000000110 bank address bits 21, 22
CS1Enable 1 CS1# signal disabled
CS1Select 111 - unused

BUS INTERFACE 6-19

6.6. Input Status Register ISR
Global register G25 is the read-only input status register ISR. The ISR reflects the input
levels at the pins IO1..IO3 as well as the input levels at the four interrupt pins INT1..INT4
and contains the EventFlag, the EqualFlag, the WatchdogFlag and the ClockOnFlag. Re-
served bits are read as zeros.

The input levels are not affected by the polarity bits in the Function Control Register FCR,
they reflect always the true signal level at the corresponding pins with a latency of 2..3 cy-
cles, a 1 signals high level.

Bits Name Description

31..11 reserved

10 ClockOnFlag Determines the source of the last reset event
1 = Last reset caused by sleep mode wakeup
0 = Last reset caused by RESET# signal or watchdog timer

9 WatchdogFlag Determines the source of the last reset event
1 = Last reset caused by watchdog timer (IO3 timer)
0 = Last reset caused by RESET# signal or sleep mode wakeup

8 EventFlag Set to 1 in IO3Timing Mode when IO3Level is equal to IO3Polarity
Cleared to 0 by FCR(13) = 1 or write to the WCR

7 EqualFlag Set to 1 in IO3Timing Mode or IO3TimerInterrupt Mode when
WCR(15..0) = TR(15..0)
Cleared to 0 by FCR(13) = 1 or write to the WCR

6 IO3Level Reflects the signal level at the IO3 Pin
1 = High Level
0 = Low Level

5 IO2Level Reflects the signal level at the IO2 Pin
1 = High Level
0 = Low Level

4 IO1Level Reflects the signal level at the IO1 Pin
1 = High Level
0 = Low Level

3 INT4Level Reflects the signal level of interrupt input INT4
1 = High Level
0 = Low Level

2 INT3Level Reflects the signal level of interrupt input INT3
1 = High Level
0 = Low Level

1 INT2Level Reflects the signal level of interrupt input INT2
1 = High Level
0 = Low Level

0 INT1Level Reflects the signal level of interrupt input INT1
1 = High Level
0 = Low Level

Table 6.10: Input Status Register ISR

6-20 CHAPTER 6

6.7. Function Control Register FCR
Global register G26 is the write-only function control register FCR. The FCR controls the
polarity and function of the I/O pins IO1..IO3 and the interrupt pins INT1..INT4, the timer
interrupt mask and priority, the bus lock, the CLKOUT pin and the Extended Overflow
exception. All bits of the FCR are set to one on a Reset exception (from the RESET# pin or
as a result of a watchdog overrun). They must be initialized according to the hardware en-
vironment and the desired function. The reserved bits must not be changed when the FCR
is updated. The FCR is preserved on a clock-down reset in order to have the correct inter-
rupt mask and polarity for the wakeup from clock-down.

Each of the four interrupt pins INT1..INT4 can cause a processor interrupt when the corre-
sponding interrupt mask bit is cleared. The corresponding polarity bit determines whether
the signal at the interrupt pin must be low (polarity bit = 0) or high (polarity bit = 1) to
cause an interrupt. Additionally, the internal timer interrupt can be enabled or disabled
separately.

Each of the I/O pins IO1..IO3 can be either used as input or interrupt signal (IOxDirection
= 1) or as output (IOxDirection = 0). The CLKOUT pin of the processor can be pro-
grammed to provide a static output level of either high or low, or it can be configured to
provide the processor's internal clock signal divided by a programmable factor.

Bits Name Description

31 INT4Mask 1 = Interrupt INT4 Disabled
0 = Interrupt INT4 Enabled

30 INT3Mask 1 = Interrupt INT3 Disabled
0 = Interrupt INT3 Enabled

29 INT2Mask 1 = Interrupt INT2 Disabled
0 = Interrupt INT2 Enabled

28 INT1Mask 1 = Interrupt INT1 Disabled
0 = Interrupt INT1 Enabled

27 INT4Polarity 1 = Non-Inverted (Interrupt on High Level)
0 = Inverted (Interrupt on Low Level)

26 INT3Polarity 1 = Non-Inverted (Interrupt on High Level)
0 = Inverted (Interrupt on Low Level)

25 INT2Polarity 1 = Non-Inverted (Interrupt on High Level)
0 = Inverted (Interrupt on Low Level)

24 INT1Polarity 1 = Non-Inverted (Interrupt on High Level)
0 = Inverted (Interrupt on Low Level)

23 TINTDisable 1 = Timer Interrupt Disabled
0 = Timer Interrupt Enabled

22 CLKOUTPolarity 1 = Inverted / High
0 = Non-Inverted / Low

21..20 TimerPriority 11 = Priority 6 (higher than Priority of INT1)
10 = Priority 8 (higher than Priority of INT2)
01 = Priority 10 (higher than Priority of INT3)
00 = Priority 12 (higher than Priority of INT4)

19..18 CLKOUTControl CLKOUT pin control

BUS INTERFACE 6-21

6.7. Function Control Register FCR (continued)
Bits Name Description

17 BusLock DMA Access:
1 = Non-Locked
0 = Locked out

16 EOVDisable Extended Overflow Exception:
1 = Disabled
0 = Enabled

15..14 reserved

13..12 IO3Control IO3 Control State:
11 = IO3Standard Mode
10 = Watchdog Mode
01 = IO3Timing Mode
00 = IO3TimerInterrupt Mode

11 CLKOUTControl2 CLKOUT pin control

10 IO3Direction 1 = Input
0 = Output

9 IO3Polarity 1 = Non-Inverted
0 = Inverted

8 IO3Mask On Input:
1 = IO3 Interrupt Disabled
0 = IO3 Interrupt Enabled
On Output:
1 = IO3 Output reflects IO3Polarity
0 = Reserved

7 reserved

6 IO2Direction 1 = Input
0 = Output

5 IO2Polarity 1 = Non-Inverted
0 = Inverted

4 IO2Mask On Input:
1 = IO2 Interrupt Disabled
0 = IO2 Interrupt Enabled
On Output:
1 = IO2 Output reflects IO2Polarity
0 = Reserved

3 reserved

2 IO1Direction 1 = Input
0 = Output

1 IO1Polarity 1 = Non-Inverted
0 = Inverted

0 IO1Mask On Input:
1 = IO1 Interrupt Disabled
0 = IO1 Interrupt Enabled
On Output:
1 = IO1 Output reflects IO1Polarity
0 = Reserved

Table 6.11: Function Control Register FCR

6-22 CHAPTER 6

6.7.1. CLKOUTControl and CLKOUTControl2
The CLKOUTControl and CLKOUTControl2 fields control the function of the CLKOUT
pin according to the following table:

FCR(11) FCR(19) FCR(18) CLKOUT function

1 1 1 Output reflects CLKOUTPolarity

1 1 0 Processor clock

1 0 1 Processor clock / 2

1 0 0 Processor clock / 4

0 1 1 Processor clock / 6

0 1 0 Processor clock / 8

0 0 1 Processor clock / 12

0 0 0 Processor clock / 16

6.8. Watchdog Compare Register WCR
Global register G24 is the watchdog compare register WCR. Only bits 15..0 are used, bits
31..16 are reserved, they must be zero on a move to the WCR. In the present version, bits
31..16 are read as zero. The WCR is used by the IO3 control modes (see section 6.9. IO3
Control Modes).

6.9. IO3 Control Modes
Additionally to the standard use like IO1 and IO2 (see section 6.10.3. Bus Signal Descrip-
tion), there are special control modes in combination with the IO3 pin. These control
modes are specified by FCR(13) and FCR(12).

On all IO3 control modes, the watchdog compare register WCR must be set before the
control mode is specified in the FCR, otherwise the EqualFlag could be set erroneously.

The EqualFlag and the EventFlag are being cleared on all IO3 control modes by either set-
ting FCR(13) to one or a move to the watchdog compare register WCR.

