ADVANCED INFORMATION

Product Specification

Z8001°/Z8002°
Z8000° CPU
Central Processing Unit

October 1988
FEATURES
m Regular, easy-to-use architecture m Resource-shaping capabilities for muitiprocessing
m Instruction set more powerful than many minicomputers systems
m Directly addresses 8 Mbytes W Multi-programming support
m Eight user-selectable addressing modes = Compiler support
m Seven datatypes that range from bits to 32-bit long words m Memory management and protection provided by

and byte and word strings 78010 Memory Management Unit
m 32-bit operations, including signed multiply and divide
m Z-BUS compatible

m 4,6, and 10 MHz clock rate

System and Normal operating modes
m Separate code, data, and stack spaces

m Sophisticated interrupt structure

GENERAL DESCRIPTION
The Z8000 is an advanced high-end 16-bit microprocessor - U
that spans a wide variety of applications ranging from simple “J::{ — ADyq fa—s-
stand-alone computers to complex parallel-processing ~—| MREG ADy3 f—e-
systems. Essentially a monolithic minicomputer central ADyz =
processing unit, the Z8000 CPU is characterized by an :::m ol
instruction set more powerful than many minicomputers; «—] ayrerwoRrn M: s
abundant resources in registers, data types, addressing STATUS ADq f=—> | ADDRESS/
modes and addressing range, and a regular architecture -1 AD; [«—s (DATA BUS
that enhances throughput by avoiding critical bottlenecks : z’ ::‘ :
such as implied or dedicated registers. Pu— sr‘, u:gi m: .
28002

CPU resources include sixteen 16-bit general-purpose cm{ e cPu ::: :
registers, seven data types that range from bits to 32-bitlong CONTROL) ——o|STOP AD; e
words and byte and word strings, and eight user-selectable - AD, [
addressing modes. The 110 distinct instruction types can m,..-,%:{ —_ ;::ALZ: T ol | 28001
be combined with the various data types and addressing I e | ™!
modes to form a powerful set of 414 instructions. Moreover, — R : SNy —> :
the instruction set is regular; most instructions can use any INTERRUPTS) —| VI | SN NowBER |
of the five main addressing modes and can operate on byte, e ["__: | |
word, and long-word data types. MULTIMICRO { . : s,.; . :
The CPU can operate in either the system or normal mode. CONTROLY =™ | g fa sEGMENT |
The distinction between these two modes permits privileged L _rmwe
operations, thereby improving operating system
organization and implementation. Multiprogramming is

+5V GND CLK RESET

supported by the “atomic” Test and Set instruction;
multiprocessing by a combination of instruction and

128

This Material Copyrighted By Its Respective Manufacturer

This Materia

hardware features; and compilers by multiple stacks,
special instructions, and addressing modes.

The Z8000 CPU is offered in three versions: the Z8001/
Z160 segmented CPUs and the Z8002 nonsegmented
CPU (Figure 1). The main difference is in addressing
range. The Z8001 can directly address 8 megabytes of
memory; the Z160 directly addresses 2 megabytes; the
Z8002 directly addresses 64 kilobytes. The two operating
modes - system and normal - and the distinction between
code, data, and stack spaces within each mode allows
memory extension up to 48 megabytes for the Z8001, 12
megabytes for the Z160 and 384 kilobytes for the 28002.

To meet the requirements of complex, memory-intensive
applications, a companion memory-management device is
offered for the Z8001. The Z8010 Memory Management
Unit manages the large address space by providing fea-
tures such as segment relocation and memory protection.
The Z8001 can be used with or without the Z8010. If used
by itself, the Z8001 still provides an 8 megabyte direct ad-
dressing range, extendable to 48 megabytes.

The 28001, Z8002 and Z8010 are fabricated with high-den-
sity, high-performance scaled n-channel silicon-gate
depletion-load technology, and are housed in dual-in-line
packages (DIPs) and leadless chip carriers (LCC).

REGISTER ORGANIZATION

The Z8000 CPU is a register-oriented machine that offers
sixteen 16-bit general-purpose registers and a set of special
system registers. All general-purpose registers can be used
as accumulators and all but one as index registers or
memory pointers.

Register flexibility is created by grouping and overlapping

multiple registers (Figures 2 and 3). For byte operations, the
first eight 16-bit registers (RO... R7) are treated as sixteen
8-bit registers (RLO, RHO..., RL7, RH7). The sixteen 16-bit
registers are grouped in pairs (RRO... RR14) to form 32-bit
long-word registers. Similarly, the register set is grouped in
quadruples (RQO... RQ12) to form 64-bit registers.

ro [7 RHO 017 RLO o] ro[7 RHO 17 RLO o]
RRO . RAO —
R [1s RH1 ; RL1 o] R[5 RH1 ; RL1 o]
v RQO . RGO
Rz [RH2 { RL2] rzf RH2 1 AL2]
AR2 RR2
Rr3 [RH3 i RL3] r3| RH3 RS ALY]
Ra { RH4 i RL& | Ra RH4 H RLe 1
RR4 RRe
ms [RHS 1 RLS] Rs [RHS i RLS]
RQ4 - - R4
Rs [RHB H RLE | Re| RHS i RLS]
RRé ARG
A7 [RH7 i RL7 i a7 RH7 1 RL?]
re [15] rs |15 o]
RR8 l L 2l RRS [
wo |] Ro 1
RG8 RQs
lmo [] { R10 |
RR10 RR10
R11 [| | |
R12 R12
RR12 [J RRt12 { L]
ri3 [] R13|]
R14’ SYSTEM STACK POINTER (SEG, NOJ RO12 ria|] RQ12
R14 8§ . NO.]
aene | NORMAL STACK POINTER (SEG. NO.) r_—] RR14 rrs [ToTEN S SORTen
LACHE | SYSTEM STACK POINTER (OFFSET) msl NORMAL STACK POINTER
Ris [NORMAL STACK POINTER (OFFSET)
Figure 2. Z8001 General-Purpose Registers Figure 3. Z8002 General-Purpose Registers
129

Copyrighted By Its Respective Manufacturer

st it AR AN

STACKS

The Z8001, 28002 and Z160 can use stacks located
anywhere in memory. Call and Return instructions as well as
interrupts and traps use implied stacks. The distinction
between normal and system stacks separates system
information from the application program information. Two
stack pointers are available: the system stack pointer and
the normal stack pointer. Because they are part of the
general-purpose register group, the user can manipuiate the

stack pointers with any instruction available for register
operations.

in the Z8001, register pair RR14 is the implied stack
pointer. Register R14 contains the 7-bit segment number
and R15 contains the 16-bit offset. In the Z8002, register
R15 is the implied 16-bit stack pointer. '

REFRESH

The 28000 CPU contains a counter that can be used to
automatically refresh dynamic memory. The refresh counter
register consists of a 9-bit row counter, a 6-bit rate counter,
and an enable bit (Figure 4). The 9-bit row counter can
address up to 256 rows and is incremented by two each
time the rate counter reaches end-of-count. The rate counter
determines the time between successive refreshes. It
consists of a programmable 6-bit modulo-n prescaler (n = 1
to 64), driven at one-fourth the CPU clock rate. The refresh

period can be programmed by 1 to 64 us with a 4 MHz
clock. Refresh can be disabled by programming the refresh
enable/disable bit.

15 14 3 0

l; I Ll “‘l’E - l J I lml | J_J

Figure 4. Refresh Counter

PROGRAM STATUS INFORMATION

This group of status registers contains the program counter,
fiags, and control bits. When an interrupt or trap occurs, the
entire group is saved and a new program status group is
loaded.

Figure 5 illustrates how the program status groups of the
28001 and 28002 differ. In the nonsegmented Z8002, the
program status group congists of two words: the program
counter (PC), and the flag and control word (FCW). In the
segmented Z8001, the program status group consists of

Féjl'm
el e e [L= [o] e, o] JR8RE
S
ﬁl..l.“‘t"‘".""."'.l.x..l

28001 Program Status Registers

SEGMENT NUMBER
1 A 1 1

15 2

ITI o il l"l°|°1°1°|°|°1i]

four words: a two-word program counter, the flag and con-
trol word, and an unused word reserved for future use.
Seven bits of the first PC word designate one of the 128
memory segments. The second word supplies the 16-bit
offset that designates a memory location within the seg-
ment.

With the exception of the segment enable bitin the Z8001
program status group, the flags and control bits are the
same for both CPUs.

“F}smlﬂulwelrmt[0,0,0° I c l 2 | s lm]ml nl oliq] gﬁ:&‘f
P | -

78002 Program Status Registers .

15 [

UPPER POINTER
I PR T W N S Je o 04000000 °|

I C u:':n?m? L l o, 0,9 ,0, 0,0, 0 ,J 78002 Program Status Area Pointer
78001 Program Status Area Pointer
Figure 5. 28000 CPU Special Registers
130

This Material Copyrighted By Its Respective Manufacturer

IR i 8

This Materia

INTERRUPT AND TRAP STRUCTURE

The Z8000 provides a very flexible and powerfui interrupt

. and trap structure. Interrupts are external asynchronous
events requiring CPU attention, and are generally triggered
by peripherals needing service. Traps are synchronous
events resulting from the execution of certain instructions.
Both are processed in a simitar manner by the CPU.

