The DMA transfer ending conditions vary when channels end individually and when both channels end together.

Conditions for Channels Ending Individually: When either of the following conditions are met, the transfer will end in the relevant channel only:

• The value of the channel's DMA transfer count register (TCR) becomes 0.

When the TCR value becomes 0, the DMA transfer for that channel ends and the transfer-end flag bit (TE) is set in CHCR. If the IE (interrupt enable) bit has already been set, a DMAC interrupt (DEI) request is sent to the CPU. In 16-byte transfer, when the TCR is 3,2,1 during the final transfer, the source address will be output four times, but the destination address will only be output the number of times found in TCR before transfer ends.

• The DE bit of the DMA channel control register (CHCR) is cleared to 0. When the DMA enable bit (DE) in CHCR is cleared, DMA transfers in the affected channel are halted. The TE bit is not set when this happens.

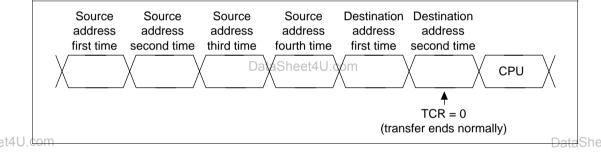


Figure 9.52 16-Byte Transfer when TCR = 2

Conditions for Both Channels Ending Simultaneously: Transfers on both channels end when either of the following conditions is met:

• The NMIF (NMI flag) bit or AE (address error flag) bit is set to 1 in DMAOR.

When an NMI interrupt or DMAC address error occurs and the NMIF or AE bit is set to 1 in DMAOR, all channels stop their transfers. The DMA source address register (SAR), designation address register (DAR), and transfer count register (TCR) are all updated by the transfer immediately preceding the halt. When this transfer is the final transfer, TE = 1 and the transfer ends. To resume transfer after NMI interrupt exception handling or address error exception handling, clear the appropriate flag bit. When the DE bit is then set to 1, the transfer on that channel will restart. To avoid this, keep its DE bit at 0. In dual address mode, DMA

DataSheetransfer will be halted after the completion of the following write cycle even when the statessu.com error occurs in the initial read cycle. SAR, DAR and TCR are updated by the final transfer.

www.DataSheet4U.com

• The DMA master enable (DME) bit in DMAOR is cleared to 0.

Clearing the DME bit in DMAOR forcibly aborts the transfers on both channels at the end of the current bus cycle. When the transfer is the final transfer, TE = 1 and the transfer ends.

9.4 Examples of Use

9.4.1 DMA Transfer Between On-Chip SCI and External Memory

In the following example, data received on the on-chip serial communication interface (SCI) is transferred to external memory using DMAC channel 1. Table 9.9 shows the transfer conditions and register settings.

Table 9.9 Register Settings for Transfers between On-Chip SCI and External Memory

Transfer Conditions	Register	Setting
Transfer source: RDR of on-chip SCI	SAR1	H'FFFFE05
Transfer destination: external memory (word space)	DAR1	Destination address
Number of transfers: 64	TCR1	H'0040
Transfer destination address: incremented	CHCR1	H'4045
Transfer source address: fixed		
Bus mode: cycle-steal DataSheet4U.com		
Transfer unit: byte		
DEI interrupt request generated at end of transfer (DE = 1)		
Channel priority: Fixed $(0 > 1)$ (DME = 1)	DMAOR	H'0001
Transfer request source (transfer request signal): SCI (RXI)	DRCR1	H'01 DataS
		÷.

Note: Check the CPU interrupt level when interrupts are enabled in the SCI.

DataSheet4U.com

www.DataSheet4U.com

- 1. DMA request/response selection control registers 0 and 1 (DRCR0 and DRCR1) should be accessed in bytes. All other registers should be accessed in longword units.
- 2. Before rewriting CHCR0, CHCR1, DRCR0, and DRCR1, first clear the DE bit for the specified channel to 0 or clear the DME bit in DMAOR to 0.
- 3. When the DMAC is not operating, the NMIF bit in DMAOR is set even when an NMI interrupt is input.
- 4. When the cache is used as on-chip RAM, the DMAC cannot access this RAM.
- 5. Set to standby mode after the DME bit in DMAOR is set to 0.
- 6. Do not access the DMAC, BSC, and UBC on-chip peripheral modules.
- 7. Do not access the cache (address array, data array, associative purge area).
- 8. To detect the DREQ pin signal in single address mode, use edge detection.

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

286 DataSheet4U.com

Section 10 Division Unit

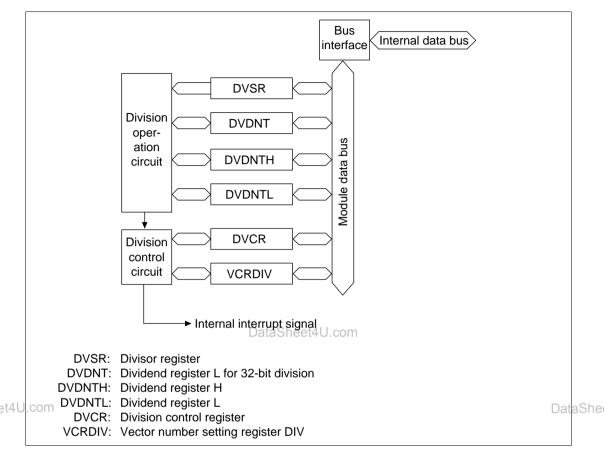
10.1 Overview

The division unit (DIVU) divides 64 bits by 32 bits and 32 bits by 32 bits. The results are expressed as a 32-bit quotient and a 32-bit remainder. When the operation produces an overflow, an interrupt can be generated as specified.

10.1.1 Features

The division unit has the following features:

- Performs signed division of 64 bits by 32 bits and 32 bits by 32 bits
- Handles 32-bit quotient, 32-bit remainder
- Completes operation execution in 39 cycles
- Controls enabling/disabling of over/underflow interrupts
- Even during the division process, instructions not accessing the division unit can be parallelprocessed


DataSheet4U.com

t4U.com

DataShe

DataSheet4U.com

Figure 10.1 shows a block diagram of the division unit.

10.1.3 Register Configuration

Table 10.1 shows the register configuration of the division unit.

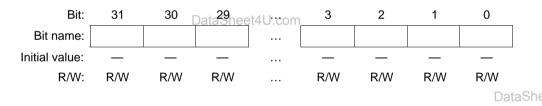
DataSheet4U.com

www.DataSheet4U.com

288

DataSheet4U.com

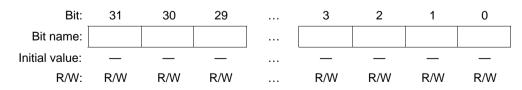
ww.DataSheet4U.com Table 10.1 Division Unit Register Configuration


Register	Abbr.	R/W	Initial Value	Address	Access Size ^{*1}
Divisor register	DVSR	R/W	Undefined	H'FFFFFF00	32
Dividend register L for 32-bit division	DVDNT	R/W	Undefined	H'FFFFFF04	32
Division control register	DVCR	R/W	H'00000000	H'FFFFF68	16, 32
Vector number setting register DIV	VCRDIV	R/W	Undefined ^{*2}	H'FFFFFF0C	16, 32
Dividend register H	DVDNTH	R/W	Undefined	H'FFFFFF10	32
Dividend register L	DVDNTL	R/W	Undefined	H'FFFFFF14	32

Notes: 1. Accesses to the division unit are read and written in 32-bit units. DVCR and VCRDIV permit 16 and 32-bit accesses. When registers other than CONT and VCRDIV are accessed with word accesses, undefined values are read or written.

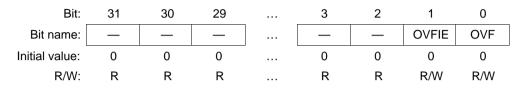
2. The initial value of VCRDIV is H'0000**** (asterisks represent undefined values).

10.2 Description of Registers



t4U.com

The divisor register (DVSR) is a 32-bit read/write register in which the divisor for the operation is written. It is not initialized by a power-on reset or manual reset, in standby mode, or during module standbys.


10.2.2 Dividend Register L for 32-Bit Division (DVDNT)

DataSheet4U.com

www.DataSheet4U.com The dividend register L for 32-bit division (DVDNT) is a 32-bit read/write register in which the 32-bit dividend used for 32-bit ÷ 32-bit division operations is written. When 32-bit ÷ 32-bit division is run, the value set as the dividend is lost and the quotient written at the end of division. When this register is written to, the same value is written in the DVDNTL register. The MSB written is sign-extended in the DVDNTH register. Writing to this register starts the 32-bit \div 32-bit division operation. It is not initialized by a power-on reset or manual reset, in standby mode, or during module standbys.

10.2.3 **Division Control Register (DVCR)**

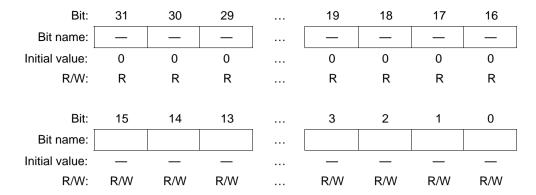
The division control register (DVCR) is a 32-bit read/write register, but is also 16-bit accessible. It controls enabling/disabling of the overflow interrupt. This register is initialized to H'00000000 by a power-on reset or manual reset. It is not initialized in standby mode or during module standbys.

- Bits 31 to 2: Reserved. These bits always read 0. The write value should always be 0. •
- Bit 1: OVF Interrupt Enable (OVFIE): Selects enabling or disabling of the OVF interrupt • request (OVFI) upon overflow.

Bit 1:	OVFIE	Description	
0		Interrupt request (OVFI) caused by OVF disabled	(Initial value)
t4U.com		Interrupt request (OVFI) caused by OVF enabled	DataShe
Note:	Always set the OVF handling for overflo	TE bit before starting the operation whenever execution ws.	ng interrupt

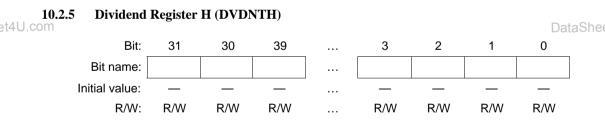
Bit 0: Overflow Flag (OVF). Flag indicating an overflow has occurred.

Bit 0: OVF	Description	
0	No overflow has occurred	(Initial value)
1	Overflow has occurred	


DataSheet4U.com

290

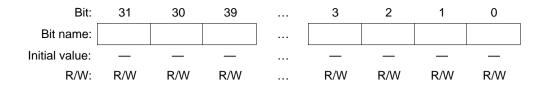
www.DataSheet4U.com


DataSheet4U.com

www.DataSheet4U.com 10.2.4 Vector Number Setting Register DIV (VCRDIV)

Vector number setting register DIV (VCRDIV) is a 32-bit read/write register, but is also 16-bit accessible. The destination vector number is set in VCRDIV when an interrupt occurs in the division unit due to an overflow or underflow. Values can be set in the 16 bits from bit 15 to bit 0, but only the last 7 bits (bits 6–0) are valid. Always set 0 for the 9 bits from bit 15 to bit 7. VCRDIV is not initialized by a power-on reset or manual reset, in standby mode, or during module standbys.

- Bits 31 to 7: Reserved. These bits always read 0. The write value should always be 0.
- Bits 6 to 0: Interrupt Vector Number. Sets the interrupt destination vector number. Only the 7 bits 6–0 are valid (as the vector number).



Dividend register H (DVDNTH) is a 32-bit read/write register in which the upper 32 bits of the dividend used for 64 bit ÷ 32 bit division operations are written. When a division operation is executed, the value set as the dividend is lost and the remainder written here at the end of the operation. The initial value of DVDNTH is undefined, and its value is also undefined after a power-on reset or manual reset, in standby mode, and during in module standbys. When the DVDNT register is set with a dividend value, the previous DVDNTH value is lost and the MSB of the DVDNT register is extended to all bits in the DVDNTH register.