6.9.1. IO3Standard Mode
FCR(13) = 1, FCR(12) = 1 specifies IO3Standard mode.

Standard use of IO3 without any additional IO3 control functions. See section 6.10.3. for
signals IO1..IO3.

6.9.2. Watchdog Mode
FCR(13) = 1, FCR(12) = 0 specifies Watchdog mode.

A Reset exception occurs when WCR(15..0) = TR(15..0). The standard use of IO3 is not
affected.

6.9.3. IO3Timing Mode
FCR(13) = 0, FCR(12) = 1 specifies the IO3Timing mode.

BUS INTERFACE 6-23

On IO3Direction = Input:

When input signal IO3Level = IO3Polarity, the EventFlag ISR(8) is set and the current
contents of the TR(15..0) is copied to the WCR. Thus, the time of the event indicated by
the 16 low-order bits of the TR is captured in the WCR. When WCR(15..0) = TR(15..0)
before the EventFlag is set, the EqualFlag ISR(7) is set. Either flag set causes an interrupt
when the IO3 interrupt is enabled.

Note: The EventFlag and the EqualFlag can be used to distinguish between an input signal
transition and a time-out. The EventFlag can be set even after the EqualFlag (but not vice
versa) during the interrupt latency time; thus, when the EventFlag is set, WCR(15..0) con-
tains always the time when the input reached the level specified by IO3Polarity. Note that
the EventFlag is immediately set on entering IO3Timing mode when the input signal is
already on the specified level. WCR(15..0) must be set to a value different from the value
of the TR(15..0), otherwise the EqualFlag is set immediately. The maximum span for the
time-out is 216-1 ticks of the TR.

IO3Direction = Output:

When WCR(15..0) = TR(15..0), the EqualFlag is set and an interrupt occurs when the IO3
interrupt is enabled. Additionally, an internal toggle latch is toggled. The IO3 output signal
is high when the value of the toggle latch and IO3Polarity are not equal, otherwise low.
Thus, each toggling causes a transition of the IO3 output signal. The toggle latch is cleared
by setting FCR(13) to 1.

Note: This mode can be used to create an arbitrary output signal sequence by just updating
the WCR. When the program switches to IO3Standard mode after the end of a signal se-
quence and the toggle latch remained set to 1, FCR(13) must be set to 1 and IO3Polarity be
inverted coincidentally in the same move to FCR to avoid a transition of the IO3 output
signal. The IO3 interrupt must also be disabled in the same move to FCR to avoid an inter-
rupt from the output signal.

6.9.4. IO3TimerInterrupt Mode
FCR(13) = 0, FCR(12) = 0 specifies the IO3TimerInterrupt mode.

Additionally to the standard use of IO3, the condition WCR(15..0) = TR(15..0) sets the
EqualFlag ISR(7) and causes an IO3 interrupt regardless of the IO3Mask in FCR(8).

Note: When the IO3 interrupt is disabled, the IO3TimerInterrupt mode can be used inde-
pendently of the use of IO3 as input or output. When the IO3 interrupt is enabled, the
IO3TimerInterrupt mode can be used as a time-out for the IO3 interrupt. The EqualFlag can
then be used to distinguish between time-out and an IO3 interrupt.

6-24 CHAPTER 6

6.10. Bus Signals

6.10.1. Bus Signals for the E1-32XS Processor
The following table is an overview of the bus signals of the hyperstone E1-32XS microproc-
essor. For a detailed description of the function of the bus signals refer to section 6.10.3.
Bus Signal Description.

The signal states are defined as I = input, O = output and Z = three-state (inactive).

States Pin count Signal Name Description

I 1 XTAL1/CLKIN External Crystal, optionally Clock Input

O 1 XTAL2 External Crystal

O 1 CLKOUT Clock Output

O/Z 26 A25..A0 Address Bus

O/I 32 D31..D0 Data Bus

O/I 4 DP0..DP3 Parity bits

O/Z 1 RAS# DRAM RAS signal / Chip Select for MEM0

O/Z 4 CAS0#..CAS3# DRAM CAS signal for bytes 0..3 / SDRAM Control

O/Z 1 WE# Write Enable

O/Z 3 CS1#..CS3# Chip Select for MEM1..MEM3

O/Z 4 WE0#..WE3# Write Enable/Byte Enable for SRAM bytes 0..3

O/Z 1 OE# Output Enable for SRAMs, EPROMs, EDO DRAMs

O/Z 1 IORD# I/O Read Strobe, optionally I/O Data Strobe

O/Z 1 IOWR# I/O Write Strobe

O 1 RQST Bus Request Output

I 1 GRANT# Bus Grant Input

O 1 ACT Active as Bus Master

I 3 INT1..INT2, INT4 Interrupt Inputs

I 1 INT3/WAIT Interrupt Input or Wait Input

O/I 3 IO1..IO3 Programmable Input / Output

I 2 BOOTW, BOOTB Boot bus width selection inputs for MEM3

I 1 RESET# Reset Input

6 VCCint Power Supply Voltage, processor core

6 GNDint Ground, processor core

18 VCC Power Supply Voltage, processor I/O

20 GND Ground, processor I/O

Total: 144

Table 6.12: Bus Signals for the E1-32XS Processor

BUS INTERFACE 6-25

6.10.2. Bus Signals for the E1-16XS Processor
The following table is an overview of the bus signals of the hyperstone E1-16XS microproc-
essor. For detailed description of the function of the bus signals refer to section 6.10.3. Bus
Signal Description.

The signal states are defined as I = input, O = output and Z = three-state (inactive).

States Pin count Signal-Names Description

I 1 XTAL1/CLKIN External Crystal, optionally Clock Input

O 1 XTAL2 External Crystal

O 1 CLKOUT Clock Output

O/Z 22 A21..A0 Address Bus

O/I 16 D15..D0 Data Bus

O/I 2 DP0..DP1 Parity bits

O/Z 1 RAS# DRAM RAS signal / Chip Select for MEM0

O/Z 2 CAS0#..CAS1# DRAM CAS signal for bytes 0..1 / 2..3 / SDRAM Control

O/Z 1 WE# Write Enable

O/Z 3 CS1#..CS3# Chip Select for MEM1..MEM3

O/Z 2 WE0#..WE1# Write Enable/Byte Enable for SRAM bytes 0..1 / 2..3

O/Z 1 OE# Output Enable for SRAMs, EPROMs, EDO DRAMs

O/Z 1 IORD# I/O Read Strobe, optionally I/O Data Strobe

O/Z 1 IOWR# I/O Write Strobe

O 1 RQST Bus Request Output

I 1 GRANT# Bus Grant Input

O 1 ACT Active as Bus Master

I 3 INT1..INT2, INT4 Interrupt Inputs

I 1 INT3/WAIT Interrupt Input or Wait Input

O/I 3 IO1..IO3 Programmable Input / Output

I 1 BOOTB Boot bus width selection input for MEM3

I 1 RESET# Reset Input

6 VCCint Power Supply Voltage, processor core

6 GNDint Ground, processor core

9 VCC Power Supply Voltage, processor I/O

12 GND Ground, processor I/O

Total: 100

Table 6.13: Bus Signals for the E1-16XS Processor

6-26 CHAPTER 6

6.10.3. Bus Signal Description
The following section describes the bus signals for both the hyperstone E1-32XS and E1-
16XS microprocessor in detail.

In the following signal description, the signal states are defined as I = input, O = output and
Z = three-state (inactive).

States Names Use

I XTAL1/CLKIN Input for quartz crystal. When the clock is generated by an ex-
ternal clock generator, XTAL1 is used as clock input. The clock
signal is multiplied by eight and divided according to the TPR
setting to generate the internal clock.

O XTAL2 Output for quartz crystal. XTAL2 is not connected when an ex-
ternal clock generator is used.