The CPU supports three types of interrupts (non-maskable,
vectored, and non-vectored) and four traps [system call,
Extended Process Architecture (EPA) instruction, privileged
instructions, and segmentation trap]. The vectored and
non-vectored interrupts are maskable. Of the four traps, the
only external one is the segmentation trap, which is
generated by the Z8010.

The remaining traps occur when instructions limited to the
system mode are used in the normal mode, or as a result of
the System Call instruction, or for an EPA instruction. The

descending order of priority for traps and interrupts is:
internal traps, nonmaskable interrupt, segmentation trap,
vectored interrupt, and non-vectored interrupt.

When an interrupt or trap occurs, the current program status
is automatically pushed on the system stack. The program
status consists of the processor status (PC and FCW) plus a
16-bit identifier. The identifier contains the reason or source
of the trap or interrupt. For internal traps, the identifier is the
first word of the trapped instruction. For external traps or
interrupts, the identifier is the vector on the data bus read by
the CPU during the interrupt-acknowledge or trap-
acknowledge cycle.

After saving the current program status, the new program
status is automatically loaded from the program status area
in system memory. This area is designated by the program
status area pointer (PSAP).

DATA TYPES

Z8000 instructions can operate on bits, BCD digits (4 bits),
bytes (8 bits), words (16 bits), long words (32 bits), and byte
strings and word strings (up to 64 kitobytes long). Bits can be
set, reset, and tested; digits are used in BCD arithmetic
operations; bytes are used for characters or small integer
values; words are used for integer values, instructions and
nonsegmented addresses; long words are used for long
integer values and segmented addresses. All data elements

except strings can reside either in registers or memory.
Strings are stored in memory only.

The basic data element is the byte. The number of bytes
used when manipulating a data element is either implied by
the operation or—for strings and muitiple register
operations—explicitly specified in the instruction.

SEGMENTATION AND MEMORY
MANAGEMENT

High-level languages, sophisticated operating systems,
large programs and data bases, and decreasing memory
prices are all accelerating the trend toward larger memory
requirements in microcomputer systems. The Z8001 meets
this requirement with an eight megabyte addressing space.
This large address space is directly accessed by the CPU
using a segmented addressing scheme and can be
managed by the Z8010 Memory Management Unit.

Segmented Addressing

A segmented addressing space—compared with linear
addressing—is closer to the way a programmer uses
memory because each procedure and data space resides
in its own segment. The 8 megabytes of 28001 addressing
space is divided into 128 relocatable segments up to 64
kilobytes each. A 23-bit segmented address uses a 7-bit
segment address to point to the segment, and a 16-bit offset
to address any location relative to the beginning of the
segment. The two parts of the segmented address may be
manipulated separately. The segmented Z8001 can run any
code written for the nonsegmented Z8002 in any one of its
128 segments, provided it is set to the nonsegmented
mode.

6 o 15 87 0
¥
LoaicaL aporess| seamentno. | | oFfser |
EMORY 1
* | MANAGMENT
i
BASE
ADDRESS
REGISTER

3

24-BIT PHYSICAL ADDRESS Je———

Figure 6. Logical-to-Physical Address
Translation

131

Copyrighted By Its Respective Manufacturer

In hardware, segmented addresses are contained in a
register pair or long-word memory location. The segment
number and offset can be manipulated separately or
together by all the available word and long-word operations.

When contained in an instruction, a segmented address has
two different representations: long offset and short offset.
The long offset occupies two words, whereas the short offset
requires only one and combines in one word the 7-bit
segment number with an 8-bit offset (range 0-256). The
short offset mode allows very dense encoding of addresses
and minimizes the need for long addresses required by
direct accessing of this large address space.

Memory Management

The addresses manipulated by the programmer, used by
instructions and output by the Z8001, are called logical
addresses. The Memory Management Unit takes the logical
addresses and transforms them into the physical addresses
required for accessing the memory (Figure 6). This address
transformation process is called relocation. Segment
relocation makes user software addresses independent of
the physical memory so the user is freed from specifying

where information is actually located in the physical
memory.

The relocation process is transparent to user software. A
translation table in the Memory Management Unit
associates the 7-bit segment number with the base address
of the physical memory segment. The 16-bit offset is added
to the physical base address to obtain the actual physical
address. The system may dynamically reload translation
tables as tasks are created, suspended, or changed.

In addition to supporting dynamic segment relocation, the
Memory Management Unit also provides segment
protection and other segment management features. The
protection features prevent illegal uses of segments, such as
writing into a write-protected zone.

Each Memory Management Unit stores 64 segment entries
that consist of the segment base address, its attributes, size,
and status. Segments are variable in size from 256 bytes to
64 kilobytes in increments of 256 bytes. Pairs of
Management Units support the 128 segment numbers
available for each of the six CPU address spaces. Within an
address space, several Management Units can be used 1o
create multiple transiation tables.

EXTENDED PROCESSING ARCHITECTURE

The Zilog Extended Processing Architecture (EPA) provides
an extremely flexible and modular approach to expanding
both the hardware and software capabilities of the Z8000
CPU. Features of the EPA include:

m Specialized instructions for external processors oOr
software traps may be added to CPU instruction set.

B Increases throughput of the system by using up.to four
specialized external processors in paraliel with the CPU.

m Permits modular design of Z8000-based systems.

m Provides easy management of multiple microprocessor
configurations via “single instruction stream”
communication.

m Simple interconnection between extended processing
units and Z8000 CPU requires no additional external
supporting logic.

@ Supports debugging of suspect hardware against
proven software.

& Standard features on al! Zilog Z8000 CPUs.

Specific benefits include:

@ EPUs can be added as the system grows and as EPUs
with specialized functions are developed.

@ Control of EPUs is accomplished via a “single instruction
stream” in the Z8000 CPU, eliminating many significant
system software and bus contention management
obstacles that occur in other muitiprocessor (e.g.,
master-siave) organization schemes.

The processing power of the Zilog Z8000C 16-bit
microprocessor can be boosted beyond its intrinsic
capability by Extended Processing Architecture. Simply
stated, EPA allows the Z8000 CPU to accommodate up to
four Extended Processing Units (EPUs), which perform
specialized functions in parallel with the CPU’s main
instruction execution stream (Figure 7).

The use of extended processors to boost the main CPU’s
performance capability has peen proven with ilarge
mainframe computers and minicomputers. In these
systems, specialized functions such as array processing,
special input/output processing, and data communications
processing are typically assigned to extended’ processor
hardware. These extended processors are complex
computers in their own right.

The Zilog Extended Processing Architecture combines the
best concepts of these proven performance boosters with
the latest in high-density MOS integrated-circuit design. The
result is an elegant expansion of design capability—a
powerful microprocessor architecture capable of
connecting single-chip EPUs that permits very effective
parallel processing and makes for a smoothly integrated
instruction stream from the Z8000 programmer’s point of
view. A typical addition to the current 28000 instruction setis
a set of Floating Point Instructions.

The Extended Processing Units connect directly to the
78000 Bus (Z-BUS) and continuously monitor the CPU
instruction stream. When an extended instruction is
detected, the appropriate EPU responds, obtaining or

132

et & L et i i e

placing data or status information on the Z-BUS using the
Z8000-generated control signals and performing its
function as directed.

The Z8000 CPU is responsible for instructing the EPU and
delivering operands and data to it. The EPU recognizes
instructions intended for it and executes them, using data
supplied with the instruction and/or data within its internat
registers. There are four classes of EPU instructions:

m Data transfers between main memory and EPU registers
® Data transfers between CPU registers and EPU registers
m EPU internal operations

m Status transfers between the EPUs and the Z8000 CPU
Flag and Control Word register (FCW)

Four Z8000 addréssing modes may be utilized with
transfers between EPU registers and the CPU and main
memory:

B Register

m Indirect Register
B Direct Address
| Index

In addition to the hardware-implemented capabilities of the
Extended Processing Architecture, there is an extended
instruction trap mechanism to permit software simutation of
EPU functions. A control bit in the Z8000 FCW register
indicates whether actual EPUs are present or not. If not,
when an extended instruction is detected, the Z8000 traps
on the instruction, so that a software “trap handier” can
emulate the desired EPU function—a. very useful

development tool. The EPA software trap routine supports
the debugging of suspect hardware against proven
software. This feature will increase in significance as
designers become familiar with the EPA capability of the
Z8000 CPU.

This software trap mechanism facilitates the design of
systems for later addition of EPUs: initially, the extended
function is executed as a trap subroutine; when the EPU is
finally attached, the trap subroutine is eliminated and the

'EPA control bit is set. Application software is unaware of the

change.

Extended Processing Architecture also offers protection
against extended instruction overlapping. Each EPU
connects to the Z8000 CPU via the STOP line so that if an
EPU is requested to perform a second extended instruction
function before it has completed the previous one, it can put
the CPU into the Stop/Refresh state until execution of the
previous extended instruction is complete.