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com 10.2.6 Dividend Register L (DVDNTL)

Dividend register L (DVDNTL) is a 32-bit read/write register in which the lower 32 bits of the dividend used for 64-bit ÷ 32-bit division operations are written. When a value is set in this register, the 64-bit ÷ 32-bit division operation begins. The value written in the DVDNT register for 32-bit ÷ 32-bit division is also set in this register. When a 64-bit ÷ 32-bit division operation is executed, the value set as the dividend is lost and the quotient written here at the end of the operation. The contents of this register are undefined after a power-on reset or manual reset, in standby mode, and during module standbys.

10.3 Operation

10.3.1 64-Bit ÷ 32-Bit Operations

64-bit ÷ 32-bit operations work as follows:

- 1. The 32-bit divisor is set in the divisor register (DVSR).
- 2. The 64-bit dividend is set in dividend registers H and L (DVDNTH and DVDNTL). First set the value in DVDNTH. When a value is written to DVDNTL, the 64-bit ÷ 32-bit operation begins.
- DVDNTL). When an overflow occurs, however, the operation ends in 6 cycles. See section 10.3.3, Handling of Overflows, for more information. Note that operation is signed.
 - 4. After the operation, the 32-bit remainder is written to DVDNTH and the 32-bit quotient is written to DVDNTL.

10.3.2 32-Bit ÷ 32-Bit Operations

32-bit ÷ 32-bit operations work as follows:

- 1. The 32-bit divisor is set in the divisor register (DVSR).
- 2. The 32-bit dividend is set in dividend register L (DVDNT) for 32-bit division. When a value is written to DVDNT, the 32-bit ÷ 32-bit operation begins.
- 3. This unit finishes a single operation in 39 cycles (starting from the setting of the walue is heet 40.com DVDNT). When an overflow occurs, however, the operation ends in 6 cycles. See section

10.3.3, Handling of Overflows, for more information. Note that the operation is signed.

292

www.DataSheet4U.com
4. After the operation, the 32-bit remainder is written to DVDNTH and the 32-bit quotient is written to DVDNT.

10.3.3 Handling of Overflows

When the results of operations exceed the ranges expressed as signed 32 bits (when, in division between two negative numbers, the quotient is the maximum value and a remainder (negative number) is generated) or when the divisor is 0, an overflow will result.

When an overflow occurs, the OVF bit is set and an overflow interrupt is generated if interrupt generation is enabled (the OVFIE bit in DVCR is 1). The operation will then end with the result after 6 cycles of operation stored in the DVDNTH and DVDNTL registers. If interrupt generation is disabled (the OVFIE bit is 0), the operation will end with the operation result at 6 cycles set in DVDNTH and the maximum value H'7FFFFFF or minimum value H'80000000 set in DVDNTL. In the SH7604, the maximum value results when a positive quotient overflows; the minimum value results when a negative quotient overflows. The first three cycles of the 6 cycles executed when an overflow occurs are used for flag setting within the division unit and the next three for division.

10.4 **Usage Notes**

10.4.1 Access

All accesses to the division unit except DVCR and VCRDIV must be 32-bit reads or writes. Word accesses to registers other than DVCR and VCRDIV result in reading or writing of undefined values. In the division unit, a read instruction is extended for one cycle immediately after an et4U.comstruction that writes to a register, even if the register is the same, to ensure that the value written taShe is accurately set in the destination register in the division unit.

When a read or write instruction is issued while the division unit is operating, the read or write instruction is continuously extended until the operation ends. This means that instructions that do not access the division unit can be parallel-processed. When an instruction is executed that writes to any register of the division unit immediately following an instruction that writes to the division start-up registers (DVDNTL or DVDNT), the correct value may not be set in the start-up register. Specify an instruction other than one that writes to a division unit register for the instruction immediately following instruction that writes to a start-up register.

Because of the above restrictions, efficient processing can be achieved by executing instructions that do not access the division unit for 39 cycles after starting the operation, then issuing a read instruction after the 39th cycle.

www.DataSheet4U.com

www.DataSheet4U.com 10.4.2 Overflow Flag

When an overflow occurs, the overflow flag (OVF) is set and is not automatically reset. When OVF is set, the operation is not affected. When necessary, clear it before the operation. The states of registers when overflow occurs are shown in table 10.2.

Register	Overflow Interrupt Enabled	Overflow Interrupt Disabled
DVSR	Holds the value written	Holds the value written
DVDNT	Holds the results of operations until overflow generation is detected*	The maximum value is set for overflow to the plus side, or the minimum value for overflow to the minus side
DVCR	The OVF bit is set	The OVF bit is set
VCRDIV	Holds the value written	Holds the value written
DVDNTH	Holds the results of operations until overflow generation is detected*	Holds the results of operations until overflow generation is detected *
DVDNTL	Holds the results of operations until overflow generation is detected*	The maximum value is set for overflow to the plus side, or the minimum value for overflow to the minus side

Table 10.2 Overflow Processing

Note: In division processing, the intermediate operation result is written for cycles up to detection of overflow generation.

DataSheet4U.com

t4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

294 DataSheet4U.com

Section 11 16-Bit Free-Running Timer

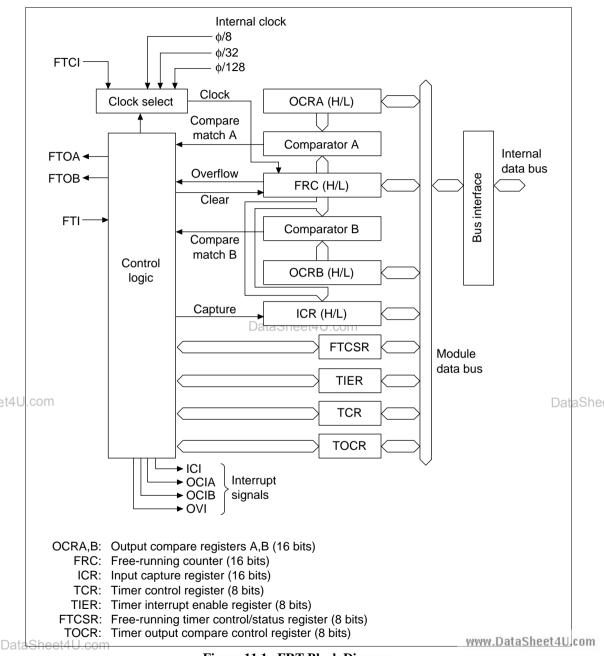
11.1 Overview

The SH7604 has a single-channel, 16-bit free-running timer (FRT) on-chip. The FRT is based on a 16-bit free-running counter (FRC) and can output two types of independent waveforms. The FRT can also measure the width of input pulses and the cycle of external clocks.

11.1.1 Features

The FRT has the following features:

- Allows selection between four types of counter input clocks. Select from external clock or three types of internal clocks ($\phi/8$, $\phi/32$, and $\phi/128$). (External events can be counted.)
- Two independent comparators. Two types of waveforms can be output.
- Input capture. Select rising edge or falling edge.
- Counter clear can be specified. The counter value can be cleared upon compare match A.
- Four types of interrupt sources. Two compare matches, one input capture, and one overflow are available as interrupt sources, and interrupts can be requested independently for each.


DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

Figure 11.1 shows a block diagram of the FRT.

296

Table 11.1 lists FRT I/O pins and their functions.

Table 11.1Pin Configuration

Channel	Pin	I/O	Function
Counter clock input pin	FTCI	I	FRC counter clock input pin
Output compare A output pin	FTOA	0	Output pin for output compare A
Output compare B output pin	FTOB	0	Output pin for output compare B
Input capture input pin	FTI	I	Input pin for input capture

11.1.4 Register Configuration

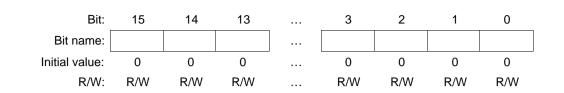
Table 11.2 shows the FRT register configuration.

Table 11.2 Register Configuration

Register	Abbreviation	R/W	Initial Value	Address	
Timer interrupt enable register	TIER	R/W	H'01	HFFFFFE10	
Free-running timer control/status register	tFSCSRt4U.com	R/(W)*1	H'00	HFFFFFE11	
Free-running counter H	FRC H	R/W	H'00	HFFFFFE12	
Free-running counter L	FRC L	R/W	H'00	HFFFFFE13	
Output compare register A H	OCRA H	R/W	H'FF	HFFFFE14*2	Cho
Output compare register A L	OCRA L	R/W	H'FF	HFFFFFE15*2 Data	1311e
Output compare register B H	OCRB H	R/W	H'FF	HFFFFFE14* ²	
Output compare register B L	OCRB L	R/W	H'FF	HFFFFFE15* ²	
Timer control register	TCR	R/W	H'00	HFFFFFE16	
Timer output compare control register	TOCR	R/W	H'E0	HFFFFFE17	
Input capture register H	ICR H	R	H'00	HFFFFFE18	
Input capture register L	ICR L	R	H'00	HFFFFFE19	
	Timer interrupt enable register Free-running timer control/status register Free-running counter H Free-running counter L Output compare register A H Output compare register A L Output compare register B H Output compare register B L Timer control register Timer output compare control register Input capture register H	Timer interrupt enable registerTIERFree-running timer control/status registerFTCSRI4U.comFree-running counter HFRC HFree-running counter LFRC LOutput compare register A HOCRA HOutput compare register A LOCRA LOutput compare register B HOCRB HOutput compare register B LOCRB LTimer control registerTCRTimer output compare control registerTOCRInput capture register HICR H	Timer interrupt enable registerTIERR/WFree-running timer control/status register FTCSR!4U.comR/(W)*1Free-running counter HFRC HR/WFree-running counter LFRC LR/WOutput compare register A HOCRA HR/WOutput compare register A LOCRA LR/WOutput compare register B HOCRB HR/WOutput compare register B LOCRB LR/WTimer control registerTCRR/WTimer output compare control registerTOCRR/W	RegisterAbbreviationR/WValueTimer interrupt enable registerTIERR/WH'01Free-running timer control/status register FTCSRI4U.comR/(W)*1H'00Free-running counter HFRC HR/WH'00Free-running counter LFRC LR/WH'00Output compare register A HOCRA HR/WH'FFOutput compare register A LOCRA LR/WH'FFOutput compare register B HOCRB HR/WH'FFOutput compare register B LOCRB LR/WH'FFTimer control registerTCRR/WH'E0Input capture register HICR HRH'00	RegisterAbbreviationR/WValueAddressTimer interrupt enable registerTIERR/WH'01HFFFFE10Free-running timer control/status register FTCSRt4U.comR/(W)*1H'00HFFFFE11Free-running counter HFRC HR/WH'00HFFFFE12Free-running counter LFRC LR/WH'00HFFFFE13Output compare register A HOCRA HR/WH'FFHFFFFE15*2Output compare register A LOCRA LR/WH'FFHFFFFE15*2Output compare register B HOCRB HR/WH'FFHFFFFE15*2Output compare register B LOCRB LR/WH'FFHFFFFE15*2Timer control registerTCRR/WH'G0HFFFFE16Timer output compare control registerTOCRR/WH'E0HFFFFE17Input capture register HICR HRH'00HFFFFE18

Notes: 1. Bits 7 to 1 are read-only. The only value that can be written is a 0, which is used to clear flags. Bit 0 can be read or written.

- 2. OCRA and OCRB have the same address. The OCRS bit in TOCR is used to switch between them.
- 3. Use byte-size access for all registers.