O CLKOUT Clock signal output or programmable output. CLKOUT can be
selected as a programmable output pin or as output delivering
the CPU clock signal divided by factors from 1 to 16. CLKOUT
can be used to supply a clock signal to peripheral devices.

O/Z A25..A0 The address bits A25..A0 represent the address bus. An active
high bit signals a "one". A0 is the least significant bit. With the
E1-16X, only A21..A0 are connected to the address bus pins.

O/I D31..D0 Data bus. The signals D31..D0 (D15..D0 with the E1-16XS) rep-
resent the bi-directional data bus; active high signals a "one".
At a read access, data is transferred from the data bus to the reg-
ister set or to the instruction cache only at the cycle corre-
sponding to the last actual read access cycle, thus inhibiting gar-
bled data from being transferred.
At a write access, the data bus signals are activated during the
address setup, write and bus hold cycle(s).
A half-word or byte to be written is multiplexed from its right-
adjusted position in a register to the addressed half-word or byte
position. Thus, no external multiplexing of data signals is re-
quired.
On a 32-bit wide memory area, byte addresses 0, 1, 2 and 3 cor-
respond to D31..D24, D23..D16, D15..D8 and D7..D0 respec-
tively.
On a 16-bit wide memory area, byte address 2 and 3 in the first
access and byte addresses 0 and 1 in the second access corre-
spond to D15..D8 and D7..D0 respectively.
On a 8-bit wide memory area, byte addresses 3..0 correspond to
D7..D0 in succeeding accesses.

BUS INTERFACE 6-27

6.10.3. Bus Signal Description (continued)
States Names Use

O/I DP0..DP3 Data Parity signals if SDRAM interface is not used. DP0..DP3
represent the bi-directional parity signals; active high indicates a
"one". With the E1-32XS, DP0, DP1, DP2 and DP3 correspond
to D31..D24, D23..D16, D15..D8 and D7..D0 respectively. With
the E1-16XS, DP0 and DP1 correspond to D15..D8 and D7..D0
respectively.
At a write access, all data parity signals are activated during the
address setup, write and bus hold cycles.
At a read access, the corresponding data parity signals are evalu-
ated at the last read access cycle when parity checking for the
addressed memory area is enabled.
Parity "odd" is used, that is, the correct parity bit is "one" when
all bits of the corresponding byte are "zero".

If the SDRAM interface is used, the parity signals are not avail-
able, and the DP pins are redefined as SDRAM control signals.
DP3 (DP1 for the E1-16XS) acts as the SDRAM CKE (clock en-
able) signal. A pull-up resistor should be connected to this sig-
nal.
DP2 (DP0 for the E1-16XS) acts as the SDRAM Chip Select sig-
nal for SDRAM bank 0. DP1 acts as the SDRAM Chip Select
signal for SDRAM bank 1 (not available for the E1-16XS).
DP0 is not used on the E1-32XS when the SDRAM interface is
selected.

O/Z RAS# Row Address Strobe. Active low indicates row address strobe
asserted.
RAS# is activated high and then again low when the processor
accesses a new page in the DRAM address space, that is when
any of the (high order) RAS address bits is different from the
RAS address bits of the last DRAM access. RAS# is left low
after any own DRAM access.
RAS# is activated high, low and then high by a refresh cycle.
After the bus has been regained from another bus master, the
processor starts the next DRAM access as a RAS access.
At any non-RAS address cycle, RAS# is left unchanged, thus, a
previously selected DRAM page is not affected.
When the SDRAM interface is used, this signal provides the
SDRAM RAS signal.
When non-DRAM memory is placed in memory area MEM0,
RAS# is used as the chip select signal for this memory.

6-28 CHAPTER 6

6.10.3. Bus Signal Description (continued)
States Names Use

O/Z CAS0#..CAS3# Column Address Strobe for Fast Page or EDO DRAM. Active
low indicates column address strobe asserted. CAS0#..CAS3#
are only used by a DRAM for column access cycles and for
"CAS before RAS" refresh.
With the E1-32XS, CAS0#..CAS3# correspond to the column ad-
dress enable signals for D31..D24, D23..D16, D15..D8 and
D7..D0 respectively.
With the E1-16XS, CAS0# and CAS1# correspond to the column
address enable signals for D15..D8 and D7..D0 respectively.

If the SDRAM interface is used, these signals are redefined as
SDRAM control signals.
CAS3# (CAS1# for the E1-16XS) provides the SDRAM clock
signal.
CAS2# (CAS0# for the E1-16XS) provides the SDRAM CAS
signal.
CAS0# and CAS1# are not used on the E1-32XS when the
SDRAM interface is selected.

O/Z WE# Write Enable. WE# is signaled in the same cycle(s) as the ad-
dress signals. Active low indicates a write access, active high
indicates a read access.
WE# is intended to be used as DRAM Write Enable and as
R/W# for I/O access when IORD# is specified as data strobe
(see IORD#). WE# is also used as SRAM Write Enable when
the WE0#..WE3# signals are used as byte enable signals.
Note: WE# can also be used to control bus transceivers when pe-
ripheral devices or slow memories must be separated from the
processor data bus in order to decrease the capacitive load of the
processor data bus.

O/Z CS1#..CS3# Chip Select. Chip select is signaled in the same cycle(s) as the
address signals. Active low of CS1#..CS3# indicates chip select
for the memory areas MEM1..MEM3 respectively.
Note: RAS# is used as chip select for a non-DRAM memory in
MEM0.

O/Z WE0#/BE0# SRAM Write Enable. Active low indicates write enable for the
..WE3#/BE3# corresponding byte, active high indicates write disable.

When the byte mode for the corresponding memory area is en-
abled, WE0#..WE3# are used as byte enables BE0#..BE3#; low
indicates enable, high indicates disable. The WE# signal is then
used as write enable signal.
If the SDRAM interface is used, these signals provide the DQM
signals for the SDRAM memory.
With the E1-32XS, WE0#..WE3# correspond to the enable sig-
nals for D31..D24, D23..D16, D15..D8 and D7..D0 respectively.
With the E1-16XS, WE0# and WE1# correspond to the enable
signals for D15..D8 and D7..D0 respectively.

BUS INTERFACE 6-29

6.10.3. Bus Signal Description (continued)
States Names Use

O/Z OE# Output Enable for SRAM, EPROM, EDO DRAM, and
SDRAM. OE# is active low on a SRAM, EPROM or DRAM
(except Fast Page Mode) read access.

O/Z IORD# I/O Read Strobe, optionally I/O data strobe. The use of IORD# is
specified in the I/O address. Address bit 10 = 0 specifies I/O
read strobe, address bit 10 = 1 specifies I/O data strobe. When
specified as I/O read strobe, IORD# is low on I/O read access
cycles, high on all other cycles. When specified as I/O data
strobe, IORD# is low on any I/O access cycles, high on all other
cycles.
Note: When IORD# is specified as I/O data strobe, WE# can be
used as R/W# signal.

O/Z IOWR# I/O Write Strobe. When specified as I/O write strobe by I/O ad-
dress bit 10 = 0, IOWR# is active low on I/O write access cycles.

O RQST RQST signals the bus request for a memory or I/O access. RQST
is high from the beginning of the request until the requested ac-
cess is completed.

I GRANT# Bus Grant. GRANT# is signaled low by an (off-chip) bus arbiter
to grant access to the bus for memory and I/O cycles. When
GRANT# is switched from low to high during an access, the bus
is only released to another bus master after completion of the
current access. The GRANT# signal supplied by a bus arbiter
may be asynchronous to the clock; it is synchronized on-chip to
avoid metastability. For systems with a single bus master,
GRANT# must be tied low.
Note: GRANT# is recommended to be kept low by the bus ar-
biter on the bus master with the last access; thus, any subsequent
access by the same bus master saves the synchronization time.

