8192-BIT (1024-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

DESCRIPTION

This is a family of FAMOS (floating-gate avalanche-injection MOS) ultraviolet-light erasable and electrically reprogrammable 8192-bit (1024-word by 8-bit) EPROMs. They incorporate N-channel silicon-gate MOS technology, are designed for microcomputer system applications, and have direct TTL-compatibility for all inputs and outputs, without extra interface circuits.

FEATURES

Fast programming: 100s/8192 bits (typ)

Access time:

M5L 2708K, S: 450ns (max) M5L 270K-65, S-65: 650ns (max)

- Low power dissipation during programming
- No clocks required; the circuitry is entirely static
- Data inputs and outputs TTL-compatible during read and program modes
- Easy memory expansion by chip-select/write-enable (CS/WE) input
- Typical power supply voltages: 12V, 5V, -5V
- For large volume production; pin compatible with the Mitsubishi M58730-XXXS mask-programmable ROM
- Interchangeable with Intel's 2708 in pin configuration and electrical characteristics

APPLICATION

Computers and peripheral equipment

FUNCTION

Read—Set the \overline{CS}/WE terminal to the read mode (0~5V). Low-level input to \overline{CS}/WE and address signals to the address input (A₀ ~A₉) make the data contents of the designated

address location available at the data inputs/outputs $(D_0 \sim D_7)$. When the \overline{CS}/WE signal is high, data inputs/outputs $(D_0 \sim D_7)$ are in a floating state.

Write—Set the \overline{CS}/WE terminal to the write mode (12V). A program pulse will effect the write operation for the data at each address loaded via data inputs/outputs $(D_0 \sim D_7)$. For details refer to the description of the programming mode,

Erase—Erase is effected by exposure to ultraviolet light through the transparent window.

8192-BIT (1024-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

FUNCTIONAL OPERATIONS

Programming Procedure

These devices are in the '1' state (with high-level output) after erase, and go into the '0' state (with low-level output) after programming. All bits of the M5L 2708S, S-65 are initially in the '1' state, and must be programmed according to the following procedures.

The chip enters the program mode when 12V is supplied to the $\overline{\text{CS}}/\text{WE}$ input (pin 20). Data to be programmed are presented, 8 bits in parallel, to the data inputs/outputs $(D_0 \sim D_7)$ and the addresses are set up by the address inputs. After address and data set-up, one program pulse is applied to the program input (pin 18) for each address from 0 to 1023. This pass through all addresses, known as a program loop, must be repeated a number of times, N, which depends upon the width of the program pulse and must satisfy the condition $N \cdot t_{W\{p\}} \ge 100 \text{ms}$.

Erase Procedure

These devices can be erased by exposure to high-intensity short-wave ultraviolet light at a wavelength of 2537Å through the transparent lid provided. The required exposure is approximately 15Ws/cm^2 . If the energy of the lamp used is unknown, find the total time (t_E) required to erase all bits and use a short-wave ultraviolet-light exposure time of 3 to 5 times this value.

HANDLING PRECAUTIONS FOR FAMOS DEVICES

In addition to general handling precautions for MOS devices, the following points apply to FAMOS devices.

- High voltages are used when programming, and the conditions under which it is performed must be carefully controlled to prevent the application of excessively high voltages
- Before erasing, clean the surface of the transparent lid to remove completely oily impurities, which may impede irradiation and affect the erasing characteristics.
- 3 This ultraviolet-light erasable PROM is erasable by ultraviolet-light with wavelengths under 4000Å. For use involving long exposure to direct sunlight or to lamps radiating at these wavelengths, the transparent window should be covered with opaque tape.

8192-BIT (1024-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V11	Input voltage, V _{DD} and CS/WE write mode		-0.3-20	V
V ₁₂	Input voltage, V _{CC} , V _{SS} , address and data signal	With respect to V _{BB}	-0.3-15	V
V ₁₃	Input voltage, program mode	1	-0.3~35	V
Торг	Operating free-air temperature range		0 ~ 70	٣
Tstg	Storage temperature range		-65 -125	TC TC

READ OPERATION

Recommended Operating Conditions (Ta = 0 ~70 ℃, unless otherwise noted)

Symbol	Parameter		Limits		1 lais	
Symbol	Farameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.75	5	5, 25	٧	
V _{DD}	Supply voltage	11.4	12	12.6	V	
VBB	Supply voltage	-4.75	-5	-5.25	٧	
Vss	Supply voltage (GND)		0		٧	
VIL	Low-level input voltage	Vss		0.65	V	
VIH	High-level input voltage	3		V _{CC} +1	V	

Electrical Characteristics

 $T_a = 0 \sim 70 \, \text{C}, \quad V_{CC} = 5 \, \text{V} \pm 5\%, \quad V_{DD} = 12 \, \text{V} \pm 5\%, \quad V_{BB} = -5 \, \text{V} \pm 5\%, \quad V_{SS} = 0 \, \text{V}. \quad \text{unless otherwise noted. Note 1}$