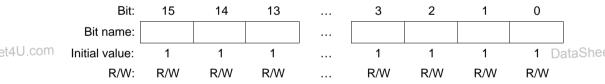

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com 11.2 Register Descriptions

Free-Running Counter (FRC)

11.2.1



FRC is a 16-bit read/write up-counter. It increments upon input of a clock. The input clock can be selected using clock select bits 1 and 0 (CKS1, CKS0) in TCR. FRC can be cleared upon compare match A.

When FRC overflows (H'FFFF \rightarrow H'0000), the overflow flag (OVF) in FTCSR is set to 1. FRC can be read or written to by the CPU, but because it is 16 bits long, data transfers involving the CPU are performed via a temporary register (TEMP). See section 11.3, CPU Interface, for more detailed information.

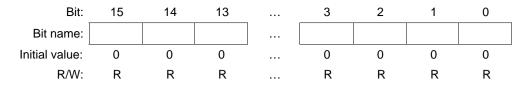
FRC is initialized to H'0000 by a reset, in standby mode, and when the module standby function is used.

11.2.2 Output Compare Registers A and B (OCRA and OCRB)

OCR is composed of two 16-bit read/write registers (OCRA and OCRB). The contents of OCR are always compared to the FRC value. When the two values are the same, the output compare flags in FTCSR (OCFA and OCFB) are set to 1.

When the OCR and FRC values are the same (compare match), the output level values set in the output level bits (OLVLA and OLVLB) are output to the output compare pins (FTOA and FTOB). After a reset, FTOA and FTOB output 0 until the first compare match occurs.

Because OCR is a 16-bit register, data transfers involving the CPU are performed via a temporary register (TEMP). See section 11.3, CPU Interface, for more detailed information.


Data SOCR is initialized to H'FFFF by a reset, in standby mode, and when the module standby matching 4U.com is used.

DataSheet4U.com

298

www.DataSheet4U.com

Input Capture Register (ICR) 11.2.3

ICR is a 16-bit read-only register. When a rising edge or falling edge of the input capture signal is detected, the current FRC value is transferred to ICR. At the same time, the input capture flag (ICF) in FTCSR is set to 1. The edge of the input signal can be selected using the input edge select bit (IEDGA) in TCR.

Because ICR is a 16-bit register, data transfers involving the CPU are performed via a temporary register (TEMP). See Section 11.3, CPU Interface, for more detailed information. To ensure that the input capture operation is reliably performed, set the pulse width of the input capture input signal to six system clocks (ϕ) or more.

ICR is initialized to H'0000 by a reset, in standby mode, and when the module standby function is used.

11.2.	11.2.4 Timer Interrupt Enable Register (TIER)								
	Bit:	7	6	DataShee 5	et4U.com 4	3	2	1	0
	Bit name:	ICIE	—	—	—	OCIAE	OCIBE	OVIE	—
	Initial value:	0	0	0	0	0	0	0	1
4U com	R/W:	R/W	_	_	_	R/W	R/W	R/W	-DataSh

TIER is an 8-bit read/write register that controls enabling of all interrupt requests. TIER is initialized to H'01 by a reset, in standby mode, and when the module standby function is used.

Bit 7-Input Capture Interrupt Enable (ICIE): Selects enabling/disabling of the ICI interrupt • request when the input capture flag (ICF) in FTCSR is set to 1.

Bit 7: ICIE	Description	
0	Interrupt request (ICI) caused by ICF disabled	(Initial value)
1	Interrupt request (ICI) caused by ICF enabled	

Bits 6 to 4—Reserved: These bits always read 0. The write value should always be 0. Do not DataSheet4U.com www.DataSheet4U.com

Renesas

www.DataSheet4U.com

Bit 3—Output Compare Interrupt A Enable (OCIAE): Selects enabling/disabling of the OCIA interrupt request when the output compare flag A (OCFA) in FTCSR is set to 1.

Bit 3: OCIAE	Description	
0	Interrupt request (OCIA) caused by OCFA disabled	(Initial value)
1	Interrupt request (OCIA) caused by OCFA enabled	

Bit 2—Output Compare Interrupt B Enable (OCIBE): Selects enabling/disabling of the OCIB interrupt request when the output compare flag B (OCFB) in FTCSR is set to 1.

Bit 2: OCIBE	Description	
0	Interrupt request (OCIB) caused by OCFB disabled	(Initial value)
1	Interrupt request (OCIB) caused by OCFB enabled	

Bit 1—Timer Overflow Interrupt Enable (OVIE): Selects enabling/disabling of the OVI interrupt request when the overflow flag (OVF) in FTCSR is set to 1.

Bit 1: OVIE	Description	
0	Interrupt request (FOVI) caused by OVF disabled	(initial value)
1	Interrupt request (FOVI) caused by OVF enabled	

Bit 0—Reserved: This bit always reads 1. The write value should always be 1.

11.2.5 Free-Running Timer Control/Status Register (FTCSR)

et4U.com

Bit:	7	6	5	4	3	2	1	0	laono
Bit name:	ICF	—	—	—	OCFA	OCFB	OVF	CCLRA	
Initial value:	0	0	0	0	0	0	0	0	
R/W:	R/(W)*	_	_	_	R/(W)*	R/(W)*	R/(W)*	R/W	

Note: For bits 7, and 3 to 1, the only value that can be written is 0 (to clear the flags).

FTCSR is an 8-bit register that selects counter clearing and controls interrupt request signals. FTCSR is initialized to H'00 by a reset, in standby mode, and when the module standby function is used. See section 11.4, Operation, for the timing.

Bit 7—Input Capture Flag (ICF): Status flag that indicates that the FRC value has been sent to FICR by the input capture signal. This flag is cleared by software and set by hardware. It cannot be set by software.

www.DataSheet4U.com

WWW.	DataSheet4U.com Bit 7: ICF	Description	
	0	Clear conditions: When ICF is read while set to 1, and t written to it	then 0 is (Initial value)
	1	Set conditions: When the FRC value is sent to ICR by t capture signal	he input

- Bits 6 to 4—Reserved: These bits always read 0. The write value should always be 0.
- Bit 3—Output Compare Flag A (OCFA): Status flag that indicates when the values of the FRC and OCRA match. This flag is cleared by software and set by hardware. It cannot be set by software.

Bit 3: OCFA	Description			
0	Clear conditions: When OCFA is read while set to 1, and then 0 is written to it (Initial value)			
1	Set conditions: When the FRC value becomes equal to OCRA			

• Bit 2—Output Compare Flag B (OCFB): Status flag that indicates when the values of FRC and OCRB match. This flag is cleared by software and set by hardware. It cannot be set by software.

Bit 2: OCFB	Description DataSheet4U.com	
0	Clear conditions: When OCFB is read whil written to it	e set to 1, and then 0 is (Initial value)
1	Set conditions: When the FRC value beco	mes equal to OCRB

t4U.com

• Bit 1—Timer Overflow Flag (OVF): Status flag that indicates when FRC overflows (from H'FFFF to H'0000). This flag is cleared by software and set by hardware. It cannot be set by software.

Bit 1: OVF	Description	
0	Clear conditions: When OVF is read while set to 1, and then 0 i written to it (Initia	is I value)
1	Set conditions: When the FRC value changes from H'FFFF to H	H'0000

• Bit 0—Counter Clear A (CCLRA): Selects whether or not to clear FRC on compare match A (signal indicating match of FRC and OCRA).

DataSheet4U.com

www.DataSheet4U.com

WWW	/.DataSheet4U.com Bit 0: CCLRA	Description	
	0	FRC clear disabled	(Initial value)
	1	FRC cleared on compare match A	

11.2.6 Timer Control Register (TCR)

Bit:	7	6	5	4	3	2	1	0
Bit name:	IEDGA	—	—		—	—	CKS1	CKS0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCR is an 8-bit read/write register that selects the input edge for input capture and selects the input clock for FRC. TCR is initialized to H'00 by a reset, in standby mode, and when the module standby function is used.

• Bit 7—Input Edge Select (IEDG): Selects whether to capture the input capture input (FTI) on the falling edge or rising edge.

Bit 7: IEDG	Description	
0	Input captured on falling edge	(Initial value)
1	Input captured on rising edgeom	

 Bits 6 to 2—Reserved: These bits always read 0. The write value should always be 0. Do not write 1.
 Com

et4U.com

• Bits 1 and 0—Clock Select (CKS1, CKS0): These bits select whether to use an external clock or one of three internal clocks for input to FRC. The external clock is counted at the rising edge.

Bit 1: CKS1	Bit 0: CKS0	Description	
0	0	Internal clock: count at \$\phi/8	(Initial value)
	1	Internal clock: count at \$/32	
1	0	Internal clock: count at $\phi/128$	
	1	External clock: count at rising edge	

DataSheet4U.com

302

www.DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

11.2.7 Timer Output Compare Control Register (TOCR)

Bit:	7	6	5	4	3	2	1	0
Bit name:		_	—	OCRS	—		OLVLA	OLVLB
Initial value:	1	1	1	0	0	0	0	0
R/W:	_	_	_	R/W	R/W	R/W	R/W	R/W

TOCR is an 8-bit read/write register that selects the output level for output compare, enables output compare output, and controls switching between access of output compare registers A and B. TOCR is initialized to H'E0 by a reset, in standby mode, and when the module standby function is used.

Bits 7 to 5—Reserved: These bits always read 1. The write value should always be 1. Do not write 0.

Bit 4—Output Compare Register Select (OCRS): OCRA and OCRB share the same address. The OCRS bit controls which register is selected when reading/writing to this address. It does not affect the operation of OCRA and OCRB.

Bit 4: OCRS	Description	
0	OCRA register selected	(Initial value)
1	OCRB register selected U.com	

Bits 3 and 2—Reserved: These bits always read 0. The write value should always be 0. Do not write 1.

et4U.com

Bit 1—Output Level A (OLVLA): Selects the level output to the output compare A output pin DataShee upon compare match A (signal indicating match of FRC and OCRA).

Bit 1: OLVLA	Description	
0	0 output on compare match A	(Initial value)
1	1 output on compare match A	

Bit 0—Output Level B (OLVLB): Selects the level output to the output compare B output pin upon compare match B (signal indicating match of FRC and OCRB).

Description	
0 output on compare match B	(Initial value)
1 output on compare match B	www.DataSheet4U.com
	0 output on compare match B

FRC, OCRA, OCRB, and FICR are 16-bit registers. The data bus width between the CPU and FRT, however, is only 8 bits. Access of these three types of registers from the CPU therefore needs to be performed via an 8-bit temporary register called TEMP.

The following describes how these registers are read from and written to:

• Writing to 16-bit Registers

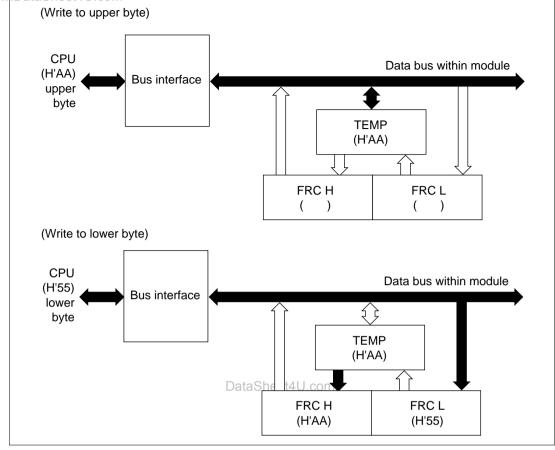
The upper byte is written, which results in the upper byte of data being stored in TEMP. The lower byte is then written, which results in 16 bits of data being written to the register when combined with the upper byte value in TEMP.

• Reading from 16-bit Registers

The upper byte of data is read, which results in the upper byte value being transferred to the CPU. The lower byte value is transferred to TEMP. The lower byte is then read, which results in the lower byte value in TEMP being sent to the CPU.