O ACT Active as bus master. ACT is signaled high when GRANT# is
low and it is kept high during a current bus access. Since
GRANT# is asynchronous, ACT follows GRANT# with a delay
of 2..3 cycles. ACT is also kept high on a bus lock (FCR(17)
 = 0) from the beginning of the first access after FCR(17) is
cleared to zero until the bus lock is released by setting FCR(17)
to one.
Note: When ACT transits from high to low, the address and data
bus are switched to threestate (inactive). All bus control signals
marked O/Z are driven high and then switched to threestate.
These signals are kept high by an on-chip resistor (ca. 1 MΩ)
tied on-chip to Vcc.

6-30 CHAPTER 6

6.10.3. Bus Signal Description (continued)
States Names Use

I INT1..INT4 Interrupt Request. A signal of a specified level on any of the
INT1..INT4 interrupt request pins causes an interrupt exception
when the interrupt lock flag L is zero and the corresponding
INTxMask bit in FCR is not set. The INTxPolarity bits in FCR
specify the level of the INTx signals: INTxPolarity = 1 causes an
interrupt on a high input signal level, INTxPolarity = 0 causes an
interrupt on a low input signal level. INT1..INT4 may be sig-
naled asynchronously to the clock; they are not stored internally.
A transition of INT1..INT4 is effective after a minimum of three
cycles. The response time may be much higher depending on the
number of cycles to the end of the current instruction or the
number of cycles until the interrupt lock flag L is cleared.
The signal on the INT3 input can also be used as WAIT signal
when the wait controlled memory or I/O access mode is enabled.
Note: The signal level of INT1..INT4 can be inspected in
ISR(0)..ISR(3). Thus, with the corresponding INTxMask bit set,
INT1..INT4 can be used just as input signals.

O/I IO1..IO3 General Input-Output. IO1..IO3 can be individually configured
via IOxDirection bits in the FCR as either input or output pins.
When configured as input, IO1..IO3 can be used like
INT1..INT4 for additional interrupt or input signals.
When configured as output, the IOxPolarity bit in FCR specifies
the output signal level. IOxPolarity = 1 specifies a high level,
IOxPolarity = 0 specifies a low level. IO1..IO3 are always
switched rail-to-rail regardless of the setting of MCR(25). An
output signal at IO1 or IO2 cannot cause an interrupt regardless
of the corresponding IOxMask bit; however, it can be inspected
as IOxLevel in ISR (e.g. for testing). IO3 can be used for various
control functions.

I RESET# Reset processor. RESET# low resets the processor to the initial
state and halts all activity. RESET# must be low for at least one
cycle. On a transition from low to high, a Reset exception occurs
and the processor starts execution at the Reset entry. The transi-
tion may occur asynchronously to the clock.

I BOOTW, Input pins for selecting the data bus width for boot memory area
BOOTB MEM3 (see section 6.1.1. Boot Width Selection).

I VCCint, Power supply for the processor internal logic. The supply volt-
GNDint age is 2.5V.

I VCC, GND Power Supply for the I/O pads. The supply voltage is 3.3V.
GND and GNDint must be connected.

BUS INTERFACE 6-31

6.11. Bus Cycles

6.11.1. MEMx Byte Mode = 1

6.11.1.1. SRAM and ROM Single-Cycle Read Access

Clock

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus
(read data)

addr. 1 addr. 2 addr. 4addr. 3 addr. 5

data 1 data 2 data 3 data 4 data 5

WE#

Figure 6.2: SRAM and ROM Single-Cycle Read Access, MEMx Byte Mode = 1

6.11.1.2. SRAM Single-Cycle Write Access

Clock

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus

addr. 1 addr. 2 addr. 4addr. 3 addr. 5

data 1 data 2 data 4data 3 data 5

WE#

Figure 6.3: SRAM Single-Cycle Write Access, MEMx Byte Mode = 1

6-32 CHAPTER 6

6.11.1.3. SRAM and ROM Multi-Cycle Read Access

Clock

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus

Access time
2..16 cycles

Address
setup time
0..3 cycles

Bus hold
time

0..7 cycles

WE#

Figure 6.4: SRAM and ROM Multi-Cycle Read Access, MEMx Byte Mode = 1

6.11.1.4. SRAM Multi-Cycle Write Access

Clock

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus

Access time
2..16 cycles

Address
setup time
0..3 cycles

Bus hold
time

0..7 cycles

WE#

Figure 6.5: SRAM Multi-Cycle Write Access, MEMx Byte Mode = 1

BUS INTERFACE 6-33

6.11.2. MEMx Byte Mode = 0

6.11.2.1. SRAM Single-Cycle Read Access

Clock

Chip Select

Address Bus

BE0#..BE3#

OE#

Data Bus
(read data)

addr. 1 addr. 2 addr. 4addr. 3 addr. 5

data 1 data 2 data 3 data 4 data 5

WE#

Figure 6.6: SRAM Single-Cycle Read Access, MEMx Byte Mode = 0

6.11.2.2. SRAM Single-Cycle Write Access

Clock

Chip Select

Address Bus

BE0#..BE3#

OE#

Data Bus

addr. 1 addr. 2 addr. 4addr. 3 addr. 5

data 1 data 2 data 4data 3 data 5

WE#

Figure 6.7: SRAM Single-Cycle Write Access, MEMx Byte Mode = 0

6-34 CHAPTER 6

6.11.2.3. SRAM Multi-Cycle Read Access

Clock

Chip Select

Address Bus

BE0#..BE3#

OE#

Data Bus

Access time
2..16 cycles

Address
setup time
0..3 cycles

Bus hold
time

0..7 cycles

WE#

Figure 6.8: SRAM Multi-Cycle Read Access, MEMx Byte Mode = 0

6.11.2.4. SRAM Multi-Cycle Write Access

Clock

Chip Select

Address Bus

BE0#..BE3#

OE#

Data Bus

Access time
2..16 cycles

Address
setup time
0..3 cycles

Bus hold
time

0..7 cycles

WE#

Figure 6.9: SRAM Multi-Cycle Write Access, MEMx Byte Mode = 0

BUS INTERFACE 6-35

6.11.3. MEM2 Read Access with WAIT Pin
MEM2 Byte Mode = 1, INT3Polarity = Inverted,
address setup time = 0 cycles, bus hold time = 0 cycles

Clock

Chip Select

Address Bus

WE0#..WE3#

OE#

Data Bus

Access time
(minimum 4 cycles)

next access
or bus hold

time if specified

WAIT

Figure 6.10: MEM2 Read Access with WAIT Pin

Note:

❒ Arrows on WAIT signal indicate the times where the signal is inspected.

❒ In this example
specified access time: 4 cycles
actual access time: 6 = 4 cycles + 2 additional cycles caused by WAIT pin

6-36 CHAPTER 6

6.11.4. I/O Read Access

Clock

Chip Select

Address Bus

WE#

IORD#

Data Bus

Access time
2..16 cycles

Address
setup time
0..6 cycles

Bus hold
time

0..6 cycles

Figure 6.11: I/O Read Access

BUS INTERFACE 6-37

6.11.5. I/O Read Access with WAIT Pin
address setup time = 0 cycles, bus hold time = 0 cycles, INT3Polarity = Inverted

Clock

Chip Select

Address Bus

WE#

IORD#

Data Bus

Access time
(minimum 4 cycles)

next access
or bus hold

time if specified

WAIT

Figure 6.12: I/O Read Access with WAIT Pin

Note:

❒ Arrows on WAIT signal indicate the times where the signal is inspected.

❒ In this example
specified access time: 4 cycles
actual access time: 6 = 4 cycles + 2 additional cycles caused by WAIT pin

6-38 CHAPTER 6

6.11.6. I/O Write Access

Clock

Chip Select

Address Bus

WE#

IORD#

Data Bus

Access time
2..16 cycles

Address
setup time
0..6 cycles

Bus hold
time

1..7 cycles

IOWR#

Figure 6.13: I/O Write Access

Note:

❒ If IORD# is used as I/O data strobe, IORD# instead of IOWR# is activated low.