EPA and CPU instruction execution are shown in Figure 8.
The CPU begins operation by fetching an instruction and
determining whether it is a CPU or an EPU command. The
EPU meanwhile monitors the Z-BUS for its own instructions.
If the CPU encounters an EPU command, it checks to see
whether an EPU is present; if not, the EPU may be simulated
by an EPU instruction trap software routine; if an EPU is
present, the necessary data and/or address is placed on the
Z-BUS. Ifthe EPU is free when the instruction and data for it
appear, the extended instruction is executed. If the EPU is
still processing a previous instruction, it activates the CPU's
STOP line to lock the CPU off at the Z-BUS until execution is
complete. After the instruction is finished, the EPU
deactivates the STOP line and CPU transactions continue.

STOP LINE

l |

M DEDICATED M DEDICATED
wu EPY =y EPU

1 E MEMORY . @ MEMORY

Z-8US COMPONENT INTERFACE

/

3 [| X

] =

PERIPHERAL PERIPHERAL

MEMORY
MANAGEMENT
UNIT

q

MEMORY

Figure 7. Typical Extended Processor Configuration

133

This Material Copyrighted By Its Respective Manufacturer

CPU MONITOR Z-BUS
IDLES IN STOP INSTRUCTION
STOP! LINE ACTIVE STREAM
REFRESH ?
STATE
NO
FETCH
NEXT
INSTRUCTION
F--—f-————=--
ves ! CPU GENERATES Ep
DATA/ADDRESS EXECUTES
AND PLACES ON 1
: Z.BUS INSTRUCTION I
|
NO | A
e e e ———— R |
cPu EPA TRAP T by
EXECUTES SERVICE UNTIL EPU
INSTRUCTION ROUTINE
/A DATA OR ADDRESSES ARE PLACED ON THE BUS AND USED BY THE EPU IN THE
EXECUTION OF AN INSTRUCTION.
Figure 8. EPA and Z8000 CPU Instruction Execution

A set of HO instructions performs 8-bit or 16-bit transfers
between the CPU and !/O devices. /O devices are
addressed with a 16-bit /O port address. The I/O port
address is similar to a memory address; however, 110
address space need not be part of the memory address
space. 1/0 port and memory addresses coexist on the same
bus lines and they are distinguished by the status outputs.

Two types of I/O instructions are available: standard and
special. Each has its own address space. The /O
instructions include a comprehensive set of In, Out, and
Block I/O instructions for both bytes and words. Special 1o
instructions are used for loading and unloading the Memory
Management Unit. The status information distinguishes
between standard and special I/O references.

MULTI-MICROPROCESSOR SUPPORT

Multi-microprocessor systems are supported in hardware
and software. A pair of CPU pins is used in conjunction with
certain instructions to coordinate mulitiple microprocessors.
The Multi-Micro Out pin issues a request for the resource,
while the Multi-Micro In pin is used to recognize the state of
the resource. Thus, any CPU in a muitiple microprocessor
system can exclude all other asynchronous CPUs from a
critical shared resource.

Multi-microprocessor systems are supported in software by
the instructions Multi-Micro Request, Test Muiti-Micro In, Set
Multi-Micro Out, and Reset Multi-Micro Out. In addition, the
eight megabyte CPU address space is beneficial in multiple
microprocessor systems that have large memory
requirements.

134

This Material Copyrighted By Its Respective Manufacturer

ADDRESSING MODES

The information included in Z8000 instructions consists of
the function to be performed, the type and size of data
elements to be manipulated, and the location of the data
elements. Locations are designated by register addresses,
memory addresses, or /O addresses. The addressing
mode of a given instruction defines the address space it
references and the method used to compute the address
itself. Addressing modes are explicitly specified or implied

Figure 9 illustrates the eight addressing modes: Register
(R), Immediate (IM), indirect Register (IR), Direct Address
(DA), Index (X), Relative Address (RA), Base Address (BA),
and Base - Index (BX). In general, an addressing mode
explicitly specifies either register address space or memory
address space. Program memory address space and /O
address space are usually implied by the instruction.

by the instruction.

Addressing Mode

Operand Addressing

Operand Value

In the Instruction In a Register In Memory
R
. The content of the
Register I REGISTER ADDRESS '——I OPERAND l register
IM
1 diate I OPERAND l In the instruction
‘IR
The content of the location
Indirect | | 1 te 1
. REGISTER I whose address is in the
9 r [: register
DA
The content of the location
Direct I = = ' whose address is in the
Address instruction
'x The content of the loca-
REGISTER ADDRESS —><r INDEX I— tion whose address is the
Index oASE é___: dd in the instruction
plus the content of the
working register.
RA The content of the location
whose address is the
Relative] e °“‘::'% -
| DISPLACEMENT | + I I 3 . Of Y the
Address displacement in the
instruction
*BA
The content of the location
Base REGISTER ADDRESS —-{ BASE ADDRESS }ﬁ\ whose address is the
da N "
DISPLACEMENT + in the reg .
Address offset by the displacement
in the instruction
-
BX The content of the loca-
Base REGISTER ADDRESS |—»{ BASE ADDRESS tion whose address is
Index REGISTER ADDRESS |—o-| INDEX E_.: the add in a reg
plus the index value in

another register.

*Do not use RO or RRO as indirect, index, or base registers.

Figure 9. Addressing Modes

This Material Copyrighted By Its Respective Manufacturer

135

INSTRUCTION SET SUMMARY

The Z8000 provides the following types of instructions: A Bit Manipulation
m Load and Exchange m Rotate and Shift
m Arithmetic m Block Transfer and String Manipuiation
m Logical ® Input/Output
= Program Control a CPU Control
LOAD AND EXCHANGE
Clock Cycles”
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS Ss SL Operation
CLR dst R 7 7 7 Clear
CLRB IR 8 8 8 dst < 0
DA 11 12 14
X 12 12 15
EX R, src R 6 6 6 Exchange
EXB IR 12 12 12 R« src
DA 15 16 18
X 16 16 19
LD R, src R 3 3 3 5 5 5 Load into Register
LDB M 7 7 7 11 11 1 R« src
LDL iM 5 (byte only)
IR 7 7 7 1 11 11
DA 9 10 12 12 13 15
X 10 10 13 13 13 16
BA 14 14 14 17 17 17
BX 14 14 14 17 17 17
LD dst, R IR 8 8 8 11 11 1 Load into Memory (Store)
LDB DA 11 12 14 14 15 17 dst <R
LDL X 12 12 15 15 15 18
BA 14 14 14 17 17 17
BX 14 14 14 17 17 11
LD dst, IM IR 11 11 11 Load Immediate into Memory
LDB DA 14 15 17 dst < IM
X 15 15 18
LDA R, src DA 12 13 15 Load Address
X 13 13 16 R « source address
BA 15 15 15
BX 15 15 15
LDAR R, src RA 15 15 15 Load Address Relative
R < source address
LDK R, src IM 5 5 5 Load Constant
R<n(n=0..15)
LDM R, src, n IR 11 11 11+ 3n Load Mulitiple -
DA 14 15 17 + 3n R < src (n consecutive words)
X 15 15 18 + 3n (n=1..16)

*NS = Non-segmented

SS = Segmented Short Offset

SL = Segmented Long Offset

136

This Material Copyrighted By Its Respective Manufacturer

This Materi al

LOAD AND EXCHANGE (Continued)

Clock Cycles*
: Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
LDM dst,R, n - IR 11 1 11 + 3n Load Muttiple (Store Multiple)
DA 14 15 17 + 3n dst < R (n consecutive words)
X 15 15 18 + 3n (n=1..16)
LDR R, src RA 14 14 14 17 17 17 Load Relative
LDRB R «src
LDRL (range —32768... +32767)
LDR dst, R RA 14 14 14 17 17 17 Load Relative (Store Relative)
LDRB dst+« R
LDRL (range —32768... +32767)
POP dst, IR R 8 8 8 12 12 12 Pop
POPL IR 12 12 12 19 19 19 dst+ IR
DA 16 16 18 23 23 25 Autoincrement contents of R
X 16 16 19 23 23 26
PUSH IR, src R 9 9 9 12 12 12 Push
PUSHL M 12 12 12 19 19 19 Autodecrement contents of R
IR 13 13 13 20 20 20 IR = src
DA 14 14 16 21 21 23
X 14 14 17 21 21 24
ARITHMETIC
ADC R, src R 5 5 5 Add with Carry
ADCB R+ R + src + carry
ADD R, src R 4 4 4 8 8 8 Add
ADDB M 7 7 7 14 14 14 R<R + src
ADDL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
cpP R, src R 4 4 4 8 8 8 Compare with Register
CPB IM 7 7 7 14 14 14 R -~ src
CPL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
cp dst, IM IR 11 11 11 Compare with immediate
CPB DA 14 15 17 dst — IM
X 15 15 18
DAB) dst R 5 5 5 Decimal Adjust
DEC dst, n R 4 4 4 Decremented by n
DECB IR 11 11 11 dst+dst - n
DA 13 14 16 (n=1..16)
X 14 14 17