When registers of these three types are accessed, two byte accesses should always be performed, first to the upper byte, then the lower byte. The same applies to accesses with the on-chip direct memory access controller. If only the upper byte or lower byte is accessed, the data will not be transferred properly.

Figure 11.2 and 11.3 show the flow of data when FRC is accessed. Other registers function in the same way. When reading OCRA and OCRB, however, both upper and lower-byte data is transferred directly to the CPU without passing through TEMP.


t4U.com

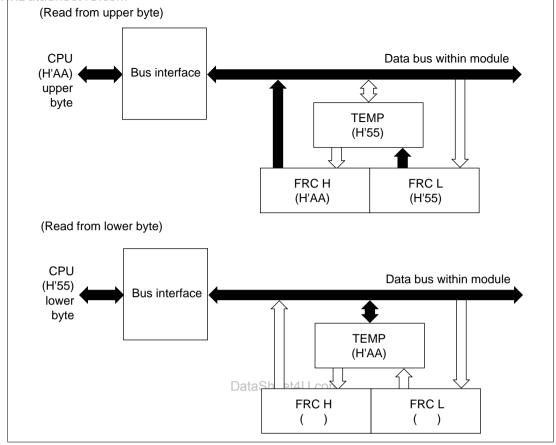
DataShe

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com

et4U.com


Figure 11.2 FRC Access Operation (CPU Writes H'AA55 to FRC)

DataSheet4U.com

www.DataSheet4U.com

RENESAS

DataShe

et4U.com

Figure 11.3 FRC Access Operation (CPU Reads H'AA55 from FRC)

DataShe

DataSheet4U.com

www.DataSheet4U.com

306 DataSheet4U.com

11.4.1 FRC Count Timing

The FRC increments on clock input (internal or external).

Internal Clock Operation: Set the CKS1 and CKS0 bits in TCR to select which of the three internal clocks created by dividing system clock ϕ ($\phi/8$, $\phi/32$, $\phi/128$) is used. Figure 11.4 shows the timing.

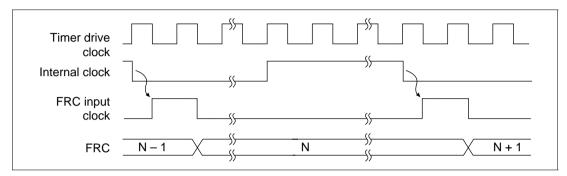


Figure 11.4 Count Timing (Internal Clock Operation)

External Clock Operation: Set the CKS1 and CKS0 bits in TCR to select the external clock. External clock pulses are counted on the rising edge. The pulse width of the external clock must be at least 6 system clocks (ϕ). A smaller pulse width will result in inaccurate operation. Figures 11.5 shows the timing.

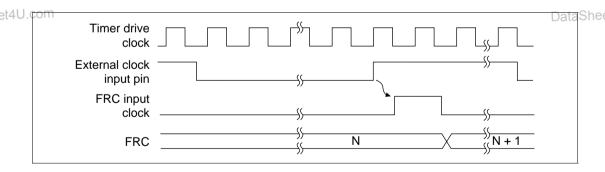


Figure 11.5 Count Timing (External Clock Operation)

DataSheet4U.com

When a compare match occurs, the output level set in the OLVL bit in TOCR is output from the output compare output pins (FTOA, FTOB). Figure 11.6 shows the timing for output of output compare A.

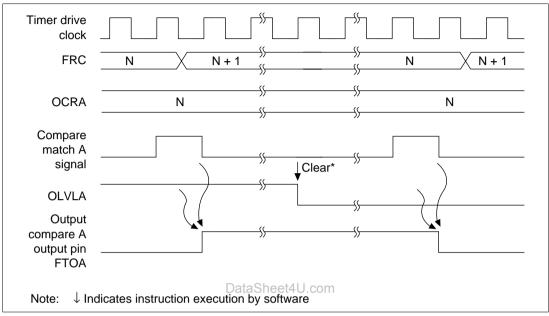


Figure 11.6 Output Timing for Output Compare A

et4U.011.4.3 FRC Clear Timing

DataShe

FRC can be cleared on compare match A. Figure 11.7 shows the timing.

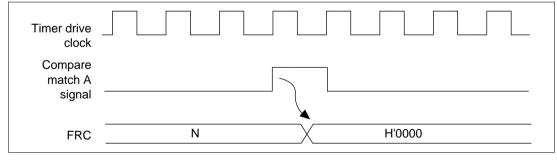


Figure 11.7 Compare Match A Clear Timing

DataSheet4U.com

www.DataSheet4U.com

308

DataSheet4U.com

11.4.4 Input Capture Input Timing

Either the rising edge or falling edge, can be selected for input capture input using the IEDG bit in TCR. Figure 11.8 shows the timing when the rising edge is selected (IEDG = 1).

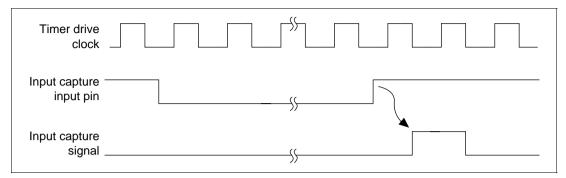


Figure 11.8 Input Capture Signal Timing (Normal)

When the input capture signal is input when ICR is read (upper-byte read), the input capture signal is delayed by one cycle of the clock that drives the timer. Figure 11.9 shows the timing.

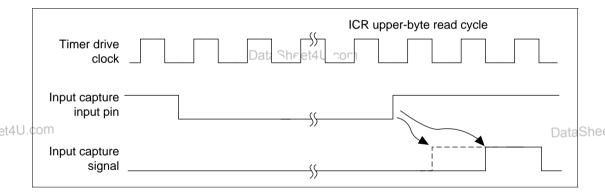
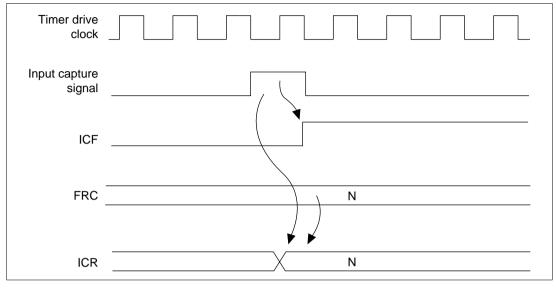
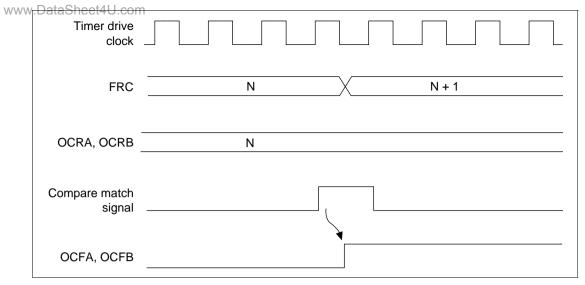


Figure 11.9 Input Capture Signal Timing (Input Capture Input when ICR is Read)

DataSheet4U.com

Input capture input sets the input capture flag (ICF) to 1 and simultaneously transfers the FRC value to ICR. Figure 11.10 shows the timing.

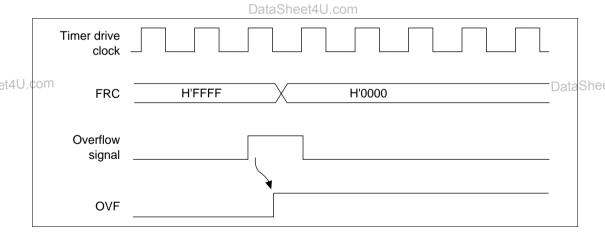



Figure 11.10 ICF Setting Timing DataSheet4U.com

11.4.6 Output Compare Flag (OCFA, OCFB) Setting Timing

The compare match signal output (when OCRA or OCRB matches the FRC value) sets output compare flag OCFA or OCFB to 1. The compare match signal is generated in the last state in DataShe which the values matched (at the timing for updating the count value that matched the FRC). After OCRA or OCRB matches the FRC, no compare match signal is generated until the increment lock is generated. Figure 11.11 shows the timing for setting OCFA and OCFB.

DataSheet4U.com


www.DataSheet4U.com

11.4.7 Timer Overflow Flag (OVF) Setting Timing

FRC overflow (from H'FFFF to H'0000) sets the timer overflow flag (OVF) to 1. Figure 11.12 shows the timing.

DataSheet4U.com

www.DataSheet4U.com 11.5 Interrupt Sources

There are four FRT interrupt sources of three types (ICI, OCIA/OCIB, and OVI). Table 11.3 lists the interrupt sources and their priorities after a reset is cleared. The interrupt enable bits in TIER are used to enable or disable the interrupt bits. Each interrupt request is sent to the interrupt controller independently. See section 4, Exception Handling, for more information about priorities and the relationship to interrupts other than those of the FRT.

Table 11.3 F	FRT Interrupt Sources and Priorities
--------------	---

Interrupt Source	Description	Priority
ICI	Interrupt by ICF	High
OCIA, OCIB	Interrupt by OCFA or OCFB	\uparrow
OVI	Interrupt by OVF	Low

11.6 Example of FRT Use

Figure 11.13 shows an example in which pulses with a 50% duty factor and arbitrary phase relationship are output. The procedure is as follows:

- 1. Set the CCLRA bit in FTCSR to 1.
- 2. The OLVLA and OLVLB bits are inverted by software whenever a compare match occurs.

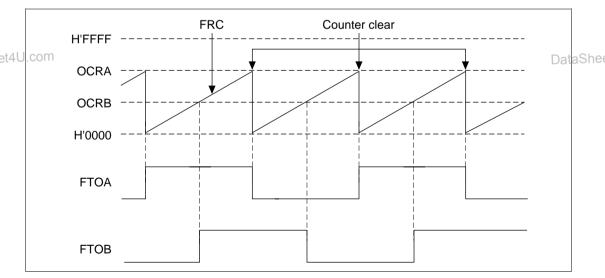


Figure 11.13 Example of Pulse Output

DataSheet4U.com

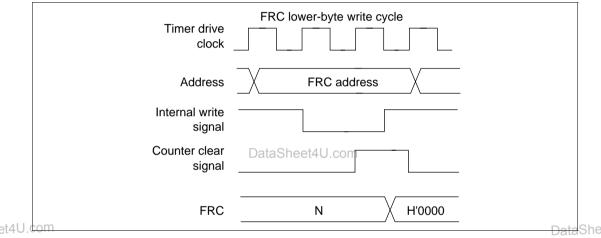
www.DataSheet4U.com

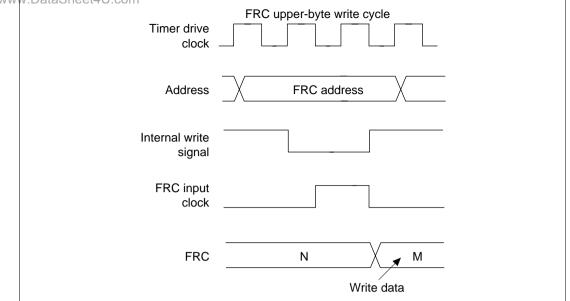
312 DataSheet4U.com

Note that the following contention and operations occur when the FRT is operating:

- 1. FRC operates on the timer drive clock ($\phi/4$), which has a cycle of 4 times the system clock (ϕ). For this reason, when the CPU performs an access, both the CPU and FRT will be operating, so a WAIT request will be generated from the FRT to the CPU. The number of access cycles thus varies by between 3 and 12 cycles.
- 2. Contention between FRC Write and Clear

When a counter clear signal is generated with the timing shown in figure 11.14 during the write cycle for the lower byte of FRC, writing does not occur to the FRC, and the FRC clear takes priority.




