

512kbit(64KX8) OTP EPROM ICE37C512

Description

The ICE37C512 is a low-power, high-performance 512k(524288) bit one-time programmable read only memory (OTP EPROM) organized as 64K by 8 bits. It is single 5V power supply in normal read mode operation. Any byte can be accessed in less than 70ns. The ICE37C512 typically consumes 10mA , standby mode supply current typically less than 10μ A. Two lines control (CE, OE) to give designers the flexibility to prevent bus contention. Programming time is typically only 100 μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Features

- Fast Read Access Time : 70ns
- Low-Power consumption
 - 1 µ A Typ. Standby
 - 10 mA max. Active at 5MHz
- JEDEC Standard Packages
 - 32-Lead 600-mil PDIP
 - 32-Lead PLCC
 - 32-Lead TSOP
- Operating voltage : 5V ±10%
- High Reliability CMOS Technology
 - 2000V ESD Protection
 - 200 mA Latchup Immunity
- Programming time : 100 $\,\mu$ s/byte (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Compatible pin Assignment For FLASH 512k bits

DIP Top View

Pin Configurations

Pin Name	Function
A0 – A15	Addresses
00 – 07	Outputs
/CE	Chip Enable
/OE/Vpp	Output Enable
NC	No Connect

TSOP Top View Type1

				_
))	22	
A11	$1 \cap$		32	L OE
A9 🗀	2		32	🗆 A10
A8 🚞	3		30	
A13 🖂	4		29	1/07
A14 🖂	5		28	<u> </u>
NC 🗆	6		27	☐ 1/O5
NC 🗆	7		26	1/04
VCC 🗆	8		25	☐ 1/O3
NC 🗆	9		24	
NC 🗆	10		23	☐ 1/O2
A15 🗆	11		22	<u>1/01</u>
A12 🗀	12		21	1/00
A7 🗀	13		20	🗆 A0
A6 🗆	14		19	🗆 A1
A5 🗌	15		18	🗆 A2
A4 🗖	16		17	T A3
	-	((

	1	\bigcirc	33	VCC
			24	NO
	2		31	NC
A15 🗆	3		30	NC
A12 🗆	4		29	A14
A7 🗆	5		28	A13
A6 🗆	6		27	A8
A5 🗆	7		26	A9
A4 🗆	8		25	A11
АЗ 🗆	9		24	OE
A2 🗆	10		23	A10
A1 🗆	11		22	CE
A0 🗆	12		21	I/O7
I/O0 □	13		20	I/O6
I/O1 🗆	14		19	I/O5
I/O2 🗆	15		18	I/O4
GND□	16		17	I/O3

PLCC Top View

		NC		□ vcc	NC			
~	3 t	2	1	32	31	30]	
A7 🗆 5			\cup			29	þ.	A14
A6 🗆 6						28	\square	A13
A5 🗆 7						27	\square	A8
A4 🗆 8						26	\square	A9
A3 🗆 9						25	\vdash	A11
A2 🗆 10)					24	\square	OE
A1 🗖 11	1					23		A10
A0 🗖 12	2					22	þ	CE
1/00 13	3				_	21	\square	I/07
	5 7	16	1	18	19	120		
L								
č	58	۲	õ	8	35	90		
2	<u> </u>	Ū	≤	\leq	\leq	≚		

Block Diagram

Absolute Maximum Rating

Operation Temperature Commercial0	to +70
Storage Temperature	65 to +125
Voltage on Any Pin with Respect to Ground	0.6V to +7.0V ⁽¹⁾
Vpp Supply Voltage with Respect to Ground	-0.6V to +13.5V ⁽¹⁾

Operating Modes

Mode\Pin	CE	OE/VPP	Ai	Outputs
Read	VIL	V _{IL}	Ai	D _{OUT}
Output Disable	Х	VIH	Х	High Z
Standby	V _{IH}	Х	Х	High Z
Rapid Program ⁽²⁾	VIL	V _{PP}	Ai	D _{IN}
PGM Inhibit	V _{IH}	Х	Х	High Z
Product Identification ⁽⁴⁾	V _{IL}	V _{IL}	A9 = V _H ⁽³⁾ A0,A1 = V _{IH} or V _{IL} A2 – A15 = V _{IL}	Identification Code

Notes: 1. X can be V_{IL} or V_{IH} .

2. Refer to Programming Characteristics.

3. $V_{\rm H}$ = 12 ± 0.5V.

4. See Product Identification Code item.

Symbol	Parameter	Condition		Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to Vcc	Com.		± 1	μA
I _{LO}	Output Leakage Current	V_{OUT} = 0V to Vcc	Com.		± 5	μA
	Voo ⁽¹⁾ Standby Current	I _{SB1} (CMOS), /CE = Vo	$I_{SB1}(CMOS), /CE = Vcc \pm 0.3V$			
ISB	Vcc Standby Current	I _{SB2} (TTL), /CE = 2.0 to		500	μA	
I _{CC}	Vcc Active Current	f = 5MHz, I _{OUT} = 0mA,		10	mA	
V _{IL}	Input Low Voltage			-0.6	0.8	V
V _{IH}	Input High Voltage			2.0	Vcc + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA			0.4	V
V _{OH}	Output High Voltage	Ι _{ΟΗ} = -400 μΑ	Ν	2.4		V

DC and Operating Characteristics for Read Operation

Notes:

 Vcc must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.
Vpp may be connected directly to Vcc except during programming. The supply current would then be the sum of I_{CC} and I_{PP}.