*NS = Non-segmented SS = Segmented Short Offset

SL = Segmented Long Offset

137

Copyrighted By Its Respective Manufacturer

ARITHMETIC (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS §s SL NS SSs SL Operation
DIV R, src R 107 107 107 744 744 744 Divide (signed)
DIVL M 107 107 107 744 744 744 Word:Rniq < Rpnst +SIC
IR 107 107 107 744 744 744 Rp, + remainder
DA 108 109 111 745 746 748 Long Word: Rp+2,n+3*Rn...n+3+8rC
X 109 109 112 746 746 749 Rp,n +2 < remainder
EXTS dst R 11 1 11 11 1" 1 Extend Sign
EXTSB Extend sign of low order half of dst
EXTSL through high order half of dst
INC dst, n R 4 4 4 Increment by n
INCB IR 1" 11 11 dst<dst+n
DA 13 14 16 (n=1..16)
X 14 14 17
MULT R, src R 70 70 70 282t 282t 282t Multiply (signed)
MULTL M 70 70 70 282t 282t 2821 Word:Rnn+1 Rp 1 ® SIC
IR 70 70 70 282t 282t 282T LongWord:Rn n+3 < Rn+2n+3
DA 71 72 74 o83t 284t 286t TPlusseven cyclesforeach 1in the
X 720 72 75 284t 284t 2871 multiplicand
NEG dst R 7 7 7 Negate
NEGB IR 12 12 12 dst < 0 — dst
DA 15 16 18
X 16 16 19
SBC R, src R 5 5 5 Subtract with Carry
SBCB R« R - src — carry
suB R, src R 4 4 4 8 8 8 Subtract
suBB IM 7 7 7 14 14 14 R< R -src
SUBL IR 7 7 7 14 14 14
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
LOGICAL
AND R, src R 4 4 4 AND
ANDB tM 7 7 7 R+ RANDsrc
IR "7 7 7
DA 9 10 12
X 10 10 13
COM dst R 7 7 7 Complement
comB IR 12 12 12 dst < NOT dst
DA 15 16 18
X 16 16 19
OR R, src R 4 4 4 OR
ORB M 7 7 7 R+« RORsrc
IR 7 7 7
DA 9 10 12
X 10 10 13

*NS = Non-segmented SS = Segmented Short Offset

SL = Segmented Long Offset

138

This Material Copyrighted By Its Respective Manufacturer

LOGICAL (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
TCC cc, dst R 5 5 5 Test Condition Code
TCCB Set LSBif ceis true
TEST dst R 7 7 7 13 13 13 Test
TESTB IR 8 8 8 13 13 13 dstORO
TESTL DA 11 12 14 16 17 19
X 12 12 15 17 17 20
XOR R, src R 4 4 4 Exciusive OR
XORB M 7 7 7 R < RXOR src
IR 7 7 7
DA 9 10 12
X 10 10 13
PROGRAM CONTROL
CALL dst IR 10 15 15 Call Subroutine
DA 12 18 20 Autodecrement SP
X 13 18 21 @SP+PC
PC <« dst
CALR dst RA 10 10 15 Call Relative
Autodecrement SP
@SP+PC)
PC+«PC + dst (range — 4094 to + 4096)
DJNZ R, dst RA 11 11 11 Decrement and Jump if Non-Zero
DBJNZ R+<R -1
If R # 0: PC+PC + dst(range — 254 to 9)
IRET? — = 13 13 16 Interrupt Return
PS -~ @SP
Autoincrement SP
JP cc, dst IR 10 10 15 (taken) Jump Conditional
IR 7 7 7 {not taken) lfccis true: PC < dst
DA 7 8 10
X 8 8 11
JR cc, dst RA 6 6 6 Jump Conditional Relative
Ifccistrue: PC < PC + dst
(range —256to +254)
RET cc — 10 10 13 (taken) Return Conditional
7 7 7 (not taken) Ifccistrue: PC < @ SP
Autoincrement SP
SC src IM 33 33 39 System Call
Autodecrement SP
@ SP ~old PS

Push instruction
PS <« System Call PS

*NS = Non-segmented SS = Segmented Short Offset
TPrivileged instruction. Executed in system mode only.

SL = Segmented Long Offset

139

This Material Copyrighted By Its Respective Manufacturer

BIT MANIPULATION

Clock Cycles”
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
BIT dst, b R 4 4 4 Test Bit Static
BITB IR 8 8 8 Z flag < NOT dst bit specified by b
) DA 10 1 13
X 11 11 14
BIT dst, R R 10 10 10 Test Bit Dynamic
BITB Z flag — NOT dst bit specified by
contents of R
RES dst, b R 4 4 4 Reset Bit Static
RESB IR 11 11 11 Reset dst bit specified by b
DA 13 14 16
X 14 14 17
RES dst, R. R 10 10 10 Reset Bit Dynamic
RESB Reset dst bit specified by contents R
SET dst, b R 4 4 4 Set Bit Static
SETB IR 11 11 11 Set dst bit specified by b
DA 13 14 16
X 14 14 17
SET dst, R R 10 10 10 Set Bit Dynamic
SETB | Set dst bit specified by contents of R
TSET) dst R 7 7 7 Test and Set
TSETB IR 1 11 11 S flag < MSB of dst
DA 14 15 17 dst«all 1s
X 15 15 18 N
ROTATE AND SHIFT
RL dst, n R 6forn=1 Rotate Left
RLB R 7forn=2 by nbits(n = 1,2)
RLC dst, n R 6forn=1 Rotate Left through Carry
RLCB R 7forn=2 by nbits (n = 1, 2)
RLDB R, src R 9 9 9 Rotate Digit Left
RR . dst, n R 6forn=1 Rotate Right
RRB R 7forn=2 by nbits(n = 1,2)
RRC dst, n R 6forn=1 Rotate Right through Carry
RRCB R 7forn=2 by nbits(n = 1,2)
RRDB R, src R 9 9 9 Rotate Digit Right
SDA dst, R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic
SDAB Shift dst left or right by
SDAL contents of R
SDL dst, R R (15+3n) (15 +3n) Shift Dynamic Logical
SDLB Shift dst left or right by
SDLL contents of R

*NS = Non-segmented SS = Segmented Short Offset

SL = Segmented Long Offset

140

This Material Copyrighted By Its Respective Manufacturer

This Materi al

ROTATE AND SHIFT (Continued)

_Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS Operation
SLA dst, n R (13 +3n) (13 +3n) Shift Left Arithmetic
SLAB by n bits
SLAL
SLL dst, n R (13 + 3n) (13 + 3n} Shift Left Logical
SLLB by n bits
SLLL
SRA dst,n R (13 +3n) (13 +3n) Shift Right Arithmetic
SRAB by n bits
SRAL
SRL dst, n R (13 + 3n) (13 +3n) Shift Right Logical
SRLB by n bits
SRLL
BLOCK TRANSFER AND STRING MANIPULATION
CcPD Ry.src,Ry,cc IR 20 20 20 Compare and Decrement
CPDB Rx — src
Autodecrement src address
Ry <Ry — 1
CPDR Ry, src.Ry,cc IR (11 +9n) Compare, Decrement, and Repeat
CPDRB Rx — src
Autodecrement src address
Ry« Ry — 1
Repeat untilccistrue orRy = 0
CP1 Rx.src,Ry,cc IR 20 20 20 Compare and Increment
CPIB Ry — src
Autoincrement src address
Ry <Ry — 1
CPIR Ry,src,Ry,.cc iR (11 +9n) Compare, increment, and Repeat
CPIRB Rx — src
Autoincrement src address
Ry <Ry - 1
Repeat until ccistrue or Ry = 0
CPSD dst,src,R,cc IR 25 25 25 Compare String and Decrement
CPSDB dst — src
Autodecrement dst and src addresses
R+<R-1
CPSDR dst,src,R,cc IR (11 + 14n) Compare String, Decrement, and
CPSDRB Repeat
dst — src
Autodecrement dst and src addresses
R<R -1

Repeat untilccistrueorR = 0

*NS = Non-segmented SS = Segmented Short Offset

SL = Segmented Long Offset

Copyrighted By Its

141

Respecti ve Manuf acturer

BLOCK TRANSFER AND STRING MANIPULATION (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL

Operation

CPSi dst,src,R.cc IR 25 25 25
cPSIB

Compare String and Increment
dst — src

Autoincrement dst and src addresses
R«<R-1

CPSIR dst,src,R,cc IR (11 + 14n)
CPSIRB

Compare String, Increment and
Repeat

dst — src

Autoincrement dst and src addresses
R<R-1

Repeat until ccistrue or R = 0

LDD dst,src,R IR 20 20 20
LDDB

Load and Decrement

dst < src

Autodecrement dst and src addresses
R<R -1

LDDR dst,src,R IR (11 +9n)
LDDRB

Load, Decrement and Repeat

dst < src

Autodecrement dst and src addresses
R+<R -1

RepeatuntiiR = 0

LDI dst,src,R IR 20 20 20
LDIB

Load and Increment

dst < src

Autoincrement dst and src addresses
R+<R -1

LDIR dst,src.R IR (11+9n)
LDIRB

Load, Increment and Repeat

dst < src

Autoincrement dst and src addresses
R«<R -1

Repeat until R = 0

TRDB dst,src,R IR 25 25 25

Translate and Decrement
dst < src (dst)
Autodecrement dst address
R+R -1

TRDRB dst,src.R iR (11 + 14n)

Translate, Decrement and Repeat
dst < src (dst)

Autodecrement dst address

R«<R -1

Repeatuntii R = 0

TRIB dst,src,R IR 25 25 25

Translate and Increment |
dst < src (dst)
Autoincrement dst address
R«<R -1

*NS = Non-segmented SS = Segmented Short Offset SL = Segmented Long Offset
*Privileged instruction. Executed in system mode only.