Figure 11.14 Contention between FRC Write and Clear

3. Contention between FRC Write and Increment

When an increment occurs with the timing shown in figure 11.15 during the write cycle for the lower byte of FRC, no increment is performed and the counter write takes priority.

DataSheet4U.com

Figure 11.15 Contention between FRC Write and Increment

4. Contention between OCR Write and Compare Match

When a compare match occurs with the timing shown in figure 11.16, during the write cycle for the lower byte of OCRA or OCRB the OCR write takes priority and the compare match signal is disabled.

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4L

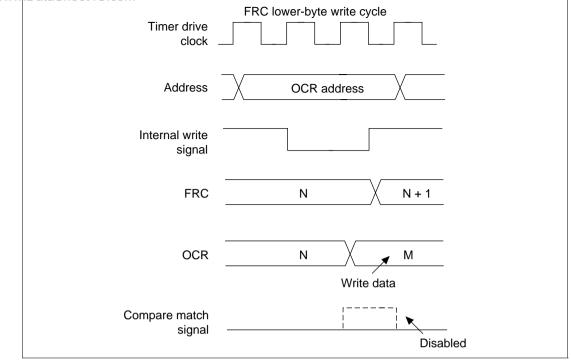
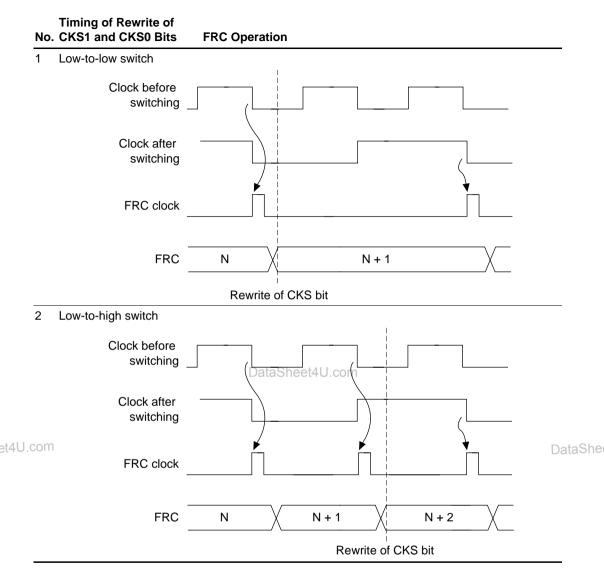


Figure 11.16 Contention between OCR and Compare Match

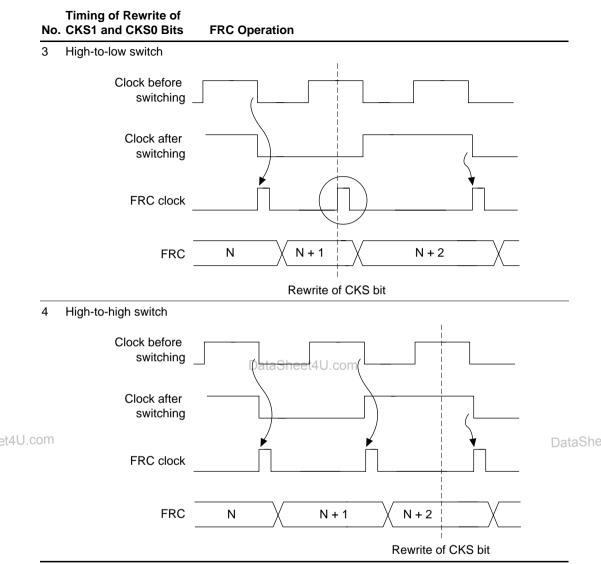

5. Internal Clock Switching and Counter Operation

FRC will sometimes begin incrementing because of the timing of switching between internal clocks. Table 11.4 shows the relationship between internal clock switching timing (CKS1 and DataShe

et4U.com CKS0 bit rewrites) and FRC operation.

When an internal clock is used, the FRC clock is generated when the falling edge of an internal clock (created by dividing the system clock (ϕ)) is detected. When a clock is switched to high before the switching and to low after switching, as shown in case 3 in table 11.4, the switchover is considered a falling edge and an FRC clock pulse is generated, causing FRC to increment. FRC may also increment when switching between an internal clock and an external clock.

www.DataSheet4U.com Table 11.4 Internal Clock Switching and FRC Operation



DataSheet4U.com

www.DataSheet4U.com

316 DataSheet4U.com

www.DataSheet4U.com Table 11.4 Internal Clock Switching and FRC Operation (cont)

6. Timer Output (FTOA, FTOB)

During a power-on reset, the timer outputs (FTOA, FTOB) will be unreliable until the oscillation stabilizes. The initial value is output after the oscillation settling time has elapsed.

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

318 DataSheet4U.com

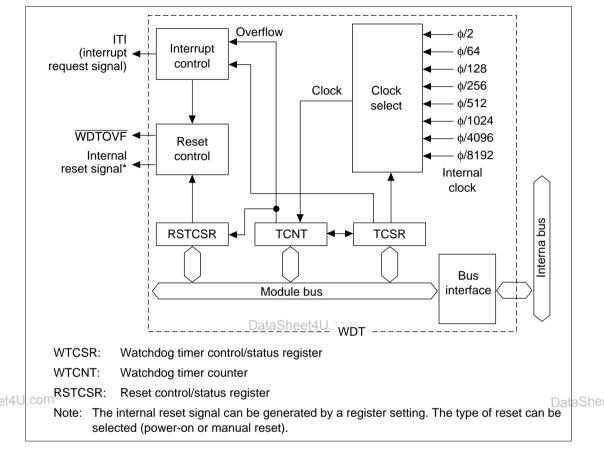
Section 12 Watchdog Timer (WDT)

12.1 Overview

The SH7604 has a single-channel watchdog timer (WDT) for monitoring system operations. If a system becomes uncontrolled and the timer counter overflows without being rewritten correctly by the CPU, an overflow signal (\overline{WDTOVF}) is output externally. The WDT can simultaneously generate an internal reset signal for the entire chip.

When this watchdog function is not needed, the WDT can be used as an interval timer. In the interval timer operation, an interval timer interrupt is generated at each counter overflow. The WDT is also used when recovering from standby mode, in modifying a clock frequency, and in clock pause mode.

12.1.1 Features


- Works in watchdog timer mode or interval timer mode.
- Outputs WDTOVF in watchdog timer mode. When the counter overflows in watchdog timer mode, overflow signal WDTOVF is output externally. It is possible to select whether to reset the chip internally when this happens. Either the power-on reset or manual reset signal can be selected as the internal reset signal.
- Generates interrupts in interval timer mode. When the counter overflows, it generates an interval timer interrupt.
- Used for standby mode clearing, clock frequency modification, and clock pause mode.
- Works with eight counter clock sources.

t4U.com

DataShe

DataSheet4U.com

Figure 12.1 shows a block diagram of the WDT.

12.1.3 Pin Configuration

Table 12.1 shows the pin configuration.

Table 12.1Pin Configuration

	Pin	Abbreviation	I/O	Function
	Watchdog timer overflow	WDTOVF	0	Outputs the counter overflow signal in watchdog mode
ta	Sheet4U.com			www.DataSheet4U.com

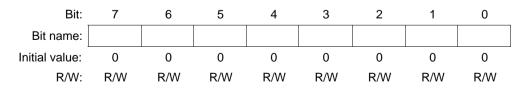
12.1.4 Register Configuration

Table 12.2 summarizes the three WDT registers. They are used to select the clock, switch the WDT mode, and control the reset signal.

Table 12.2 WDT Registers

				Address	
Name	Abbreviation	R/W	Initial Value	Write ^{*1}	Read* ²
Watchdog timer control/status register	WTCSR	R/(W)* ³	H'18	H'FFFFFE80	H'FFFFFE80
Watchdog timer counter	WTCNT	R/W	H'00	H'FFFFFE80	H'FFFFFE81
Reset control/status register	RSTCSR	R/(W)* ³	H'1F	H'FFFFFE82	H'FFFFFE83

Notes: 1. Write by word access. It cannot be written by byte or longword access.


2. Read by byte access. The correct value cannot be read by word or longword access.

3. Only 0 can be written in bit 7 to clear the flag.

12.2 Register Descriptions

12.2.1 Watchdog Timer Counter (WTCNT)^{t4U.com}

WTCNT is an 8-bit read/write up-counter. WTCNT differs from other registers in that it is more difficult to write. See section 12.2.4, Register Access, for details. When the timer enable bit CTME) in the watchdog timer control/status register (WTCSR) is set to 1, the watchdog timer counter starts counting pulses of an internal clock source selected by clock select bits 2 to 0 (CKS2 to CKS0) in WTCSR. When the value of WTCNT overflows (changes from H'FF to H'00), a watchdog timer overflow signal (WDTOVF) or interval timer interrupt (ITI) is generated, depending on the mode selected in the WT/IT bit in WTCSR. WTCNT is initialized to H'00 by a reset and when the TME bit is cleared to 0. It is not initialized in standby mode.

DataSheet4U.com

The watchdog timer control/status register (WTCSR) is an 8-bit read/write register. WTCSR differs from other registers in being more difficult to write. See section 12.2.4, Register Access, for details. Its functions include selecting the timer mode and clock source. Bits 7 to 5 are initialized to 000 by a reset and in standby mode. Bits 2 to 0 are initialized to 000 by a reset, but retain their values in standby mode.

Bit:	7	6	5	4	3	2	1	0
Bit name:	OVF	WT/IT	TME	—		CKS2	CKS1	CKS0
Initial value:	0	0	0	1	1	0	0	0
R/W:	R/(W)	R/W	R/W	_	_	R/W	R/W	R/W

Bit 7—Overflow Flag (OVF): Indicates that WTCNT has overflowed from H'FF to H'00. It is ٠ not set in watchdog timer mode.

Bit 7: OVF	Description	
0	No overflow of WTCNT in interval timer mode	(Initial value)
	Cleared by reading OVF, then writing 0 in OVF	
1	WTCNT overflow in interval timer mode	

Bit 6—Timer Mode Select (WT/IT): Selects whether to use the WDT as a watchdog timer or interval timer. When WTCNT overflows, the WDT either generates an interval timer interrupt (ITI) or generates a WDTOVF signal, depending on the mode selected.

t4U.	⊖Bit⊧6: WT/IT	Description	DataShe
	0	Interval timer mode: interval timer interrupt (ITI) request to the CPU when WTCNT overflows (Initial val	ue)
	1	Watchdog timer mode: WDTOVF signal output externally when WTC overflows. Section 12.2.3, Reset Control/Status Register (RSTCSR), describes in detail what happens when WTCNT overflows in watchdo timer mode.	

Bit 5—Timer Enable (TME): Enables or disables the timer.

Bit 5: TME	Description
0	Timer disabled: WTCNT is initialized to H'00 and count-up stops (Initial value)
1 taSheet4U.com	Timer enabled: WTCNT starts counting. A WDTOVF signal or interrupt is generated when WTCNT overflows.

www.DataSheet4U.com

- Bits 4 and 3—Reserved: These bits always read 1. The write value shoul always be 1.
- Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): These bits select one of eight internal clock sources for input to WTCNT. The clock signals are obtained by dividing the frequency of the system clock (φ).

			Description			
Bit 2:	CKS2 Bit 1:	CKS1 Bit 0: C	KS0 Clock Source	Overflow Interval* (ϕ = 28.7 MHz)		
0	0	0	φ/2 (Initial value)	17.8 μs		
0	0	1	φ/64	570.8 μs		
0	1	0	φ/128	1.1 ms		
0	1	1	φ/256	2.2 ms		
1	0	0	φ/512	4.5 ms		
1	0	1	φ/1024	9.1 ms		
1	1	0	φ/4096	36.5 ms		
1	1	1	φ/8192	73.0 ms		

Note: The overflow interval listed is the time from when the WTCNT begins counting at H'00 until an overflow occurs.