BUS INTERFACE 6-39

6.11.7. DRAM

6.11.7.1. Fast Page Mode DRAM Access

Clock

Address Bus
low order bits

RAS#

CAS0#..CAS3#

RAS to CAS delay time
1..4 cycles

RAS precharge time
1..6 cycles

CAS access
time

1..6 cycles

Address Bus
high order bits

CAS access
time

1..6 cycles

at read access

WE#

Data Bus
(read data)

at write access

WE#

Data Bus
(write data)

undefined row address col. addr. col. addr.

valid

OE#

OE#

Figure 6.14: Fast Page Mode DRAM Access

6-40 CHAPTER 6

6.11.7.2. EDO DRAM Single-Cycle Access

at write access

Clock

Address Bus
low order bits

RAS#

CAS0#..CAS3#

RAS to CAS delay time
1..4 cycles

RAS precharge time
1..6 cycles

CAS access
time

1..6 cycles

Address Bus
high order bits

CAS access
time

1..6 cycles

at read access

WE#

Data Bus
(read data)

WE#

Data Bus
(write data)

undefined row address col. addr. col. addr.

valid

OE#

OE#

Figure 6.15: EDO DRAM Single-Cycle Access

BUS INTERFACE 6-41

6.11.7.3. EDO DRAM Multi-Cycle Access

at write access

Clock

Address Bus
low order bits

RAS#

CAS0#..CAS3#

RAS to CAS
delay time
1..4 cycles

RAS
precharge time

1..6 cycles

CAS access time
1..6 cycles

Address Bus
high order bits

CAS access time
1..6 cycles

at read access

WE#

Data Bus
(read data)

WE#

Data Bus
(write data)

undefined row addr. column address column address

valid

OE#

OE#

OE# is set after the first cycle of the CAS access time

Figure 6.16: EDO DRAM Multi-Cycle Access

6-42 CHAPTER 6

6.11.7.4. Fast Page Mode or EDO DRAM Refresh

Clock

Address Bus

CAS#

RAS to CAS delay time
1..4 cycles

RAS precharge time
1..6 cycles

CAS access
time

1..6 cycles

RAS#

undefined

Figure 6.17: DRAM Refresh

Note:

❒ The type of refresh that is performed is CAS Before RAS.

BUS INTERFACE 6-43

6.11.7.5. SDRAM Access
CPU CLK
(internal)

Control

CS

SDCLK

precharge activate read/write read/write

Figure 6.18: SDRAM Command Execution

Note:

❒ SDRAM executes precharge, activate, and then read/write commands

❒ In this example
BCR: RAS precharge 4 cycles, RAS-to-CAS delay 4 cycles, CAS access 2 cycles
SDCR: SDCLKSelect = 1

6-44 CHAPTER 6

6.12. DC Characteristics

Absolute Maximum Ratings

Case temperature TC under Bias: 0°C to +85°C
extended temperature range on request

Storage Temperature: -65°C to +150°C

Voltage on any Pin with respect to ground: -0.5V to + 3.8V

D.C. Parameters

Supply Voltage Core: 2.5V ± 5%

Supply Voltage I/O: 3.3V ± 10%

Case Temperature TCASE: 0°C to +70°C

Symbol Parameter Min Max Units Notes

VIL Input LOW Voltage -0.3 0.8 V except CLKIN

VIH Input HIGH Voltage 2.0 3.6 V except CLKIN

VOL Output LOW Voltage 0.45 V at 4mA

VOH Output HIGH Voltage 2.4 V at 1mA

ILI Input Leakage Current ±20 µA

ILO Output Leakage Current ±20 µA

CCLK Clock Capacitance 10 pF

CADR Output Capacitance
A12..A0

15 pF

CI/O Input/output Capacitance
all other signals

10 pF

Table 6.14: DC Characteristics

BUS INTERFACE 6-45

6.13. AC Characteristics

6.13.1. Processor Clock and CLKIN
The maximum internal processor clock frequency of the hyperstone E1-32XS and E1-16XS
is 115 MHz.

The internal PLL of the hyperstone E1-32XS and E1-16XS multiplies the clock at the input
pin CLKIN by ½, 1, 2, 4 or 8. Please be aware that the internal PLL can not operate with a
crystal or a crystal oscillator of a frequency higher than 20 MHz.

CLK

tCLK

CLKIN

tCLKINWH tCLKINWL

tCLKIN

Figure 6.19: Internal Processor Clock CLK and CLKIN

Symbol Description Min Time
(ns)

Max Time
(ns)

Min Freq.
(MHz)

Max Freq.
(MHz)

tCLK CLK period 8.7 1000 1 115

tCLKIN CLKIN period 50 1000 1 25

tCLKINWH CLKIN high time 16 -

tCLKINWL CLKIN low time 16 -

Table 6.15: CLKIN Times

Note: CLKIN timing is referenced to 1.65V.

6.13.2. GRANT# response time
If a GRANT# low to high transition is detected while the processor is in power-down mode
with SDRAM connected, the release of the processor bus may be delayed until the next
SDRAM refresh cycle is scheduled (normally, every 16 µs). This only happens if the
Mem0 memory type is SDRAM.

6-46 CHAPTER 6

t blank.

MECHANICAL DATA 7-1

7. Mechanical Data

7.1. hyperstone E1-32XS, 144-Pin LQFP Package

7.1.1. Pin Configuration - View from Top Side
21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0 99 98 96 95 94 93 92 91 90 89 88 87 86 85