142

This Material Copyrighted By Its Respective Manufacturer

BLOCK TRANSFER AND STRING MANIPULATION (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemoni Op d Modes NS SS SL NS SS SL Operation

TRIRB dst,src,R IR (11 + 14n) Translate, lnprement and Repeat
dst + src (dst)
Autoincrement dst address
R+<R-1
RepeatuntiiR = 0

TRTDB src1,src2,R IR 25 25 25 Translate and Test, Decrement
RH1 < src2 (src1)
Autodecrement src 1 address
R«<R-1

TRTDRB src1,src2,R iR (11 + 14n) Transglate and Test, Decrement, and
Repeat
RH1 < src2 {src1)
Autodecrement src1 address
R«<«R-1
RepeatuntiR = 0orRHt = 0

TRTIB src1,src2,R IR 25 25 25 Translate and Test, Increment
RH1 <« src2 (srcl)
Autoincrement src1 address
R<R -1

TRTIRB src1,src2,R IR (11 + 14n) Translate and Test, Increment and
Repeat
RH1 « src2 (src1)
Autoincrement src 1 address
R«<R -1
RepeatuntiR = QorRH1 =0

INPUT/OUTPUT

INT R,src IR 10 10 10 tnput
INBT DA 12 12 12 R« src

INDT dst,src,R IR 21 2t 21 Input and Decrement
INDB* dst + src
Autodecrement dst address
R<R -1

INDRT dst,src,R IR (11 + 10n) Input, Decrement and Repeat
INDRBT dst < src
Autodecrement dst address
R+<R -1
RepeatuntiiR = 0

INIT dst,src,R R 21 21 21 Input and Increment
INIBT dst + src
Autoincrement dst address
R+<R -1

*NS = Non-segmented SS = Segmented Short Offset SL = Segmented Long Offset
tPrivileged instruction. Executed in system mode only.

143

This Material Copyrighted By Its Respective Manufacturer

This Materia

INPUT/OUTPUT (Continued)

Clock Cycles”
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
INIRt dst,src,R IR (11 + 10n) Input, Increment and Repeat
INIRBt dst < src
Autoincrement dst address
R<R -1
RepeatuntiR = 0
ouTt dst,R IR 10 10 10 Output
ourtBt DA 12 12 12 dst=R
ouTDt dst,src,R IR 21 21 21 Output and Decrement
ouTDBT dst < src
Autodecrement src address
R<R -1
OTDR? dst,src,R IR (11 + 10n) Output, Decrement and Repeat
OTDRBt dst < src
Autodecrement src address
R«<R -1
RepeatuntiiR = 0
ouTIt dst,src,R IR 21 21 21 Output and Increment
ouTiBt dst < src
Autoincrement src address
R<R -1
OTIRT dst,src,R IR (11 + 10n) Output, Increment, and Repeat
OTIRBT dst < src
Autoincrement src address
R+<~R-1
RepeatuntiR = 0
SINt R,src DA 12 12 12 Special Input
SINBt R<«src
SINDt dst,src.R IR 21 21 21 Special input and Decrement
SINDB' dst < src
Autodecrement dst address
R+R -1
SINDRT dst,src,R IR 11 + 10n) Special Input, Decrement, and
SINDRB' Repeat
dst < src
Autodecrement dst address
R«<R -1
Repeat until R = 0
sINIt dst,src,R IR 21 21 21 Special Input and Increment
dst < src

SINIBt

Autoincrement dst address
R<R -1

*NS = Non-segmented

SS = Segmented Short Offset
tPrivileged instruction. Executed in system mode only.

SL = Segmented Long Offset

144

Copyrighted By Its Respective Manufacturer

INPUT/OUTPUT (Continued)

Clock Cycles*
Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS SS SL Operation
SINIRt dst,src,R IR (11 + 10n) Special Input, Increment, and
SINIRB' Repeat
dst +src
Autoincrement dst address
R<R-1
Repeat untilR = 0
SOouTt dst,src DA 12 12 12 Special Output
souTB? - dst + src
souTtDnt dst,src,R IR 21 21 21 Special Output and Decrement
souTpst dst < src
Autodecrement src address
R«<R -1
SOTDRY dst,src,R iR (11 + 10n) Special Output, Decrement, and
SOTDRBt Repeat
dst < src
Autodecrement src address
R<R-1
RepeatuntiR = 0
souTIt dst,src,R IR 21 .21 21 Special Output and increment
souTiBt dst < src
Autoincrement src address
R«R -1
' SOTIR? dst,src,R "R (11 + 10n) Special Output, Increment, and
SOTIRBt Repeat
dst < src
Autoincrement src address
R+<R -1
Repeat untilR = 0
CPU CONTROL
COMFLG flags — 7 7 7 Complement Flag
{Any combination of C, Z, S, P/V)
DIt int — 7 7 7 Disable Interrupt
{Any combination of NVI, VI)
EIt int — 7 7 7 Enable Interrupt
(Any combination of NVI, VI}
HALT? — — 8+3n) HALT
LDCTLY CTLR,src R 7 7 7 Load into Control Register
CTLR «src
LDCTLt dst,CTLR R 7 7 7 Load from Control Register

dst < CTLR

*NS = Non-segmented SS = Segmented Short Offset
TPrivileged instruction. Executed in system mode only.

SL = Segmented Long Offset

145

This Material Copyrighted By Its Respective Manufacturer

CPU CONTROL (Continued)

Clock Cycles”

Addr. Word, Byte Long Word
Mnemonics Operands Modes NS SS SL NS Ss SL Operation
LDCTLB FLGR,src R 7 7 7 Load into Flag Byte Register
FLGR + src
LDCTLB dst,FLGR R 7 7 7 Load from Flag Byte Register
dst < FLGR
LDPST src IR 12 16 16 Load Program Status
DA 16 20 22 PS < src
X 17 20 23
mBITT — — 7 7 7 Test Multi-Micro Bit
Set S if Ml is Low; reset S if Ml is High
MREQt dst R (12 + n) Multi-Micro Request
MREST — — 5 5 5 Multi-Micro Reset
MSET? - — 5 7 7 Muiti-Micro Set
NOP —_ — 7 7 7 No Operation
RESFLG flag — 7 7 7 Reset Flag
) (Any combination of C, Z, S, P/V)
SETFLG flag — 7 77 Set Flag

(Any combination of C, Z, S, PIV)

*NS = Non-segmented SS = Segmented Short Offset SL = Segmented Long Offset
tPrivileged instruction. Executed in system mode only.

146

This Material Copyrighted By Its Respective Manufacturer

19

CONDITION CODES

Code Meaning Flag Settings CC Field
F Always false — 0000
T Always true — 1000
z Zero Z=1 0110
NZ Not zero Z=0 1110
C Carry C=1 0111
NC No Carry "c=o0 1111
PL Plus S=0 1101
Mi Minus S=1 0101
NE Not equal Z=0 1110
EQ Equal Z=1 o110
ov Overflow PN =1 0100
NOV No overflow PN =0 1100
PE Parity is even PNV =1 0100
PO Parity is odd PN =0 1100
GE Greater than or equal (signed) {SXORPN) =0 1001
LT Less than (signed) {(SXORP/V) =1 0001
GT Greater than (signed) ! [ZOR(SXORPNV)] =0 1010
LE Less than or equal (signed) [ZOR(SXORP/V)] = 1 0010
UGE Unsigned greater than or equal C=0 1111
ULt Unsigned less than C=1 01t1
UGT Unsigned greater than {(C=0AND(Z =0)] =1 1011
ULE Unsigned less than or equal (COR2Z) =1 0011

Note that some condition codes have identical flag settings and binary fields in the instruction:
Z = EQ,NZ = NE, C = ULT,NC = UGE, OV = PE, NOV = PO

STATUS CODE LINES
STo-ST3 Definition
0000 Internal operation
0001 Memory refresh
0010 1O reference
0011 Special I/0 reference (e.g., to an MMU)
0100 Segment trap acknowledge
0101 Non-maskable interrupt acknowledge
0110 Non-vectored interrupt acknowledge
0111 Vectored interrupt acknowledge
1000 Data memory request
1001 Stack memory request
1010 Data memory request (EPU)
1011 Stack memory request (EPU)
1100 Program reference, nth word
1101 Instruction fetch, first word
1110 Extension processor transfer

1111

Reserved

This Material Copyrighted By Its Respective Manufacturer

147

This Materia

PIN DESCRIPTION

ADg-AD,5. Address/Data (inputs/outputs, active High,
3-state). These multiplexed address and data lines are used
for 1/O and to address memory.