12.2.3 Reset Control/Status Register (RSTCSR)

RSTCSR is an eight-bit read/write register that controls output of the reset signal generated by watchdog timer counter (WTCNT) overflow and selects the internal reset signal type. RSTCSR differs from other registers in that it is more difficult to write. See section 12.2.4, Register Access, et4U.cofor details. RSTCR is initialized to H'1F by input of a reset signal from the RES pin, but is not DataSher initialized by the internal reset signal generated by overflow of the WDT. It is initialized to H'1F in standby mode.

Bit	: 7	6	5	4	3	2	1	0
Bit name	: WOVF	RSTE	RSTS	—	—	_	—	—
Initial value	0	0	0	1	1	1	1	1
R/W	: R/(W)*	R/W	R/W	—	—	—	—	—
Noto: Only 0 con	ho writton i	n hit 7 to	aloar tha fl	20				

Note: Only 0 can be written in bit 7 to clear the flag.

• Bit 7—Watchdog Timer Overflow Flag (WOVF): Indicates that WTCNT has overflowed (from H'FF to H'00) in watchdog timer mode. It is not set in interval timer mode.

DataSheet4U.com

www.DataSheet4U.com

ww.DataSheet4U.com Bit 7: WOVF	Description	
0	No WTCNT overflow in watchdog timer mode	(Initial value)
	Cleared by reading WOVF, then writing 0 in WOVF	
1	Set by WTCNT overflow in watchdog timer mode	

Bit 6—Reset Enable (RSTE): Selects whether to reset the chip internally if WTCNT overflows in watchdog timer mode.

Bit 6: RSTE	Description	
0	Not reset when WTCNT overflows	(Initial value)
	LSI not reset internally, but WTCNT and WTCS	R reset within WDT
1	Reset when WTCNT overflows	

Bit 5—Reset Select (RSTS): Selects the type of internal reset generated if WTCNT overflows in watchdog timer mode.

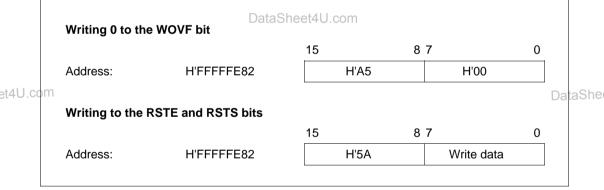
Bit 5: RSTS	Description	
0	Power-on reset	(Initial value)
1	Manual reset	

Bits 4 to 0—Reserved: These bits always read as 1. The write value should always be 1.

12.2.4 **Register Access**

et4U.com The watchdog timer's WTCNT, WTCSR, and RSTCSR registers differ from other registers in that ataShe they are more difficult to write. The procedures for writing and reading these registers are given below.

Writing to WTCNT and WTCSR: These registers must be written by a word transfer instruction. They cannot be written by byte or longword transfer instructions. WTCNT and WTCSR both have the same write address. The write data must be contained in the lower byte of the written word. The upper byte must be H'5A (for WTCNT) or H'A5 (for WTCSR) (figure 12.2). This transfers the write data from the lower byte to WTCNT or WTCSR.


www.DataSheet4U.com

324 DataSheet4U.com

Writing to WTCNT				
		15	87	0
Address:	H'FFFFFE80	H'5A	Write c	lata
Writing to WTCSR				
		15	87	0
Address:	H'FFFFE80	H'A5	5 Write d	lata

Writing to RSTCSR: RSTCSR must be written by a word access to address H'FFFFE82. It cannot be written by byte or longword transfer instructions. Procedures for writing 0 in WOVF (bit 7) and for writing to RSTE (bit 6) and RSTS (bit 5) are different, as shown in figure 12.3. To write 0 in the WOVF bit, the write data must be H'A5 in the upper byte and H'00 in the lower byte. This clears the WOVF bit to 0. The RSTE and RSTS bits are not affected. To write to the RSTE and RSTS bits, the upper byte must be H'5A and the lower byte must be the write data. The values of bits 6 and 5 of the lower byte are transferred to the RSTE and RSTS bits, respectively. The WOVF bit is not affected.

Figure 12.3 Writing to RSTCSR

Reading from WTCNT, WTCSR, and RSTCSR: WTCNT, WTCSR, and RSTCSR are read like other registers. Use byte transfer instructions. The read addresses are H'FFFFE80 for WTCSR, H'FFFFE81 for WTCNT, and H'FFFFFE83 for RSTCSR.

DataSheet4U.com

www.DataSheet4U.com

12.3.1 Operation in Watchdog Timer Mode

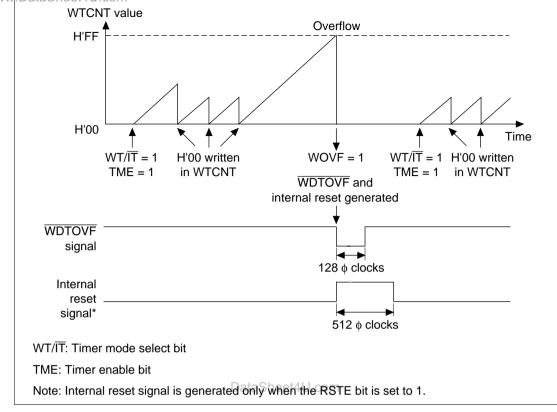
To use the WDT as a watchdog timer, set the WT/ \overline{IT} and TME bits in WTCSR to 1. Software must prevent WTCNT overflow by rewriting the WTCNT value (normally by writing H'00) before overflow occurs. If WTCNT fails to be rewritten and overflows occur due to a system crash or the like, a \overline{WDTOVF} signal is output (figure 12.4). The \overline{WDTOVF} signal can be used to reset the system. The \overline{WDTOVF} signal is output for 128 ϕ clock cycles.

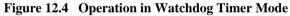
If the RSTE bit in RSTCSR is set to 1, a signal to reset the chip will be generated internally simultaneously with the \overline{WDTOVF} signal when WTCNT overflows. Either a power-on reset or a manual reset can be selected by the RSTS bit. The internal reset signal is output for 512 ϕ clock cycles.

When a watchdog reset is generated simultaneously with input at the $\overline{\text{RES}}$ pin, the software distinguishes the $\overline{\text{RES}}$ reset from the watchdog reset by checking the WOVF bit in RSTCSR. The $\overline{\text{RES}}$ reset takes priority. The WOVF bit is cleared to 0.

DataSheet4U.com

t4U.com


DataShe


DataSheet4U.com

www.DataSheet4U.com

326 DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

12.3.2 Operation in Interval Timer Mode

To use the WDT as an interval timer, clear WT/\overline{IT} to 0 and set TME to 1 in WTSCR. An interval timer interrupt (ITI) is generated each time the watchdog timer counter (WTCNT) overflows. This function can be used to generate interval timer interrupts at regular intervals (figure 12.5).

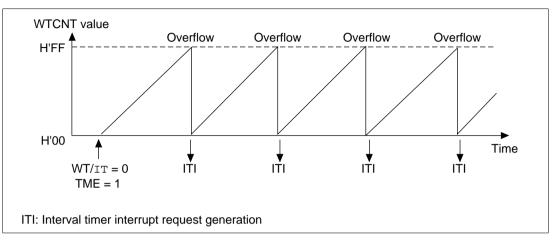


Figure 12.5 Operation in Interval Timer Mode

12.3.3 Operation in Standby Mode DataSheet4U.com

The watchdog timer has a special function to clear standby mode with an NMI interrupt. When using standby mode, set the WDT as described below.

timer counter before it enters standby mode. The TME bit in WTCSR must be cleared to 0 to stop the watchdogataShet timer counter before it enters standby mode. The chip cannot enter standby mode while the TME bit is set to 1. Set bits CKS2 to CKS0 in WTCSR so that the counter overflow interval is equal to or longer than the oscillation settling time. See section15.3, AC Characteristics, for the oscillation settling time.

Recovery from Standby Mode: When an NMI request signal is received in standby mode the clock oscillator starts running and the watchdog timer starts counting at the rate selected by bits CKS2 to CKS0 before standby mode was entered. When WTCNT overflows (changes from H'FF to H'00) the system clock (ϕ) is presumed to be stable and usable; clock signals are supplied to the entire chip and standby mode ends.

For details on standby mode, see section 14, Power Down Modes.

DataSheet4U.com

www.DataSheet4U.com

328 DataSheet4U.com

Renesas

12.3.4 Timing of Overflow Flag (OVF) Setting

In interval timer mode, when WTCNT overflows, the OVF flag in WTCSR is set to 1 and an interval timer interrupt (ITI) is requested (figure 12.6).

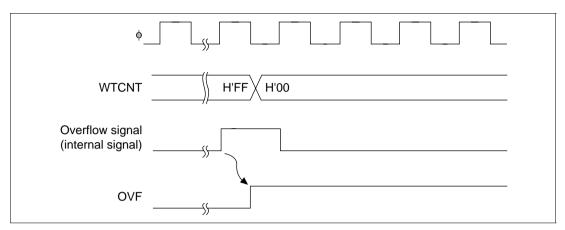


Figure 12.6 Timing of OVF Setting

12.3.5 Timing of Watchdog Timer Overflow Flag (WOVF) Setting

When WTCNT overflows the WOVF flag in RSTCSR is set to 1 and a $\overline{\text{WDTOVF}}$ signal is output. When the RSTE bit is set to 1, WTCNT overflow enables an internal reset signal to be generated for the entire chip (figure 12.7).

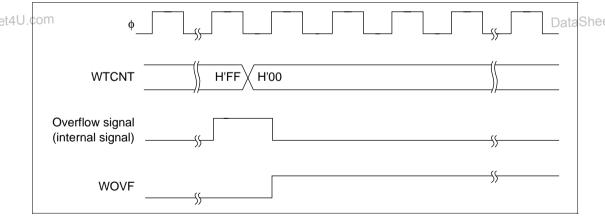


Figure 12.7 Timing of WOVF Setting

DataSheet4U.com

www.DataSheet4U.com

12.4.1 Contention between WTCNT Write and Increment

If a timer counter clock pulse is generated during the T3 state of a write cycle to WTCNT, the write takes priority and the timer counter is not incremented (figure 12.8).

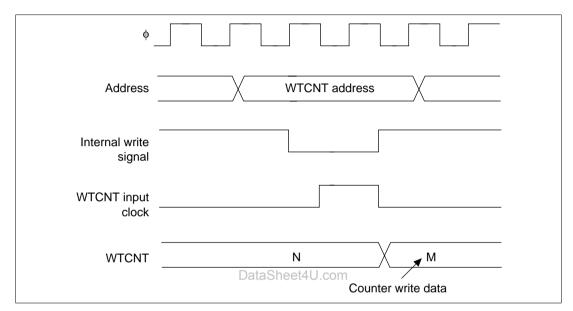


Figure 12.8 Contention between WTCNT Write and Increment

12.4.2 Changing CKS2 to CKS0 Bit Values

DataShe

If the values of bits CKS2 to CKS0 are altered while the WDT is running, the count may increment incorrectly. Always stop the watchdog timer (by clearing the TME bit to 0) before changing the values of bits CKS2 to CKS0.

12.4.3 Switching between Watchdog Timer and Interval Timer Mode

To prevent incorrect operation, always stop the watchdog timer (by clearing the TME bit to 0) before switching between interval timer mode and watchdog timer mode.