123
124
125
126
127
128
129
130
131
132
133

97

48
47
46
45
44
43

71
70
69
68
67
66
65
64
63
62

49
50

A20
A21

GND
D31
D30
D29

A9
A10
A11
A12

VCC
D28
D27
D26

GND
D25
D15
D14

VCC
D13
D12
D11
D10

GND
VCC

GND
XTAL1/CLKIN
XTAL2
IO2
VCC
D16
D17
D18
A3
A2
A1
A0
GND
DP1
DP0

CLKOUT
IO1
GND
RQST
INT4
INT3/WAIT
INT2
INT1
GND
VCC

VC
C

G
N

D
BO

O
TB A1

8
A1

7
G

N
D

in
t

VC
C

in
t

A1
6

A1
5

A2
5

G
N

D
A2

4
A2

3
G

N
D

in
t

VC
C

in
t

A2
2

A8 A7
VC

C A6 A5 A4
G

N
D

W
E

0#
/B

E0
#

W
E

1#
/B

E1
#

G
N

D

G
N

D
D

8
D

7
VC

C
in

t
G

N
D

in
t

D
6

D
24

VC
C

D
23

D
22

G
N

D
D

5
D

4
D

3
VC

C
D

2
D

1
D

0
VC

C
in

t
G

N
D

in
t

D
21

D
20

84 83
G

N
D

D
19

D
P2

D
P3

VC
C

in
t

G
N

D
in

t
R

ES
E

T#
G

R
AN

T#
VC

C
G

N
D

VC
C

61
60
59
58
57
56
55
54
53
52
51

VCC
GND
WE3#/BE3#
WE2#/BE2#
IORD#
OE#
VCC
CAS3#
CAS2#
CAS1#

26 27 28 29 30 31 32 33 34 35 36

VC
C

C
AS

0# A1
4

G
N

D
in

t
VC

C
in

t
AC

T
A1

3
G

N
D

W
E

#
G

N
D

VC
C

134
135
136
137
138
139
140
141
142
143
144VCC

GND
IO3

IOWR#
CS3#
CS2#
CS1#
GND

RAS#
A19

VCC

72

BOOTW

VC
C

D
9

hyperstone
E1-32XS

42
41
40
39
38
37

82 81 80 79 78 77 76 75 74 73

109
110
111
112
113
114
115
116
117
118
119
120
121
122

Figure 7.1: hyperstone E1-32XS, 144-Pin LQFP Package

7-2 CHAPTER 7

7.1.2. Pin Cross Reference by Pin Name
Signal Location Signal Location Signal Location Signal Location

A0 58 CS3# 140 DP3 80 IOWR# 141
A1 57 D0 88 GND 2 OE# 42
A2 56 D1 89 GND 11 RAS# 136
A3 55 D2 90 GND 23 RESET# 77
A4 22 D3 92 GND 33 RQST 66
A5 21 D4 93 GND 35 VCC 1
A6 20 D5 94 GND 38 VCC 19
A7 18 D6 100 GND 47 VCC 26
A8 17 D7 103 GND 59 VCC 36
A9 127 D8 104 GND 65 VCC 37
A10 126 D9 106 GND 71 VCC 43
A11 125 D10 111 GND 74 VCC 51
A12 124 D11 112 GND 83 VCC 72
A13 32 D12 113 GND 95 VCC 73
A14 28 D13 114 GND 105 VCC 75
A15 9 D14 116 GND 107 VCC 91
A16 8 D15 117 GND 110 VCC 98
A17 5 D16 52 GND 119 VCC 108
A18 4 D17 53 GND 131 VCC 109
A19 135 D18 54 GND 137 VCC 115
A20 133 D19 82 GND 143 VCC 123
A21 132 D20 84 GNDint 6 VCC 134
A22 16 D21 85 GNDint 14 VCC 144
A23 13 D22 96 GNDint 29 VCCint 7
A24 12 D23 97 GNDint 78 VCCint 15
A25 10 D24 99 GNDint 86 VCCint 30
ACT 31 D25 118 GNDint 101 VCCint 79
BOOTB 3 D26 120 GRANT# 76 VCCint 87
BOOTW 62 D27 121 INT1 70 VCCint 102
CAS0# 27 D28 122 INT2 69 WE# 34
CAS1# 46 D29 128 INT3/WAIT 68 WE0#/BE0# 24
CAS2# 45 D30 129 INT4 67 WE1#/BE1# 25
CAS3# 44 D31 130 IO1 64 WE2#/BE2# 40
CLKOUT 63 DP0 61 IO2 50 WE3#/BE3# 39
CS1# 138 DP1 60 IO3 142 XTAL1/CLKIN 48
CS2# 139 DP2 81 IORD# 41 XTAL2 49

MECHANICAL DATA 7-3

7.1.3. Pin Cross Reference by Location
Location Signal Location Signal Location Signal Location Signal

1 VCC 37 VCC 73 VCC 109 VCC
2 GND 38 GND 74 GND 110 GND
3 BOOTB 39 WE3#/BE3# 75 VCC 111 D10
4 A18 40 WE2#/BE2# 76 GRANT# 112 D11
5 A17 41 IORD# 77 RESET# 113 D12
6 GNDint 42 OE# 78 GNDint 114 D13
7 VCCint 43 VCC 79 VCCint 115 VCC
8 A16 44 CAS3# 80 DP3 116 D14
9 A15 45 CAS2# 81 DP2 117 D15
10 A25 46 CAS1# 82 D19 118 D25
11 GND 47 GND 83 GND 119 GND
12 A24 48 XTAL1/CLKIN 84 D20 120 D26
13 A23 49 XTAL2 85 D21 121 D27
14 GNDint 50 IO2 86 GNDint 122 D28
15 VCCint 51 VCC 87 VCCint 123 VCC
16 A22 52 D16 88 D0 124 A12
17 A8 53 D17 89 D1 125 A11
18 A7 54 D18 90 D2 126 A10
19 VCC 55 A3 91 VCC 127 A9
20 A6 56 A2 92 D3 128 D29
21 A5 57 A1 93 D4 129 D30
22 A4 58 A0 94 D5 130 D31
23 GND 59 GND 95 GND 131 GND
24 WE0#/BE0# 60 DP1 96 D22 132 A21
25 WE1#/BE1# 61 DP0 97 D23 133 A20
26 VCC 62 BOOTW 98 VCC 134 VCC
27 CAS0# 63 CLKOUT 99 D24 135 A19
28 A14 64 IO1 100 D6 136 RAS#
29 GNDint 65 GND 101 GNDint 137 GND
30 VCCint 66 RQST 102 VCCint 138 CS1#
31 ACT 67 INT4 103 D7 139 CS2#
32 A13 68 INT3/WAIT 104 D8 140 CS3#
33 GND 69 INT2 105 GND 141 IOWR#
34 WE# 70 INT1 106 D9 142 IO3
35 GND 71 GND 107 GND 143 GND
36 VCC 72 VCC 108 VCC 144 VCC

7-4 CHAPTER 7

7.2. hyperstone E1-16XS, 100-Pin LQFP Package

7.2.1. Pin Configuration - View from Top Side

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

75 74 73 72 71 70 69 68 67 66 65 63 62 61 60 59 58 57 56 55 54 53
90
91
92
93
94
95
96
97
98
99
100

64

37
36
35
34
33
32

38
39

A20
A21

GND
A9

A10
A11
A12

VCC
GND
D15
D14
VCC
D13
D12
D11
D10

GND
XTAL1/CLKIN
XTAL2
IO2
VCC
A3
A2
A1
A0
GND
CLKOUT
IO1
GND
RQST
INT4
INT3/WAIT
INT2
INT1

BO
O

TB A1
8

A1
7

G
N

D
in

t
VC

C
in

t
A1

6
A1

5
G

N
D

G
N

D
in

t
VC

C
in

t
A8 A7

VC
C A6 A5 A4

G
N

D

G
N

D
D

8
D

7
VC

C
in

t
G

N
D

in
t

D
6

G
N

D
D

5
D

4
D

3
VC

C
D

2
D

1
D

0
VC

C
in

t
G

N
D

in
t

G
N

D

VC
C

in
t

G
N

D
in

t
R

ES
E

T#
G

R
AN

T#
VC

C

WE1#/BE1#
WE0#/BE0#
IORD#
OE#
VCC
CAS1#
CAS0#

VC
C

A1
4

G
N

D
in

t
VC

C
in

t
AC

T
A1

3
G

N
D

W
E

#

IO3
IOWR#

CS3#
CS2#
CS1#
GND

RAS#
A19

VCC

50

D
9

hyperstone
E1-16XS

31
30
29
28
27
26

77

79
80
81
82
83
84
85
86
87
88
89

76

78 48
47

49

46
45
44
43
42
41
40

52 51

D
P0

D
P1

Figure 7.2: hyperstone E1-16XS, 100-Pin LQFP Package

MECHANICAL DATA 7-5

7.2.2. Pin Cross Reference by Pin Name
Signal Location Signal Location Signal Location Signal Location

A0 41 CAS1# 31 GND 24 IOWR# 99
A1 40 CLKOUT 43 GND 33 OE# 29
A2 39 CS1# 96 GND 42 RAS# 94
A3 38 CS2# 97 GND 45 RESET# 53
A4 16 CS3# 98 GND 58 RQST 46
A5 15 D0 61 GND 68 VCC 13
A6 14 D1 62 GND 74 VCC 18
A7 12 D2 63 GND 83 VCC 30
A8 11 D3 65 GND 89 VCC 37
A9 88 D4 66 GND 95 VCC 51
A10 87 D5 67 GNDint 4 VCC 64
A11 86 D6 69 GNDint 9 VCC 80
A12 85 D7 72 GNDint 20 VCC 84
A13 23 D8 73 GNDint 54 VCC 92
A14 19 D9 75 GNDint 59 VCCint 5
A15 7 D10 76 GNDint 70 VCCint 10
A16 6 D11 77 GRANT# 52 VCCint 21
A17 3 D12 78 INT1 50 VCCint 55
A18 2 D13 79 INT2 49 VCCint 60
A19 93 D14 81 INT3/WAIT 48 VCCint 71
A20 91 D15 82 INT4 47 WE# 25
A21 90 DP0 57 IO1 44 WE0#/BE0# 27
ACT 22 DP1 56 IO2 36 WE1#/BE1# 26
BOOTB 1 GND 8 IO3 100 XTAL1/CLKIN 34
CAS0# 32 GND 17 IORD# 28 XTAL2 35