AS. Address Strobe (output, active Low, 3-state). The rising
edge of AS indicates addresses are valid.

BUSACK. Bus Acknowiedge (output active Low). A Low on
this line indicates the CPU has relinquished control of the
bus.

BUSREQ. Bus Request (input, active Low). This line must
be driven Low to request the bus from the CPU. .

B/W. Byte/Word (output, Low = Word, 3-state). This signal
defines the type of memory reference on the 16-bit
address/data bus.

CLK. System Clock (input). CLK is a 5V single-phase
time-base input.

DS. Data Strobe (output, active Low, 3-state). This line times
the data in and out of the CPU.

MREQ. Memory Request (output, active Low, 3-state). A
Low on this line indicates that the address/data bus holds a
memory address.

M1, MO. Multi-Micro In, Multi-Micro Out (input and output,
active Low). These two lines form a resource-request daisy
chain that allows one CPU in a multi-microprocessor system
to access a shared resource.

NMI. Non-Maskable Interrupt (edge triggered, input, active

non-maskable interrupt. The NM! interrupt has the highest
priority of the three types of interrupts.

N/S. Normal/System Mode (output, Low = System Mode,
3-state). N/S indicates the CPU is in the normal or system
mode.

NVI. Non-Vectored Interrupt (input, active Low). A Low on
this line requests a non-vectored interrupt.

RESET. Reset (input, active Low). A Low on this line resets
the CPU.

R/W. Read/Write (output, Low = Write, 3-state). RW
indicates that the CPU is reading from or writing to memory
or l/O.

SEGT. Segment Trap (input, active Low). The Memory
Management Unit interrupts the CPU with a Low on this line
when the MMU detects a segmentation trap. Input on
Z8001 only.

SNg-SNg. Segment Number (outputs, active High, 3-state).
These lines provide the 7-bit segment number used to
address one of 128 segments by the Z8010 memory
Management Unit. Output by the Z8001 only. -

STo-ST3. Status (outputs, active High, 3-state). These lines
specify the CPU status (see Status Code Lines).

STOP. Stop (input, active Low). This input can be used to
single-step instruction execution.

VI. Vectored Interrupt (input, active Low). A Low on this line

Low). A high-tollow transiton on NMI requests a requests a vectored interrupt.
WAIT. Wait (input, active Low). This line indicates to the CPU
that the memory or 1/O device is not ready for data transfer.
Ao,] 48] Ao,
ap, [2 a7] sNs
apyo[]3 48] sns
Ao, e as{] ao,
ap s 4[] an, ap, [1 40 {] an,
aps []s 43[] ao, apy, [2 39 [] Ao,
svor[]7 2] sN, Ao [] 3 38 [a0,
wil]s 41'[] Ao, AD2 [] 4 37 [aps
anis 9 «0[1 Ao, a3 5 36 [AD,
a0,] 10 39 [] ao; stor{] s 35 £ ADs
wsvn a8 [] a0, w7 34 [aos
vilQ 37] sN. Aoy [& 3a[] ao;
wildin *%°°' »sewo Ao, [@ 32 [] ao,
SEGT [14 35 [cock +sv[] 10 28002 [] ano
i [15 sllas vi[gn 30 [] cLock
RESET [] 18 3] nc i [12 2[] As
wo] 17 2)W Nl] 13 28 [] nc
MREG [] 18 1[N RESET [14 27} B W
o5 []1e sojmw wo [s 28NS
sty] 20 29 [} BUSACK wREa [] 18 5] AW
st 2 28 :IWTPT os 17 24 [] BUSACK
st [22 27 [] BUSREG st [18 23 [] WAIT
sTo] 23 26 [] sNo ST, [19 22 [} BUSREQ
SN [24 25 [sN, st [] 20 21] STo
Figure 10a. 48-pin Dual-In-Line Package (DIP), Figure 11a. 40-pin Dual-In-Line Package (DIP),
Pin Assignments Pin Assignments
148

Copyrighted By Its Respect|ve Manuf act ur er

& S F eSS # ST

4 6 5 4 3 2 1 5251 S0 49 48 47
STOP & 48 | SN
M1 je 45 | ADs
ADys {10 a4 | Dy
ADyq |11 43 | AD;
+5v [12 42 | ap,y
NE 13 28001 41 | SN2
vifie cPU 40 | ano
wvi f1s 39 fox
SEGT 18 38 A8
Nwi |17 37 | RESERVED ABORT
RESET |18 36 | e W
wo 19 s INS
MREQ |20 34 AW

\2!22232‘25“212.”30313233’

@é’é‘é‘n}“@"@‘%&/ﬁ & &

NC = No connection

52-pin Chip Carrier, Pin Assignments

& WS o ot
/6 5 4 3 2 1 a4 43 42 41 40 N\
§TOP |7 39 | ADs
s 38 | AD;
ADys o 37 | AD,
ADy4 | 10 36 | AD,
+sv |11 35 | ano
ne |12 zg:az 3 | e
vi j13 33 | AS
nvi f1a 32 | reserveo
NMI |15 31 | 8/W
RESET | 16 30 | N/S
MO |17 29 | R/W

N\ 18 19 20 21 22 23 24 25 26 27 28/

Lorsase s %g/é‘éé
?

Figure 11b.

44-pin Chip Carrler, Pin Assignments

Z8000 CPU TIMING

The Z8000 CPU executes instructions by stepping through
sequences of basic machine cycles, such as memory read
or write, /O device read or write, interrupt acknowledge,
and internal execution. Each of these basic cycles requires
three to ten clock cycles to execute. Instructions that require
more clock cycles to execute are broken up into several
machine cycles. Thus no machine cycle is longer than ten
clock cycles and fast response to a Bus Request is
guaranteed. :

The instruction opcode is fetched by a normal memory read
operation. A memory refresh cycle can be inserted just after
the completion of any first instruction fetch (IF4) cycle and
can also be inserted while the following instructions are
being executed: MULT, MULTL, DIV, DIVL, HALT, all Shift
instructions, all Block Move instructions, and the Multi-Micro

Request instruction (MREQ).

The following timing diagrams show the relative timing
relationships of all CPU signals during each of the basic
operations. When a machine cycle requires additional clock
cycles for CPU internal operation, one to five clock cycles
are added. Memory and /O read and write, as well as
interrupt acknowledge cycles, can be extended by
activating the WAIT input. For exact timing information, refer
to the composite timing diagram.

Note that the WAIT input is not synchronized in the Z8000
and that the setup and hold times for WAIT, relative to the
clock, must be met. If asynchronous WAIT signals are
generated, they must be synchronized with the CPU clock
before entering the Z8000.

149

This Material Copyrighted By Its Respective Manufacturer

MEMORY READ AND WRITE

Memory read and instruction fetch cycles are identical, ex-
cept for the status information on the STo-STa outputs.
During a memory read cycle, a 16-bit address is placed on
the ADo-AD15s outputs early in the first clock period, as
shown in Figure 12. In the Z8001, the 7-bit segment num-
ber is output on SNo-SNe one clock period earlier than the
16-bit address offset.

A valid address is indicated by the rising edge of Address
Strobe. Status and mode information become valid early in
the memory access cycle and remain stable throughout.
The state of the WAIT input is sampled in the middie of the
second clock cycle by the falling edge of Clock. If WAIT is

Low, an additional clock period is added between T and Ts.
WAIT is sampled again in the middle of this wait cycle, and
additional wait states can be inserted: this aliows interfacing
slow memories. No control outputs change during’ wait
states.

Although Z8000 memory is word organized, memory is
addressed as bytes. All instructions are word-aligned, using
even addresses. Within a 16-bit word, the most significant
byte (Dg-D15) is addressed by the low-order address (Ag =
Low), and the least significant byte (Do-D7) is addressed by
the high-order address (Ag = High).

Tn b Tz T3
DATA SAMPLED
eros l__ @ FOR READ
apLED WAIT CYCLES ADDED
- XX
STATUS
(BIW, NIS,
S$Tp-STa)
SNo-3Ns X SEGMENT NUMBER Xﬁ
AS \ /
BREG e
MREQ \ f
AD S
READ Xﬂuonv »—-—
7
DS
READ
RIW
READ
AD "
WRITE x MEMORY ADDRESS| X DATA OUT) <
DS Pr———
DS
WRITE
AW
WRITE

Figure 12. Memory Read and Write Timing

150

This Material Copyrighted By Its Respective Manufacturer

o R e e bR

INPUT/OUTPUT

/0 timing is similar to memory read/write timing, except
that one wait state is automatically (Twa) inserted between

T, and T3 (Figure 13). Both the segmented Z8001/Z8005 and
the nonsegmented Z8002 use 16-bit /O addresses.