DataSheet4U.com

www.DataSheet4U.com

12.4.4 System Reset with WDTOVF

If a $\overline{\text{WDTOVF}}$ signal is input to the $\overline{\text{RES}}$ pin, the device cannot initialize correctly. Avoid logical input of the $\overline{\text{WDTOVF}}$ output signal to the $\overline{\text{RES}}$ input pin. To reset the entire system with the $\overline{\text{WDTOVF}}$ signal, use the circuit shown in figure 12.9.

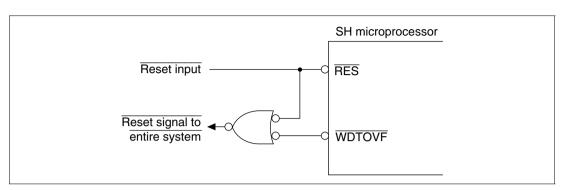


Figure 12.9 Example of Circuit for System Reset with WDTOVF Signal

12.4.5 Internal Reset in Watchdog Timer Mode

If the RSTE bit is cleared to 0 in watchdog timer mode, the chip will not reset internally when a WTCNT overflow occurs, but WTCNT and WTCSR in the WDT will reset. DataSheet4U.com

t4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

332 DataSheet4U.com

13.1 Overview

The SH7604 has a serial communication interface (SCI) that supports both asynchronous and clocked synchronous serial communication. It also has a multiprocessor communication function for serial communication among two or more processors.

13.1.1 Features

Selection of asynchronous or clock synchronous as the serial communication mode

- Asynchronous mode:
 - Serial data communication is synchronized by the start-stop method in character units. The SCI can communicate with a universal asynchronous receiver/transmitter (UART), an asynchronous communication interface adapter (ACIA), or any other chip that employs standard asynchronous serial communication. It can also communicate with two or more other processors using the multiprocessor communication function. There are twelve selectable serial data communication formats.
 - Data length: seven or eight bits
 - Stop bit length: one or two bits \Box
 - Parity: even, odd, or none
 - Multiprocessor bit: one or none
 - Receive error detection: parity, overrun, and framing errors
- et4U.com Clocked synchronous mode:

DataShe

- Serial data communication is synchronized with a clock signal. The SCI can communicate with other chips having a clocked synchronous communication function. There is one serial data communication format.
- Data length: eight bits
- Receive error detection: overrun errors
- Full duplex communication. The transmitting and receiving sections are independent, so the SCI can transmit and receive simultaneously. Both sections use double buffering, so continuous data transfer is possible in both the transmit and receive directions.
- Built-in baud rate generator with selectable bit rates
- Internal or external transmit/receive clock source. Baud rate generator (internal) or SCK pin (external)
- Four types of interrupts. Transmit-data-empty, transmit-end, receive-data-full, and receive-
- DataSheetror interrupts are requested independently. The transmit-data-empty and receiveDataSheet4U.com interrupts can start the direct memory access controller (DMAC) to transfer data.

Figure 13.1 shows a block diagram of the SCI.

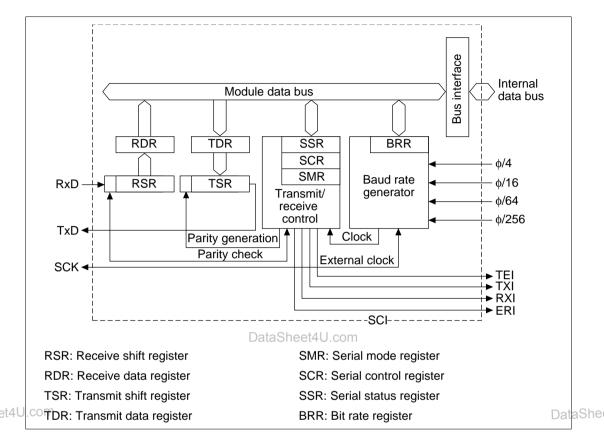


Figure 13.1 SCI Block Diagram

13.1.3 Pin Configuration

Table 13.1 summarizes the SCI pins.

Table 13.1 SCI Pins

Pin Name	Abbreviation	Input/Output	Function	
Serial clock pin	SCK	Input/output	Clock input/output	
Receive data pin	RxD	Input	Receive data input	
Transmit data pin	TxD	Output	Transmit data output	www.DataSheet4U.co
Sheef4LL com				- WWW.DataSheet4U.co

DataSheet4U.com

Table 13.2 summarizes the SCI internal registers. These registers select the communication mode (asynchronous or clock synchronous), specify the data format and bit rate, and control the transmitter and receiver sections.

Name	Abbreviation	R/W	Initial Value	Address	Access size
Serial mode register	SMR	R/W	H'00	H'FFFFFE00	8
Bit rate register	BRR	R/W	H'FF	H'FFFFFE01	8
Serial control register	SCR	R/W	H'00	H'FFFFFE02	8
Transmit data register	TDR	R/W	H'FF	H'FFFFFE03	8
Serial status register	SSR	R/(W)*	H'84	H'FFFFFE04	8
Receive data register	RDR	R	H'00	H'FFFFFE05	8

Table 13.2 Registers

Note: The only value that can be written is a 0 to clear the flags.

13.2 Register Descriptions

13.2.1 Receive Shift Register (RSR)

DataSheet4U.com

The receive shift register (RSR) receives serial data. Data input at the RxD pin is loaded into RSR in the order received, LSB (bit 0) first, converting the data to parallel form. When one byte has been received, it is automatically transferred to RDR. The CPU cannot read or write to RSR directly.

13.2.2 Receive Data Register (RDR)

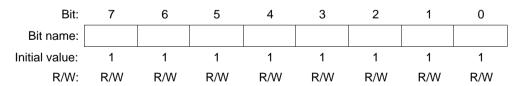
The receive data register (RDR) stores serial receive data. The SCI completes the reception of one byte of serial data by moving the received data from the receive shift register (RSR) into RDR for storage. RSR is then ready to receive the next data. This double buffering allows the SCI to receive data continuously.

The CPU can read but not write to RDR. RDR is initialized to H'00 by a reset and in standby and DataSheet4U.com module standby mode.

DataSheet4U.com

www.DataSheet4U.com	^ר 7	6	5	4	3	2	1	0
Bit name:								
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R

13.2.3 Transmit Shift Register (TSR)


The transmit shift register (TSR) transmits serial data. The SCI loads transmit data from the transmit data register (TDR) into TSR, then transmits the data serially from the TxD pin, LSB (bit 0) first. After transmitting one data byte, the SCI automatically loads the next transmit data from TDR into TSR and starts transmitting again. If the TDRE bit in SSR is 1, however, the SCI does not load the TDR contents into TSR. The CPU cannot read or write to TSR directly.

13.2.4 Transmit Data Register (TDR)

The transmit data register (TDR) is an 8-bit register that stores data for serial transmission. When the SCI detects that the transmit shift register (TSR) is empty, it moves transmit data written in TDR into TSR and starts serial transmission. Continuous serial transmission is possible by writing the next transmit data in TDR during serial transmission from TSR.

t4U. The CPU can always read and write to TDR. TDR is initialized to H'FF by a reset and in standby DataShe and module standby mode.

13.2.5 Serial Mode Register (SMR)

The serial mode register (SMR) is an 8-bit register that specifies the SCI serial communication format and selects the clock source for the baud rate generator.

The CPU can always read and write to SMR. SMR is initialized to H'00 by a reset and in standby 4U.com and module standby mode.

336 DataSheet4U.com

www.DataSheet4U.com

Bit:	7	6	5	4	3	2	1	0	
Bit name:	C/A	CHR	PE	O/Ē	STOP	MP	CKS1	CKS0	
Initial value:	0	0	0	0	0	0	0	0	
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

• Bit 7—Communication Mode (C/A): Selects whether the SCI operates in asynchronous or clocked synchronous mode.

Bit 7: C/A	Description	
0	Asynchronous mode	(Initial value)
1	Clocked synchronous mode	

• Bit 6—Character Length (CHR): Selects 7-bit or 8-bit data in asynchronous mode. In clocked synchronous mode, the data length is always eight bits, regardless of the CHR setting.

Bit 6: CHR	Description	
0	8-bit data	(Initial value)
1	7-bit data. (When 7-bit data is selected, the MSB (bit 7) of th data register is not transmitted.)	e transmit

• Bit 5—Parity Enable (PE): Selects whether to add a parity bit to transmit data and to check the parity of receive data, in asynchronous mode. In clocked synchronous mode, a parity bit is neither added nor checked, regardless of the PE setting.

Bit 5: PE	Description	DetaChou
0	Parity bit not added or checked	(Initial value)
1	Parity bit added and checked. When PE is set to 1, parity bit is added to transmit data, depending on th setting. Receive data parity is checked according to mode setting.	an even or odd e parity mode (O/Ē)

• Bit 4—Parity Mode (O/Ē): Selects even or odd parity when parity bits are added and checked. The O/Ē setting is used only in asynchronous mode and only when the parity enable bit (PE) is set to 1 to enable parity addition and checking. The O/Ē setting is ignored in clocked synchronous mode, and in asynchronous mode when parity addition and checking is disabled.

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com Bit 4: O/E	Description	
0	Even parity	(Initial value)
	If even parity is selected, the parity bit is added to trar an even number of 1s in the transmitted character and combined. Receive data is checked to see if it has an 1s in the received character and parity bit combined.	d parity bit
1	Odd parity	
	If odd parity is selected, the parity bit is added to trans an odd number of 1s in the transmitted character and combined. Receive data is checked to see if it has an in the received character and parity bit combined.	parity bit

- Bit 3—Stop Bit Length (STOP): Selects one or two bits as the stop bit length in asynchronous mode. This setting is used only in asynchronous mode. It is ignored in clocked synchronous mode because no stop bits are added.
- In receiving, only the first stop bit is checked, regardless of the STOP bit setting. If the second stop bit is 1, it is treated as a stop bit, but if the second stop bit is 0, it is treated as the start bit of the next incoming character.

Bit 3: STOP	Description				
0	One stop bit (Initial v	alue)			
	In transmitting, a single 1-bit is added at the end of each transmitted character				
1	Two stop bits				
.com	In transmitting, two 1-bits are added at the end of each transmitted character	Da			

Bit 2—Multiprocessor Mode (MP): Selects multiprocessor format. When multiprocessor format is selected, settings of the parity enable (PE) and parity mode (O/Ē) bits are ignored. The MP bit setting is used only in asynchronous mode; it is ignored in clocked synchronous mode. For the multiprocessor communication function, see section 13.3.3, Multiprocessor Communication.

Bit 2: MP	Description	
0	Multiprocessor function disabled	(Initial value)
1	Multiprocessor format selected	

DataSheet4U.com

www.DataSheet4U.com

Www.DataSheet4U.com
Bits 1 and 0—Clock Select 1 and 0 (CKS1 and CKS0): These bits select the internal clock source of the built-in baud rate generator. Four clock sources are available. $\phi/4$, $\phi/16$, $\phi/64$ and $\phi/256$. For further information on the clock source, bit rate register settings, and baud rate, see section 13.2.8, Bit Rate Register.

Bit 1: CKS1	Bit 0: CKS0	Description	
0	0	φ/4	(Initial value)
	1	φ/16	
1	0	φ/64	
	1	φ/256	

13.2.6 Serial Control Register (SCR)

The serial control register (SCR) operates the SCI transmitter/receiver, selects the serial clock output in asynchronous mode, enables/disables interrupts, and selects the transmit/receive clock source. The CPU can always read and write to SCR. SCR is initialized to H'00 by a reset and in standby and module standby modes.

Bit:	7	6	5	4	3	2	1	0
Bit name:	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value:	0	0	DataShee	et4U.com	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7—Transmit Interrupt Enable (TIE): Enables or disables the transmit-data-empty interrupt et4U.com (TXI) requested when the transmit data register empty bit (TDRE) in the serial status register ataShe (SSR) is set to 1 due to transfer of serial transmit data from TDR to TSR.