7-6 CHAPTER 7

7.2.3. Pin Cross Reference by Location
Signal Location Signal Location Signal Location Signal Location

1 BOOTB 26 WE1#/BE1# 51 VCC 76 D10
2 A18 27 WE0#/BE0# 52 GRANT# 77 D11
3 A17 28 IORD# 53 RESET# 78 D12
4 GNDint 29 OE# 54 GNDint 79 D13
5 VCCint 30 VCC 55 VCCint 80 VCC
6 A16 31 CAS1# 56 DP1 81 D14
7 A15 32 CAS0# 57 DP0 82 D15
8 GND 33 GND 58 GND 83 GND
9 GNDint 34 XTAL1/CLKIN 59 GNDint 84 VCC
10 VCCint 35 XTAL2 60 VCCint 85 A12
11 A8 36 IO2 61 D0 86 A11
12 A7 37 VCC 62 D1 87 A10
13 VCC 38 A3 63 D2 88 A9
14 A6 39 A2 64 VCC 89 GND
15 A5 40 A1 65 D3 90 A21
16 A4 41 A0 66 D4 91 A20
17 GND 42 GND 67 D5 92 VCC
18 VCC 43 CLKOUT 68 GND 93 A19
19 A14 44 IO1 69 D6 94 RAS#
20 GNDint 45 GND 70 GNDint 95 GND
21 VCCint 46 RQST 71 VCCint 96 CS1#
22 ACT 47 INT4 72 D7 97 CS2#
23 A13 48 INT3/WAIT 73 D8 98 CS3#
24 GND 49 INT2 74 GND 99 IOWR#
25 WE# 50 INT1 75 D9 100 IO3

MECHANICAL DATA 7-7

7.3. hyperstone E1-16XSB, 100-Pin TFBGA Package

7.3.1. Pin Configuration – View from Top Side

0

I

K

 1 2 3 4 5 6 7 8 9 1

F

D11 D7 D5 D4 D2 D1 DP0 DP1 RESET# GRANT#

D12 D8 D9 D6 D3 D0 GNDint GNDint INT2
INT3/
WAIT

D15 D10 D13 VCCint VCCint VCC VCCint GNDint INT1 INT4

A10 A12 D14 VCC GND GND VCC CLKOUT RQST IO1

A9 A11 VCC GND GND GND GND A1 A0 A2

A21 A20 VCC GND GND GND GND VCC A3 IO2

A19 CS2# RAS# VCC GND GND VCC XTAL1/
CLKIN

CAS0# XTAL2

CS1# IO3 CS3# VCCint VCC VCCint VCCint OE# WE1# CAS1#

OWR# A18 BOOTB GNDint GNDint A14 GNDint WE# WE0# IORD#

A17 A16 A15 A8 A7 A6 A5 A4 ACT A13

A

B

C

D

E

F

G

H

J

K

1 2 3 4 5 6 7 8 9 10
A

B

C

D

E

F

G

H

J
igure 7.3: hyperstone E1-16XSB, 100-Pin TFBGA Package

7-8 CHAPTER 7

7.3.2. Pin Cross Reference by Pin Name
Signal Location Signal Location Signal Location Signal Location

A0 E9 CAS1# H10 GND E4 IOWR# J1
A1 E8 CLKOUT D8 GND E5 OE# H8
A2 E10 CS1# H1 GND E6 RAS# G3
A3 F9 CS2# G2 GND E7 RESET# A9
A4 K8 CS3# H3 GND F4 RQST D9
A5 K7 D0 B6 GND F5 VCC C6
A6 K6 D1 A6 GND F6 VCC D4
A7 K5 D2 A5 GND F7 VCC D7
A8 K4 D3 B5 GND G5 VCC E3
A9 E1 D4 A4 GND G6 VCC F3
A10 D1 D5 A3 GNDint B7 VCC F8
A11 E2 D6 B4 GNDint B8 VCC G4
A12 D2 D7 A2 GNDint C8 VCC G7
A13 K10 D8 B2 GNDint J4 VCC H5
A14 J6 D9 B3 GNDint J5 VCCint C4
A15 K3 D10 C2 GNDint J7 VCCint C5
A16 K2 D11 A1 GRANT# A10 VCCint C7
A17 K1 D12 B1 INT1 C9 VCCint H4
A18 J2 D13 C3 INT2 B9 VCCint H6
A19 G1 D14 D3 INT3/WAIT B10 VCCint H7
A20 F2 D15 C1 INT4 C10 WE# J8
A21 F1 DP0 A7 IO1 D10 WE0# J9
ACT K9 DP1 A8 IO2 F10 WE1# H9
BOOTB J3 GND D5 IO3 H2 XTAL1/CLKIN G8
CAS0# G9 GND D6 IORD# J10 XTAL2 G10

MECHANICAL DATA 7-9

7.3.3. Pin Cross Rreference by Location
Location Signal Location Signal Location Signal Location Signal

A1 D11 C6 VCC F1 A21 H6 VCCint
A2 D7 C7 VCCint F2 A20 H7 VCCint
A3 D5 C8 GNDint F3 VCC H8 OE#
A4 D4 C9 INT1 F4 GND H9 WE1#
A5 D2 C10 INT4 F5 GND H10 CAS1#
A6 D1 D1 A10 F6 GND J1 IOWR#
A7 DP0 D2 A12 F7 GND J2 A18
A8 DP1 D3 D14 F8 VCC J3 BOOTB
A9 RESET# D4 VCC F9 A3 J4 GNDint
A10 GRANT# D5 GND F10 IO2 J5 GNDint
B1 D12 D6 GND G1 A19 J6 A14
B2 D8 D7 VCC G2 CS2# J7 GNDint
B3 D9 D8 CLKOUT G3 RAS# J8 WE#
B4 D6 D9 RQST G4 VCC J9 WE0#
B5 D3 D10 IO1 G5 GND J10 IORD#
B6 D0 E1 A9 G6 GND K1 A17
B7 GNDint E2 A11 G7 VCC K2 A16
B8 GNDint E3 VCC G8 XTAL1/CLKIN K3 A15
B9 INT2 E4 GND G9 CAS0# K4 A8
B10 INT3/WAIT E5 GND G10 XTAL2 K5 A7
C1 D15 E6 GND H1 CS1# K6 A6
C2 D10 E7 GND H2 IO3 K7 A5
C3 D13 E8 A1 H3 CS3# K8 A4
C4 VCCint E9 A0 H4 VCCint K9 ACT
C5 VCCint E10 A2 H5 VCC K10 A13

7-10 CHAPTER 7

7.4. Package Dimensions

7.4.1. Package Dimensions LQFP

b

D

D1

E
1

Index

A
1

A
2

L

�

E

P

Figure 7.4: hyperstone E1-32XS, E1-16XS LQFP Package Outline

Symbol Term Definition
A1 Standoff height Height from ground plane to bottom edge of package
A2 Package height Height of package itself

E, D Overall length & width Length and width including leads
D1, E1 Package length & width Length and width of package

L Length of flat lead section Length of flat lead section
P Lead pitch Lead pitch
B Lead width Width of a lead
θ Lead angle Angle of lead versus seating plane

MECHANICAL DATA 7-11

7.4.1. Package Dimensions LQFP (continued)

hyperstone E1-32XS, 144-Pin LQFP Package

Symbol Dimensions in Millimeters Dimensions in Inches

 Min. Nom. Max. Min. Nom. Max

A1 0.05 0.10 0.15 (0.002) (0.004) (0.006)

A2 1.35 1.40 1.45 (0.053) (0.055) (0.057)

E, D 21.80 22.00 22.20 (0.858) (0.866) (0.874)

E1, D1 19.90 20.00 20.10 (0.783) (0.787) (0.791)

L 0.45 0.60 0.75 (0.018) (0.024) (0.030)

P 0.50 (0.0197)

b 0.17 0.22 0.27 (0.007) (0.009) (0.011)