_STATUS
(B/W, STo-ST3)

NIS

T

T2

T

L

) —————

I DATA SAMPLED
FOR READ

WAIT
SAMPLED

WAIT CYCLES ADDED

XX

X_

Low

HIGH

Al
INPUT

DS
INPUT

RIW
INPUT

x PORT

)-————--

/

AD
OUTPUT

DS
OUTPUT

RIW
OUTPUT

x PORT ADDRESS

DATA OUT

=Y

N I A e

-Figure 13. Input/Output Timing

Thi s

Mat eri al Copyrighted By Its Respective Manufacturer

151

INTERRUPT AND SEGMENT TRAP
REQUEST AND ACKNOWLEDGE

The Z8000 CPU recognizes three interrupt inputs
(non-maskable, vectored, and nonvectored) and a
segmentation trap input. Any High-to-Low transition on the
NMI input is asynchronously edge detected and sets the
internal NMIi tatch. The VI, NVI, and SEGT inputs, as well as
the state of the internal NM! latch, are sampled at the end of
T in the last machine cycle of any instruction.

In response to an interrupt or trap, the subsequent IF cycle
is exercised, but ignored. The internal state of the CPU is not
altered and the instruction will be refetched and executed
after the return from the interrupt routine. The program
counter is not updated, but the system stack pointer is
decremented in preparation for pushing starting information
onto the system stack.

The next machine cycle is the-interrupt acknowledge cycle.

LAST MACHINE INSTRUCTION 1

This cycle has five automatic wait states, with additional wait
states possible, as shown in Figure 14.

After thé last wait state, the CPU reads the information on
ADg-AD15 and temporarily stores it, to be saved on the stack
later in the acknowledge sequence. This word identifies the
source of the interrupt or trap. For the nonvectored and
nonmaskable interrupts, all 16 bits can represent peripheral
device status information. For the vectored interrupt, the low
byte is the jump vector, and the high byte can be extra user
status. For the segmentation trap, the high byte is the
Memory Management Unit identifier and the /low byte is
undefined.

After the acknowledge cycle, the N/S output indicates the .
automatic change to system mode.

ACKNOWLEDGE STATUS
CYCLE SAVING

|~ CYCLE OF ANY
INSTRUCTION

FETCH IF,
{ABORTED)

AUTOMATIC WAIT STATES

- /7 __/ \
Vi, Vi, SEGY \ /
wrna Y : /

W _/ \
=W —_\

$To-8Ty :X IF; X ACKNOWLEDGE

"X
Figure 14. Interrupt and Segment Trap Req st/Ack ledge Timing
STATUS SAVING SEQUENCE

The machine cycles, foliowing the interrupt acknowledge or
segmentation trap acknowledge cycle, push the old status
information on the system stack in the following order: the
16-bit program counter; the 7-bit segment number

(Z8001/Z8005 only); the flag controi word; and finally the
interrupt/trap identifier. Subsequent machine cycles fetch
the new program status from the program status area, and
then branch to the interrupt/trap service routine.

152

This Material Copyrighted By Its Respective Manufacturer

| G o e e SR A S R T R

BUS REQUEST ACKNOWLEDGE TIMING

A Low on the BUSREQ input indicates to the CPU thatl high-impedance state. The requesting device—typically a

another device is requesting the Address/Data and control DMA—can then control the bus.

buses. The asynchronous BUSREQ input is synchronized r—— . . . -
When BUSREQ is released, it is synchronized with the rising

at the beginning of any machine cycle (Figure 15). BUSREQ clock edge; the BUSACK output goes High one clock

tsi;ecsh I%'{'g:}: % TsignaBIl-:sS':‘gi(r?e:ztégww?\;r:Te;f?:: period later, indicating that the CPU will again take control of
’ the bus.

completion of the current machine cycle—causes the
BUSACK output to go Low and all bus outputs to go into the

ANY M CVCLE—-—D‘ -BUS AVAILABLI
Tx Tx Tx Tx Tx Tx
-) l

CLOCK

INTERNAL
BUSREQ
BUSACK \

ﬁw)N I EVV S——
SN ‘)--—--———_ _____ __;____(

a0) S S e e e = O

MREG, DS, .
STo-8Ts, F——r———— e o o o e e e -< SAME AS PREVIOUS cvcn.EX

BIW, RIW, NIS . .
I I

Figure 15. Bus Request/Acknowledge Timing

153

This Material Copyrighted By Its Respective Manufacturer

STOP

The STOP input is sampled by the last falling clock edge
immediately preceding any IF cycle (Figure 16) and before
the second word of an EPA instruction is fetched. tf STOP is
found Low during the IF4 cycle, a stream of memory refresh
cycles isinserted after T3, again sampling the STOP input on
each falling clock edge in the middle of the T3 states. During
the EPA instruction, both EPA instruction words are fetched
but any data transfer or subsequent instruction fetch is

postponed untit STOP is sampled High. This refresh
operation does not use the refresh prescaler or its
divide-by-four clock prescaler; rather, it double-increments
the refresh counter every three clock cycles. When STOP is
found High again, the next refresh cycle is completed, any
remaining T states of the IF; cycle are then executed, and
the CPU continues its operation.

XX N\

/

REFRESH -
N ADDRESS

T/

S G X

MEMORY REFRESH

HIGH

Figure 16. Stop Timing

154

This Materia

Copyrighted By Its Respective Manufacturer

LS LR B e

INTERNAL OPERATION

Certain extended instructions, such as Multiply and Divide,
and some special instructions need additional time for the
execution of internal operations. In these cases, the CPU
goes through a sequence of internal operation machine

cycles, each of which is three to eight clock cycles long
(Figure 17). This-allows fast response to Bus Request and
Refresh Request, because bus request or refresh cycles
can be inserted at the end of any internal machine cycle.

T

S I

I T

$To-STs X

INTERNAL OPERATION

] |

A Y
AD X UNDEFINED »-
—

WREQ, DS, RIW HIGH
BIW UNDEFINED
NIS SAME AS PREVIOUS CYCLE

Figure 17. Internal Operation Timing

HALT

A HALT instruction executes an unlimited number of 3-cycle
internal operations, interspersed with memory refresh
cycles whenever requested. An interrupt, segmentation
trap, or reset are the only exits from a HALT instruction.

The CPU samples the VI, NVi, NM, and SEGT inputs at the
beginning of every Tz cycle. If an input is found active during
two consecutive samples, the subsequent IFy cycle is
exercised, but ignored, and the normal interrupt
acknowledge cycle is started.

155

This Material Copyrighted By Its Respective Manufacturer

This Materia

MEMORY REFRESH

When the 6-bit prescaler in the refresh counter has been
decremented to zero, a refresh cycle consisting of three
T-states is started as soon as possible (that is, after the next
IF4 cycle or Internal Operation cycle).

The 9-bit refresh counter value is put on the low-order side of
the address bus (ADg-ADg): ADg-AD1s are undefined
(Figure 18). Since the memory is word-organized, Ag is
atways Low during refresh and the refresh counter is always

incremented by two, thus stepping through 256 consecutive
refresh addresses on AD4-ADg. Unless disabled, the
presettable prescaler runs continuously and the delay in
starting a refresh cycle is therefore not cumulative.

While the STOP input is Low, a continuous stream of memory
refresh cycles, each three T-states long, is executed without
using the refresh prescaler.

1

T2 Ta

STo-8T,

REFRESH

"
A
= [_/
\

N\
AD X REFRESH ADDRESS)————————————————-.—<
-

DS

SAME AS PREVIOUS CYCLE

"

—_— }

Figure 18. Memory Refresh Timing

RESET

A Low onthe RESET input causes the following results within
five clock cycles (Figure 19):

m ADg-AD15 are 3-stated

m AS, DS, MREQ, STo-ST3, BUSACK, and MO are forced
High

SNq-SNg are forced Low

Refresh is disabled

m R/W, B/W, and N/S are not affected

When RESET has been High for three clock periods, three
consecutive memory read cycles are executed in the system
mode for the Z8001.The Z8002 has two consecutive
read cycles. In the Z8001 , the first cycle reads the
flag and control word from location 0002, the next reads the
7-bit program counter segment number from location 0004,
the next reads the 16-bit PC offset from location 0006, and
the following IF; cycle starts the program. In the Z8002, the
first cycle reads the flag and control word from location
0002, the next reads the PC from location 0004, and the
following IF cycle starts the program.

156

Copyrighted By Its Respective Manufacturer

AR A R R R N A

Pt ot PR

Bujun) Josay 61 anbiy

nvsns

ma

SiN

€15-048

HOIH VY

ayv

'l

3

157

Copyrighted By Its Respective Manufacturer

This Materi al

sl el |1
QIEIE

This compaosite timing dia-
gram does not show actual
timing sequences. Refer to
this diagram only for the
detailed timing relationships
of individual edges. Use the
preceding illustrations as an
explanation of the various
timing sequences.