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	raianietei	rest conditions	Min	Тур	Max	Orac
I _{IL}	Low-level input current, address, chip select input	V ₁ =5.25V			10	μΑ
loz	Off-state (high-impedance-state) output current	$V_0 = 5.25V$, $V_0(\overline{CS} WE) = 5V$			10	μΑ
IDD	Supply current from V _{DD}	Worst case.		50	65	mΑ
lcc	Supply current from VCC	all inputs high.		6	10	mA
IBB	Supply current from VBB	V _O (CS we) =5 V, Ta =0 ℃		30	45	mA
VoL	Low-level output voltage	IOL=1.6mA			0.45	٧
V _{OH1}	High-level output voltage	I _{OH} = -100 μ A	3.7		1	٧
V _{OH2}	High-level output voltage	I _{OH} = -1 mA	2.4			V
Pd	Power dissipation	Ta = 70 ℃			800	mW
Ci	Input capacitance)/ 0\/ f 1\		4	6	pF
Co	Output capacitance	V ₁ =0V, f=1MHz		8	12	pF

Note 1: Typical values are at Ta = 25 °C and nominal supply voltage

$\textbf{Switching Characteristics} \ \ (T_a = 0 \sim 70 \, \text{T}, \ \ V_{CC} = 5 \, \text{V} \pm 5 \, \text{\%}, \ \ V_{DD} = 12 \, \text{V} \pm 5 \, \text{\%}, \ \ V_{BB} = -5 \, \text{V} \pm 5 \, \text{\%}, \ \ V_{SS} = 0 \, \text{V} \, . \ \ \text{unless otherwise noted)}$

Symbol	Parameter	Test conditions	Limits				
		rest conditions	Min	Min Typ	Max	Unit	
		M5L 2708K, S			280	450	ns
ta(AD)	Address access time M5L 2708K-65, S-65				650	ns	
ta(CS)	Chip select access time				60	120	ns
tdv(CSLH)	Data valid time with respect	to chip select low-to-high		0		120	ns
tdv(AD)	Data valid time with respect	to address		0			ns

Timing Diagram

Test Conditions for Switching Characteristics

 $\begin{array}{ll} \mbox{Input voltage:} & V_{1L}\!=\!0.65\mbox{V}, & V_{1H}\!=\!3\mbox{V} \\ \mbox{Reference voltage at timing measurement:} & \mbox{Input} & 0.8\!\sim\!2.8\mbox{V} \\ & \mbox{output} & 0.8\!\sim\!2.4\mbox{V} \end{array}$

8192-BIT (1024-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

PROGRAM OPERATION

Recommended Operating Conditions ($T_a=25$ °C, $V_{CC}=5$ V ±5 %, $V_{DD}=12$ V ±5 %, $V_{BB}=-5$ V ±5 %, $V_{SS}=0$ V, unless otherwise noted)

Symbol	Parameter		Limits		Unit
	- Columbia	Min	Nom	Max	Onit
VIL1(P)	Low-level input voltage, except program input	Vss		0.65	V
VIH1(P)	High-level input voltage, address, data input	3		Vcc+1	
V _{IH2(P)}	High-level input voltage, CS/WE	11.4		12.6	V
V _{IH3(P)}	High-level input voltage, program mode 2	25		27	V
VIL2(P)	Low-level input voltage, program mode 3	V _{SS}		1	V

Note 2 : With respect to V_{SS}

3: Where $V_{1H3(P)} - V_{1L2(P)} = 25V(min)$

 $\textbf{Electrical Characteristics} \ (\ \ \, \text{V_{CC}=5V} \pm 5\%, \ \ V_{\text{DD}} = 12V \pm 5\%, \ \ V_{\text{BB}} = -5V \pm 5\%, \ \ V_{\text{SS}} = 0V, unless otherwise noted})$

Symbol	Parameter	Test conditions		Limits		
	T didifficial	Test conditions	Min	Тур	Max	Unit
IIL1(P)	Low-level input current, address, chip select input	V _I =5.25V			10	μА
I _{IL2} (P)	Low-level input current, program input				3	mA
IH1(P)	High-level current, program input				20	mA
IDD	V _{DD} supply current	Worst case,		50	65	mA
Icc	V _{CC} supply current	all inputs high4		6	10	mA
I _{BB}	V _{BB} supply current	CS/WE =5 V. Ta =0 ℃		30	45	mΑ

Note 4: Typical values are at Ta=25℃ and nominal supply voltage.

Timing Requirements ($T_a = 25 \text{ C}$, $V_{CC} = 5 \text{ V} \pm 5 \text{ W}$, $V_{DD} = 12 \text{ V} \pm 5 \text{ W}$, $V_{BB} = -5 \text{ V} \pm 5 \text{ W}$, $V_{SS} = 0 \text{ V}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			
	T didnister	Test Conditions	Min	Тур	Max	Unit
t _{SU(PRO-AD)}	Program setup time with respect to address		10			μS
t _{SU(PRO-WE)}	Program setup time with respect to WE low-to-high		10			μs
tsu(PRO-DA)	Program setup time with respect to data		10			μS
th(AD-PRO)	Address hold time with respect to program		1			μS
th(WE-PRO)	WE hold time with respect to program		0.5			μS
th(DA-PRO)	Data hold time with respect to program		1			μS
tw(P)	Program pulse width		0.1		1	ms
tr(P)	Program rise time		0.5		2	μS
tf(P)	Program fall time		0.5		2	μs

Switching Characteristics ($T_a=25\%$, $V_{CC}=5V\pm5\%$, $V_{DD}=12V\pm5\%$, $V_{BB}=-5V\pm5\%$, $V_{SS}=0V$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
		Tool Conditions	Min	Тур	Max	Oriit
ta(DA-WE)	Access time with respect to WE high-to-low				10	μS
tov(DA-CS)	Data valid time with respect to CS low-to-high		0		120	ns

Timing Diagram

Program Mode

From Program Mode to Read Mode

