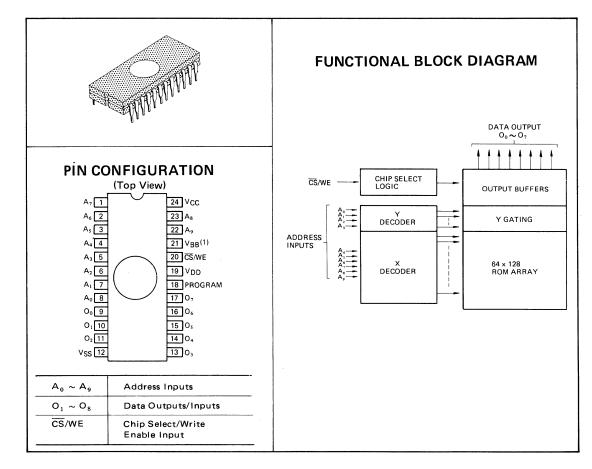
OKI semiconductor MSM2708AS 8192-BIT UV ERASABLE ELECTRICALLY-PROGRAMMABLE

READ-ONLY MEMORY

(E3-S-019-32)

GENERAL DESCRIPTION

The Oki MSM2708 AS (Compatible to the Intel 2708) is a 8192-bit ultraviolet light erasable and electrically reprogrammable EPROM, ideally suited where fast turnaround and pattern experimentation are important requirements. All data inputs and outputs are TTL compatible during both the read and program modes. The outputs are threestate, allowing direct interface with common system bus structures.


The MSM2708 AS is fabricated with the N-channel silicon gate FAMOS technology and is available in a 24-pin dual in-line package.

FEATURES

- Data Inputs and Outputs TTL Compatible during both Read and Program Modes
- Three-State Outputs OR-Tie Capability

• Static - No Clocks Required

	Max. Power	Max. Access	Organization
MSM 2708 AS	800 mW	450 ns	1K x 8

		PIN Number									
Mode	Data I/O 9 ~ 11, 13 ~ 17	Address Inputs 1 ~ 8, 22, 23	V _{SS} 12	Program 18	V _{DD} 19	CS/WE 20	V _{BB} 21	V _{CC} 24			
Read	DOUT	AIN	GND	GND	+12	VIL	-5	+5			
Deselect	High Impedance	Don't Care	GND	GND	+12	∨ін	-5	+5			
Program	D _{IN}	AIN	GND	Pulsed 26V	+12	⊻інw	-5	+5			

PIN CONNECTION DURING READ OR PROGRAM

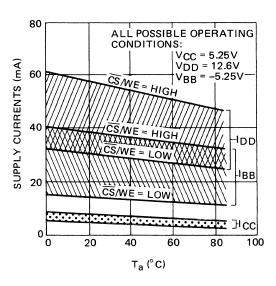
ABSOLUTE MAXIMUM RATINGS*

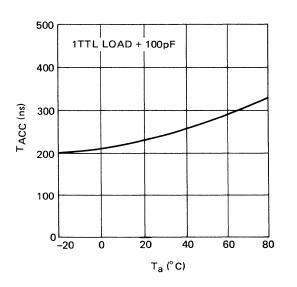
• Temperature Under Bias	–25°C to +85°C
• Storage Temperature	-65°C to +125°C
• V _{DD} with Respect to V _{BB}	+20V to -0.3V
\bullet V_CC and V_SS with Respect to V_BB	+15V to -0.3V
• All Input or Output Voltages with Respect to VBB during Read	+15V to -0.3V
• CS/WE Input with Respect to VBB during Programming	+20V to -0.3V
• Program Input with Respect to VBB	
• Power Dissipation	1.5W

¥

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC AND AC OPERATING CONDITIONS DURING READ


Temperature Range	0°C to 70°C
V _{CC} Power Supply	5V ± 5%
V _{DD} Power Supply	12V ± 5%
V _{BB} Power Supply	-5V ± 5%


READ OPERATION DC AND OPERATING CHARACTERISTICS

Parameter	Symbol	Min.	Typ.(2)	Max.	Units	Test Conditions
Address and Chip Select Input Leakage Current	ILI		1	10	μA	VIN=5.25V or VIN=VIL
Output Leakage Current	ILO		1	10	μA	V _{OUT} =5.5V, <u>CS</u> /WE=5V
VDD Supply Current	IDD ⁽³⁾		50	65	mA	Worst Case Supply
V _{CC} Supply Current	ICC ⁽³⁾		6	10	mA	Currents
VBB Supply Current	IBB(3)		30	45	mA	All Inputs High: CS/WE=5V; T _a =0°C
Input Low Voltage	VIL	VSS		0.65	v	
Input High Voltage	VIH	3.0		Vcc ⁺¹	v	
Output Low Voltage	VOL			0.45	v	IOL=1.6mA
Output High Voltage	VOH1	3.7			V	I _{OH} =-100 A
Output High Voltage	VOH2	2.4			V	I _{OH} =-1mA
Power Dissipation	PD			800	mW	T _a =70°C

Note: 1. V_{BB} must be applied prior to V_{CC} and V_{DD} . V_{BB} must also be the last power supply switched off.

- 2. Typical values are for $T_a = 25^{\circ}C$ and nominal supply voltages.
- 3. The total power dissipation is not calculated by summing the various currents (I_{DD}, I_{CC}, and I_{BB}) multiplied by their respective voltages since current paths exist between the various power supplies and V_{SS}. The I_{DD}, I_{CC} and I_{BB} currents should be used to determine power supply capacity only.

RANGE OF SUPPLY CURRENTS VS. TEMPERATURE

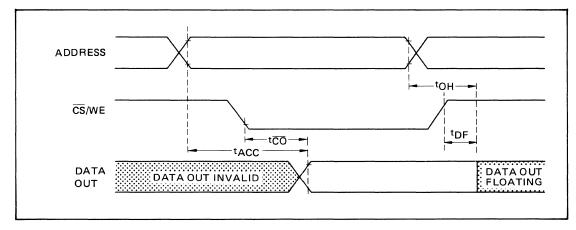
ACCESS TIME VS. TEMPERATURE

A.C. CHARACTERISTICS

Parameter	Symbol	Min.	Тур.	Max.	Units
Address to Output Delay	tACC		350	450	ns
Chip Select to Output Delay	tCO		60	120	ns
Chip Deselect to Output Float	^t DF	0		120	ns
Address to Output Hold	tOH	0			

CAPACITANCE⁽¹⁾

 $(Ta = 25^{\circ}C, f = ,1 MHz)$


Parameter	Symbol	Тур.	Max.	Unit.	Conditions
Input Capacitance	CIN	4	6	pF	V _{IN} = 0V
Output Capacitance	Соит	8	12	pF	VOUT = 0V

Note: 1. This parameter is periodically sampled and is not 100% tested.

AC TEST CONDITIONS:

		Timing Measurement			
Output Load:	1 TTL gate and $C_L = 100 pF$	Reference Levels:	0.8V and 2.8V for inputs;		
Input Rise and			0.8V and $2.4V$ for outputs.		
Fall Times:	<20 ns	Input Pulse Levels:	0.65V to 2.0V		

WAVEFORMS

222

ERASURE CHARACTERISTICS

The erasure characteristics of the MSM 2708 AS are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4,000 Angstrom (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3,000–4,000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical device in approximately 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the MSM 2708 AS is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Oki which should be placed over the MS 3578 AS window to prevent unitentional erasure.

The recommended erasure procedure for the MSM 2708 AS is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity x Exposure time) for erasure should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12,000 μ W/cm² power rating. The device should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.