AC Waveforms for Read Operation⁽¹⁾

Notes:

1.<u>OE</u>/VPP may be delayed up to t_{CE} - t_{OE} after the falling edge of CE without impact on t_{CE} .

2.OE/VPP may be delayed up to t_{ACC} - t_{OE} after the address in valid without impact on t_{ACC} .

3. This parameter is only sampled and is not 100% tested.

4. Output float is defined as the point when data is no longer driven.

Output Test Load

Programming Waveforms

Notes:

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V $V_{\text{IH.}}$
- 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3.When programming the ICE37C512 at 0.1μ F capacitor is required across V_{pp} and ground to suppress spurious voltage transients.

DC Programming Characteristics T_{A} = 25 \pm 5 $\,$, Vcc = 5.5 \pm 0.5V, Vpp = 12 \pm 0.5V

Symbol	Baramatar	Tost Conditions	Lin	Unito	
Symbol	Faialletei	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$I_{IN} = V_{IL}, V_{IH}$		± 10	μA
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	Vcc + 1	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
I _{CC2}	Vcc Supply Current (Program and Verify)			40	mA
I _{PP2}	/OE/VPP Current	/CE = V _{IL}		20	mA
V _{ID}	A9 Product Identification Voltage		11.0	12.5	V

AC Characteristics for Read Operation

			ICE27	7C512	Units
Symbol	Parameter	condition	-7	70	
			Min	Max	
tacc ⁽³⁾	Address to Output Delay	/CE=/OE/VPP=VIL		70	ns
tce (2)	/CE to Output Delay	/OE/Vpp=Vil		70	ns
toe ⁽²⁾⁽³⁾	/OE/Vpp to Output Delay	/CE=VIL		30	ns
tdf ⁽⁴⁾⁽⁵⁾	/OE/VPP or /CE Hight to C occurred first		25	ns	
tон	Output Hold from Address whichever occurred first	7		ns	

Notes:2,3,4,5.-see AC Waveforms for Read Operation.

AC Programming Characteristics

 $T_A = 25 \pm 5$, Vcc = 5.5 ± 0.5V, Vpp = 12.0 ± 0.5V

Symbol	Baramotor	Test Conditions	Lin	Unito	
Symbol	Falailletei	Test conditions	Min	Max	Units
t _{AS}	Address Setup Time		2		μS
tоен	/OE/Vpp Hold Time	Input Rise and Fall Times	2		μS
t _{OES}	/OE/Vpp Setup Time	(10% to 90%) 20ns	2		μS
t _{DS}	Data Setup Time		2		μS
t _{AH}	Address Hold Time	Input Pulse Levels	0		μS
t _{DH}	Data Hold Time	0.45V to 2.4V	2		μS
t DFP	/OE/Vpp High to Output Float Delay ⁽²⁾		0	130	ns
t _{VCS}	Vcc Setup Time	Input Timing Reference Level	2		μS
tew	/CE Program Pulse Width ⁽³⁾	0.8V to 2.0V	95	105	μS
tov	Data Valid from /CE	Output Timing Deference Lovel		150	ns
t _{PRT}	Vpp Pulse Rise Time During Programming	0.8V to 2.0V	50		ns
tvr	/OE/VPP Recover time		2		μS

Notes: 1. Vcc must be applied simultaneously or before /OE/VPP and removed simultaneously or after /OE/VPP

- 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is 100 μsec ± 5%.

Codos	Pins									Hox Data	
Codes	A1	A0	07	O 6	O5	04	O 3	02	01	00	nex Dala
Continue Code 1	0	0	0	1	1	1	1	1	1	1	7F
Continue Code 2	0	1	0	1	1	1	1	1	1	1	7F
Manufacturer	1	0	0	1	0	1	1	1	1	0	5E
Device Type	1	1	1	1	0	0	0	0	0	0	C0

Product Identification Code

Rapid Programming Algorithm

A 100 μ s CE pulse width is used to program. The address is set to the first location. Vcc is raised to 6.0V and /OE/VPP is raised to 12.5V. Each address is first programmed with one 100 μ s /CE pulse without verification. Then a verification reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. All bytes are read again and compared with the original data to determine if the device passes or fails.

Fast Programming Flowchart

Packaging Information

32P, 32-Lead, Plastic J-Leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-016 AE

32D, 32-Lead, 0.600" wide, Plastic Dual Inline Package (PDIP) Dimensions in Inches and (Millimeters)

32T, 32-Lead, Plastic Thin Small Outline Package (TSOP) Dimensions in Millimeters and (Inches)* JEDEC OUTLINE MO- 141 BD

PRODUCTION ORDERING INFORMATION

Example