Timing measurements are

made at the foliowing

sTOP voltages
High Low
WAIT Clock 4.0V c.8v
WAIY Output 20V 08V
input 2.0V 0.8v
Float v +0.5V
BUSREQ
@, __® ® «
SUSATR " e
D y—
®@

©

AT
~—®
aicex] F\

Ny
o

-
D
SNo-SNe P«
(D —1(0)
ADDRESS)< >f:_ o
ADo—-AD1s DATA IN @
DATA OUT Q@] f
___ i ® @® —® —® @
WREQ @ Py
D ® &)
as ~®~
@) =@ — @
He- |t _ ot ®
MEMORY READ ® K, & L
—© ® !
MEMORY WRITE ———
= o1
INPUTIOUTPUT /] [j
uh@_‘I > @—"I |
. g ol "sl:—*‘—’l D R ~—=
STo-ST -0
READ/WRITE,
NORMAL/SVSTEM, x
BYTE/WORD 1

168

This Material Copyrighted By Its Respective Manufacturer

AC CHARACTERISTICSt

Z8001/2 Z8001/2 Z8001/2
4 MHz 6 MHz 10 MHz
Number Symbol Parameter Min Max Min Max Min Max
1 TcC Clock Cycle Time 250 2000 165 2000 100 2000
2 TwCh Clock Width {High) 105 1895 70 1930 40 1960
3 TwCl Clock Width (Low) 105 1895 70 1930 40 1960
4 TfC Clock Fall Time 20 10 10
5 TC Clock Rise Time 20 15 10
6 TdC(SNv) Clock t to Segment Number Valid (50 pf load) 130 110 90
7 TdAC(SNn) Clock 1 to Segment Number Not Valid 20 10 0
8 TdC(B2) Clock 1 to Bus Float 65 55 50
9 TdC(A) Clock t to Address Valid 100 75 585
10 TdC(Az) Clock * to Address Float 65 55 50
11 TdA(DR) Address Valid to Read Data Required Valid 475* 305* 180*
12 TsDR(C) Read Data to Clock ¢ Setup time 30 20 10
13 TdDS(A) DS * to Address Active 80* 45* 20*
14 TdC(DW) Clock t to Write Data Valid 100 75 60
15 ThDR(DS) Read Data to DS t Hold Time 0 0 0
16 TdDW(DS) Write Data Valid to DS 1 Delay 295* 195* 110~
17 TdA(MR) Address Valid to MREQ ¢ Delay 55* 35" 20*
’ 18 TdC(MR) Clock ¢ to MREQ + Delay 80 70 50
19 TwMRh MREQ Width (High) 210" 135* 80"
20 TdMR(A) MREQ ¥ to Address Not Active 70* 35* 20*
21 TdDW(DSW) Write Data Valid to DS + (Write) Delay 55* 35 15*
22 TdMR(DR) MREQ ¢ to Read Data Required Valid 370" 230" 140"
23 TdC(MR) Clock + MREQ t Delay 80 60 50
24 TdC(ASH Clock * to AS ¢ Delay 80 60 45
25 TdA(AS) Address Valid to AS t Delay 55 35" 20"
26 TdC(ASH Clock ¢ to AS t Delay 90 80 45
27 TAAS(DR) A3 1 to Read Data Required Valid 360" 220* 140"
28 TdDS(AS) DS 1t0 AS 4 Delay 70* 35* 15+
29 TwAS AS Width (Low) 85* 55" 30"
30 TdAS(A) AS 1 to Address Not Active Délay 70* 45* 20"
31 TdAz(DSR) Address Float to DS (Read) ¢ Delay 0 0 0
32 TdAS(DSR) AS 1 to DS (Read) + Delay 80* 55* 30"
33 TdDSR(DR) DS (Read) to Read Data Required Valid 205* 130* 70*
34 TdC(DSH) Clock ¥ to DS t Delay 70 65 50
35 TdDS(DW) DS * to Write Data Not Valid 75* 45* 25"
36 TdA(DSR) Address Valid to DS (Read) + Delay 180" 110* 65*
37 TdC(DSR) Clock tto DS (Read) 4 Delay 120 85 65
38 TwDSR DS (Read) Width (Low) 275* 185* 110*
39 TdC(DSW) Clock ¢ to DS (Write) ¢ Delay 95 80 65
40 TwDSW DS (Write) Widith (Low) 185* 110~ 75*
*Clock-cycle time-dependent characteristics. See Footnotes to AC Characteristics.
tUnits in nanoseconds (ns).
159

This Material Copyrighted By Its Respective

Manuf act ur er

AC CHARACTERISTICSt (Continued)

28001/2

Z8001/2 28001/2
4 MHz 6 MHz 10 MHz

Number Symbol Parameter Min Max Min Max Min Max

41 TdDSI(DR) DS (I/0) + to Read Data Required Valid 330* 210* 120"

42 TdC(DSf) Clock ¥ to DS (1/0) ¥ Delay 120 90 65

43 TwDS DS (/0) Width (Low) 410* 255* 160"

44 TdAS(DSA) AS 1 to DS (Acknowledge) ¢ Delay 1065 690™ 410"

45 TdC(DSA) Clock * to DS (Acknowledge) + Delay 120 85 70

46 TdDSA(DR) DS (Acknowledge) | to Read Data Required

Delay 455* 295" 165*

47 TdC(S) Clock * to Status Valid Delay 110 85 65

48 TdS(AS) Status Valid to AS 1 Delay 50* 30" 20*

49 TsR(C) RESET to Clock t Setup Time 180 70 50

50 ThR(C) RESET to Clock t Hold Time (o] 0 ¢}

51 TWNMI NMI Width (Low) 100 70 50

52 TsNMI(C) NMI to Clock 1 Setup Time 140 70 50

53 TsVI(C) Vi, NV to Clock * Setup Time 110 50 40

54 ThVI(C) Vi, NV to Clock t Hold Time 20 20 10

55 TsSGT(C) SEGT to Clock t Setup Time 70 55 40

56 ThSGT(C) SEGT to Clock 1 Hold Time 0 0 0

57 TsMIC) Mi to Clock 1 Setup Time 180 140 80

58 ThMIC) MI to Clock 1 Hold Time o} 0 0

59 TdC(MO) Clock t to MO Delay 120 85 80

60 TsSTP(C) STOP to Clock + Setup Time 140 100 .50

61 ThSTP(C) STOP to Clock + Hold Time 0 0 0

62 TsW(C) WATT to Clock ¢ Setup Time 50 30 20

63 Thw(C) WAIT to Clock ¢ Hold Time 10 10 5

64 TsBRQ(C) BUSREQ to Clock t Setup Time 90 80 60

65 ThBRQ(C) BUSREQ to Clock * Hold Time 10 10 5

66 TdC(BAK) Clock % to BUSACK 1 Delay 100 75 65

67 TdAC(BAKf Clock + to BUSACK ¢ Delay 100 75 65

68 TwA Address Valid Width 150" 95* 50"

69 TdDS(S) DS t to STATUS Not Valid 80" 55* 30"

*Clock-cycie time-dependent characteristics. See Footnotes to AC Characteristics.

TUnits in nanoseconds (ns).

160

This Materi al

Copyrighted By Its Respective

Manuf act ur er

IMAGE UNAVAILABLE

B 9004L97 0593002 LTT HA

This Material Copyrighted By Its Respective Manufacturer

This Materi al

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect

tOGND -0.3Vto +7.0V
Operating Ambient

Temperature See Ordering Information
Storage Temperature —-65°Cto +150°C

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

STANDARD TEST CONDITIONS

The DC characteristics below apply for the following test
conditions, unless otherwise noted. All voltages are
referenced to GND (0V). Positive current flows into the
referenced pin.

Available operating temperature ranges are:
m S =0°Cto +70°C, +4.75V < Vo € +5.25V
® E =-40"C to +100°C, +4.75V < Vce < +5.25V

All ac parameters assume a total load capacitance
(including parasitic capacitances) or 100 pf max, except for
parameter 6 (50 pf max). Timing references between two
output signals assume a load difference of 50 pf max.

21K

FROM OUTPUTY
UNDER YTEST

1009'1 A

The Ordering Information section lists package temperature
ranges and product numbers.

DC CHARACTERISTICS
Symbol Parameter Min Max Unit Condition
VeH Clock input High Voltage Vcc-0.4 Vec+0.3 \ Driven by External Clock Generator
Voo Clock Input Low Voltage -03 0.45 \' Driven by External Clock Generator
ViH Input High Voltage 20 Vcc+0.3 \
ViHRESET Input High Voltage on RESET pin 24 Vcc+03 v
VIH NMI Input High Voltage on NMI pin 24 Vec+0.3 A
ViL Input Low Voltage -03 0.8 v
VoH Output High Voltage 24 \" lon = —250pA
VoL Output Low Voltage 0.4 v loL = +2.0mA
I Input Leakage +10 uA 0.4<V|INS + 2.4V
ILsegT InputLeakage on SEGT pin ~100 100 pA
loL Output Leakage +10 uA 0.4<VINS +2.4V
lcc Ve Power Supply Current 300 mA 4 MHz and 6 MHz commercial
400 mA Extended temperature range
400 mA 10 MHz speed range
162

Copyrighted By Its Respective Manufacturer