θ 0° 7° (0°) (7°)

hyperstone E1-16XS, 100-Pin LQFP Package

Symbol Dimensions in Millimeters Dimensions in Inches

 Min. Nom. Max. Min. Nom. Max

A1 0.05 0.10 0.15 (0.002) (0.004) (0.006)

A2 1.35 1.40 1.45 (0.053) (0.055) (0.057)

E, D 15.80 16.00 16.20 (0.622) (0.630) (0.638)

E1, D1 13.90 14.00 14.10 (0.547) (0.551) (0.555)

L 0.45 0.60 0.75 (0.018) (0.024) (0.030)

P 0.50 (0.0197)

b 0.17 0.22 0.27 (0.007) (0.009) (0.011)

θ 0° 7° (0°) (7°)

7-12 CHAPTER 7

7.4.2. Package Dimensions TFBGA

bottom view:

side view:

Figure 7.5: hyperstone E1-16XSB TFBGA Package Outline

A
A1

A2

BB
1

B
2

C

D

F1F

E

MECHANICAL DATA 7-13

7.4.2. Package Dimensions TFBGA (continued)

hyperstone E1-16XSB, 100-Pin TFBGA Package

Dimensions in mm Dimensions in Inch
Symbol

MIN NOM MAX MIN NOM MAX

A 8.90 9.00 9.10 0.350 0.354 0.358

A1 --- 7.20 --- --- 0.283 ---

A2 --- 0.80 --- --- 0.031 ---

B 8.90 9.00 9.10 0.350 0.354 0.358

B1 --- 7.20 --- --- 0.283 ---

B2 --- 0.80 --- --- 0.031 ---

C --- 3.60 --- --- 0.142 ---

D --- 3.60 --- --- 0.142 ---

E --- --- 1.40 --- --- 0.055

F 0.25 0.30 0.35 0.010 0.012 0.014

F1 0.35 0.40 0.45 0.014 0.016 0.018

7-14 CHAPTER 7

SPECIFICATION CHANGES 8-1

8. Specification Changes
Compared to the specifications in this manual, the currently available E1-32XS and E1-
16XS chips have three limitations. This includes, but is not limited to the lot numbers

K60062.1

K60172.1.*

The specification differences are listed in the following sections.

8.1. Clock Speed
The maximum clock speed is 110 MHz, the maximum XTAL1 input frequency is 20 MHz.

8.2. SDRAM Clock Mode
The delayed SDRAM clock mode is not available, the non-delayed SDRAM clock mode
must be used.

8.3. GRANT# Response Time
If a GRANT# low to high transition is detected while the processor is in power-down
mode, the release of the processor bus may be delayed until the next SDRAM refresh cycle
is scheduled (normally, every 16 µs). This only happens if the Mem0 memory type is
SDRAM.

8-2 CHAPTER 8

	Table of Contents
	1. Architecture
	Introduction
	Block Diagram
	Global Register Set
	Program Counter PC
	Status Register SR
	Floating-Point Exception Register FER
	Stack Pointer SP
	Upper Stack Bound UB
	Bus Control Register BCR
	Timer Prescaler Register TPR
	Timer Compare Register TCR
	Timer Register TR
	Watchdog Compare Register WCR
	Input Status Register ISR
	Function Control Register FCR
	Memory Control Register MCR

	Local Register Set
	Privilege States
	Register Data Types
	Memory Organization
	Stack
	Instruction Cache
	On-Chip Memory (IRAM)

	2. Instructions General
	Instruction Notation
	Instruction Execution
	Instruction Formats
	Table of Immediate Values
	Table of Instruction Codes
	Table of Extended DSP Instruction Codes

	Entry Tables
	Instruction Timing

	3. Instruction Set
	Memory Instructions
	Address Modes
	Load Instructions
	Store Instructions

	Move Word Instructions
	Move Double-Word Instruction
	Logical Instructions
	Invert Instruction
	Mask Instruction
	Add Instructions
	Sum Instructions
	Subtract Instructions
	Negate Instructions
	Multiply Word Instruction
	Multiply Double-Word Instructions
	Divide Instructions
	Shift Left Instructions
	Shift Right Instructions
	Rotate Left Instruction
	Index Move Instructions
	Check Instructions
	No Operation Instruction
	Compare Instructions
	Compare Bit Instructions
	Test Leading Zeros Instruction
	Set Stack Address Instruction
	Set Conditional Instructions
	Branch Instructions
	Delayed Branch Instructions
	Call Instruction
	Trap Instructions
	Frame Instruction
	Return Instruction
	Fetch Instruction
	Extended DSP Instructions
	Software Instructions
	Do Instruction
	Floating-Point Instructions

	4. Exceptions
	Exception Processing
	Exception Types
	Reset
	Range, Pointer, Frame and Privilege Error
	Extended Overflow
	Parity Error
	Interrupt
	Trace Exception

	Exception Backtracking

	5. Timer and CPU Clock Modes
	Overview
	Timer Prescaler Register TPR
	Timer Register TR
	Timer Compare Register TCR
	Power-Down Mode
	Additional Power Saving
	Sleep Mode

	6. Bus Interface
	Bus Control General
	Boot Width Selection
	SRAM and ROM Bus Access
	DRAM Bus Access, Fast Page Mode or EDO DRAM
	DRAM Row Address Bits Multiplexing

	SDRAM Bus Access
	SDRAM Row Address Bits Multiplexing
	SDRAM Mode Register Setting
	SDRAM Connection

	I/O Bus Access
	Bus Control Register BCR
	Memory Control Register MCR
	MEMx Parity Disable
	MEM2 Wait Disable
	MEMx Byte Mode
	DRAMType and DRAMType2
	Entry Table Map
	MEMx Bus Hold Break
	MEMx Bus Size

	SDRAM Control Register SDCR
	BankAddrEnable
	CS1Enable
	CS1Select
	CASLatency
	SDCLKSelect
	SDRAM Connection Example

	Input Status Register ISR
	Function Control Register FCR
	CLKOUTControl and CLKOUTControl2

	Watchdog Compare Register WCR
	IO3 Control Modes
	IO3Standard Mode
	Watchdog Mode
	IO3Timing Mode
	IO3TimerInterrupt Mode

	Bus Signals
	Bus Signals for the E1-32XS Processor
	Bus Signals for the E1-16XS Processor
	Bus Signal Description

	Bus Cycles
	MEMx Byte Mode = 1
	SRAM and ROM Single-Cycle Read Access
	SRAM Single-Cycle Write Access
	SRAM and ROM Multi-Cycle Read Access
	SRAM Multi-Cycle Write Access

	MEMx Byte Mode = 0
	SRAM Single-Cycle Read Access
	SRAM Single-Cycle Write Access
	SRAM Multi-Cycle Read Access
	SRAM Multi-Cycle Write Access

	MEM2 Read Access with WAIT Pin
	I/O Read Access
	I/O Read Access with WAIT Pin
	I/O Write Access
	DRAM
	Fast Page Mode DRAM Access
	EDO DRAM Single-Cycle Access
	EDO DRAM Multi-Cycle Access
	Fast Page Mode or EDO DRAM Refresh
	SDRAM Access

	DC Characteristics
	AC Characteristics
	Processor Clock and CLKIN
	GRANT# response time

	7. Mechanical Data
	hyperstone E1-32XS, 144-Pin LQFP Package
	Pin Configuration - View from Top Side
	Pin Cross Reference by Pin Name
	Pin Cross Reference by Location

	hyperstone E1-16XS, 100-Pin LQFP Package
	Pin Configuration - View from Top Side
	Pin Cross Reference by Pin Name

	hyperstone E1-16XSB, 100-Pin TFBGA Package
	Pin Cross Reference by Pin Name

	Package Dimensions
	Package Dimensions TFBGA

	8. Specification Changes
	Clock Speed
	SDRAM Clock Mode
	GRANT# Response Time