Bit 7: TIE	Description
0	Transmit-data-empty interrupt request (TXI) is disabled (Initial value)
	The TXI interrupt request can be cleared by reading TDRE after it has been set to 1, then clearing TDRE to 0, or by clearing TIE to 0.
1	Transmit-data-empty interrupt request (TXI) is enabled

Bit 6-Receive Interrupt Enable (RIE): Enables or disables the receive-data-full interrupt (RXI) requested when the receive data register full bit (RDRF) in the serial status register (SSR) is set to 1 due to transfer of serial receive data from RSR to RDR. It also enables or disables receive-error interrupt (ERI) requests.

v.DataSheet4U.com Bit 6: RIE	Description	
0	Receive-data-full interrupt (RXI) and receive-error in requests are disabled	nterrupt (ERI) (Initial value)
	RXI and ERI interrupt requests can be cleared by reading the RDRF flag or error flag (FER, PER, or ORER) after it has been set to 1, then clearing the flag to 0, or by clearing RIE to 0.	
1	Receive-data-full interrupt (RXI) and receive-error in requests are enabled	nterrupt (ERI)

• Bit 5—Transmit Enable (TE): Enables or disables the SCI serial transmitter.

Bit 5: TE	Description	
0	Transmitter disabled (Ir	nitial value)
	The transmit data register empty bit (TDRE) in the serial statu (SSR) is locked at 1	s register
1	Transmitter enabled	
	Serial transmission starts when the transmit data register emp bit in the serial status register (SSR) is cleared to 0 after writir transmit data into TDR. Select the transmit format in SMR bef TE to 1.	ng of

• Bit 4—Receive Enable (RE): Enables or disables the SCI serial receiver.

Bit 4: RE	Description	
0	Receiver disabled	(Initial value)
4U.com	Clearing RE to 0 does not affect the receive ORER). These flags retain their previous va	flags (RDRF, FER, PER, lues. DataShee
1	Receiver enabled	
	Serial reception starts when a start bit is det mode, or synchronous clock input is detecte mode. Select the receive format in SMR bef	ed in clocked synchronous

• Bit 3—Multiprocessor Interrupt Enable (MPIE): Enables or disables multiprocessor interrupts. The MPIE setting is used only in asynchronous mode, and only if the multiprocessor mode bit (MP) in the serial mode register (SMR) is set to 1 during reception. The MPIE setting is ignored in clocked synchronous mode or when the MP bit is cleared to 0.

DataSheet4U.com

www.DataSheet4U.com

340 DataSheet4U.com

www.DataSheet4U.com Bit 3: MPIE	Description
0	Multiprocessor interrupts are disabled (normal receive operation) (Initial value)
	MPE is cleared to 0 when MPIE is cleared to 0, or the multiprocessor bit (MPB) is set to 1 in receive data.
1	Multiprocessor interrupts are enabled
	Receive-data-full interrupt requests (RXI), receive-error interrupt requests (ERI), and setting of the RDRF, FER, and ORER status flags in the serial status register (SSR) are disabled until the multiprocessor bit is set to 1.
	The SCI does not transfer receive data from RSR to RDR, does not detect receive errors, and does not set the RDRF, FER, and ORER flags in the serial status register (SSR). When it receives data that includes MPB = 1, MPB is set to 1 in SSR, and the SCI automatically clears MPIE to 0, generates RXI and ERI interrupts (if the TIE and RIE bits in SCR are set to 1), and enables the FER and ORER bits to be set.

• Bit 2—Transmit-End Iinterrupt Enable (TEIE): Enables or disables the transmit-end interrupt (TEI) requested if TDR does not contain new transmit data when the MSB is transmitted.

Bit 2:	TEIE Description
0	Transmit-end interrupt (TEI) requests are disabled* (Initial value)
1	Transmit-end interrupt (TEI) requests are enabled*
Note:	The TEL request can be cleared by reading the TDRE bit in the serial status register (SSR)

Note: The TET request can be cleared by reading the TDRE bit in the serial status register (SSR) after it has been set to 1, then clearing TDRE to 0; by clearing the transmit end (TEND) bit to 0; or by clearing the TEIE bit to 0.

t4U.com

DataShe

 Bits 1 and 0—Clock Enable 1 and 0 (CKE1 and CKE0): These bits select the SCI clock source and enable or disable clock output from the SCK pin. Depending on the combination of CKE1 and CKE0, the SCK pin can be used for general-purpose input/output, serial clock output, or serial clock input.

The CKE0 setting is valid only in asynchronous mode, and only when the SCI is internally clocked (CKE1 = 0). The CKE0 setting is ignored in clocked synchronous mode, or when an external clock source is selected (CKE1 = 1). Select the SCI operating mode in the serial mode register (SMR) before setting CKE1 and CKE0. For further details on selection of the SCI clock source, see table 13.9 in section 13.3, Operation.

DataSheet4U.com

www	Dat	aSh		1U.	com
	וטונ		лιυ.		

CKE1	CKE0	Description
	OILC	Description

••••••			
0	0	Asynchronous mode	Internal clock, SCK pin used for input pin (input signal is ignored or output pin output level is undefined) ^{*1}
		Clocked synchronous mode	Internal clock, SCK pin used for synchronous clock output*1
0	1	Asynchronous mode	Internal clock, SCK pin used for clock output*2
		Clocked synchronous mode	Internal clock, SCK pin used for synchronous clock output
1	0	Asynchronous mode	External clock, SCK pin used for clock input*3
		Clocked synchronous mode	External clock, SCK pin used for synchronous clock input
1	1	Asynchronous mode	External clock, SCK pin used for clock input*3
		Clocked synchronous mode	External clock, SCK pin used for synchronous clock input

Notes: 1. Initial value

- 2. The output clock frequency is the same as the bit rate.
- 3. The input clock frequency is 16 times the bit rate.

13.2.7 Serial Status Register (SSR)

DataSheet4U.com

The serial status register (SSR) is an 8-bit register containing multiprocessor bit values, and status flags that indicate the SCI operating status.

The CPU can always read and write to SSR, but cannot write 1 in the status flags (TDRE, RDRF, ORER, PER, and FER). These flags can be cleared to 0 only if they have first been read (after being set to 1). Bits 2 (TEND) and 1 (MPB) are read-only bits that cannot be written. SSR is initialized to H'84 by a reset and in standby and module standby mode.

Bit:	7	6	5	4	3	2	1	0
Bit name:	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial value:	1	0	0	0	0	1	0	0
R/W:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W
.								

Note: The only value that can be written is a 0 to clear the flag.

• Bit 7—Transmit Data Register Empty (TDRE): Indicates that the SCI has loaded transmit data from TDR into TSR and new serial transmit data can be written in TDR.

DataSheet4U.com

www.DataSheet4U.com

• Bit 6—Receive Data Register Full (RDRF): Indicates that RDR contains received data.

Bit 6:	RDRF	Description	
0		RDR does not contain valid receive data	(Initial value)
		RDRF is cleared to 0 when the chip is reset or enters standby mode reads RDRF after it has been set to 1, then writes 0 in RDRF, or the reads data from RDR.	,
1		RDR contains valid received data	
		RDRF is set to 1 when serial data is received normally and transfer to RDR.	red from RSR
Note:		d RDRF are not affected by detection of receive errors or by clearing one serial control register. They retain their previous contents. If RDRF	

- to 0 in the serial control register. They retain their previous contents. If RDRF is still set to 1 when reception of the next data ends, an overrun error (ORER) occurs and the received data is lost.
- Bit 5—Overrun Error (ORER): Indicates that data reception ended abnormally due to an overrun error.

. ..

t4U.con

DataShe

Bit 5: C	RER	Description	
0		Receiving is in progress or has ended normally ^{*1}	(Initial value)
		ORER is cleared to 0 when the chip is reset or enters standby more reads ORER after it has been set to 1, then writes 0 in ORER.	de, or software
1		A receive overrun error occurred ^{*2}	
		ORER is set to 1 if reception of the next serial data ends when RD	RF is set to 1.
Notes:		aring the RE bit to 0 in the serial control register does not affect the C ins its previous value.	RER bit, which
:	rece	R continues to hold the data received before the overrun error, so sub eive data is lost. Serial receiving cannot continue while ORER is set to chronous mode, serial transmitting is disabled.	•

DataSheet4U.com

Www.DataSheet4U.com
 Bit 4—Framing Error (FER): Indicates that data reception ended abnormally due to a framing

error in asynchronous mode.

Bit 4: FER	Description	
0	Receiving is in progress or has ended normally	(Initial value)
	Clearing the RE bit to 0 in the serial control register does not affec which retains its previous value.	t the FER bit,
	FER is cleared to 0 when the chip is reset or enters standby mode reads FER after it has been set to 1, then writes 0 in FER.	, or software
1	A receive framing error occurred	
	When the stop bit length is two bits, only the first bit is checked. The bit is not checked. When a framing error occurs, the SCI transfers data into RDR but does not set RDRF. Serial receiving cannot con FER is set to 1. In clocked synchronous mode, serial transmitting in disabled.	the receive tinue while
	FER is set to 1 if the stop bit at the end of receive data is checked be 0.	and found to

Bit 3—Parity Error (PER): Indicates that data reception (with parity) ended abnormally due to • a parity error in asynchronous mode.

Bit 3: PER	Description	
0	Receiving is in progress or has ended normally	(Initial value)
	Clearing the RE bit to 0 in the serial control register does not a which retains its previous value.	Iffect the PER bit,
J.com	PER is cleared to 0 when the chip is reset or enters standby m reads PER after it has been set to 1, then writes 0 in PER.	node, or software Data
1	A receive parity error occurred	
	When a parity error occurs, the SCI transfers the receive data not RDRF. Serial receiving cannot continue while PER is set to synchronous mode, serial transmitting is also disabled.	
	PER is set to 1 if the number of 1s in receive data, including th not match the even or odd parity setting of the parity mode bit mode register (SMR).	

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com • Bit 2—Transmit 1

Bit 2—Transmit End (TEND): Indicates that when the last bit of a serial character was transmitted, TDR did not contain valid data, so transmission has ended. TEND is a read-only bit and cannot be written.

Bit 2: TEND	Description	
0	Transmission is in progress	_
	TEND is cleared to 0 when software reads TDRE after it has been set to 1, ther writes 0 in TDRE, or the DMAC writes data in TDR.	n
1	End of transmission (Initial value	le)
	TEND is set to 1 when the chip is reset or enters standby mode, TE is cleared t 0 in the serial control register (SCR), or TDRE is 1 when the last bit of a one-by serial character is transmitted.	

• Bit 1—Multiprocessor Bit (MPB): Stores the value of the multiprocessor bit in receive data when a multiprocessor format is selected for receiving in asynchronous mode. MPB is a read-only bit and cannot be written.

Bit 1: MPB	Description	
0	Multiprocessor bit value in receive data is 0	(Initial value)
	If RE is cleared to 0 when a multiprocessor format is selected, MPB previous value.	retains its
1	Multiprocessor bit value in receive data is 1	

- Bit 0—Multiprocessor Bit Transfer (MPBT): Stores the value of the multiprocessor bit added to transmit data when a multiprocessor format is selected for transmitting in asynchronous
- et4U.com mode. The MPBT setting is ignored in clocked synchronous mode, when a multiprocessor DataShee format is not selected, or when the SCI is not transmitting.

Bit 0: MPBT	Description	
0	Multiprocessor bit value in transmit data is 0	(Initial value)
1	Multiprocessor bit value in transmit data is 1	

DataSheet4U.com

The bit rate register (BRR) is an 8-bit register that, together with the baud rate generator clock source selected by the CKS1 and CKS0 bits in the serial mode register (SMR), determines the serial transmit/receive bit rate.

The CPU can always read and write to BRR. BRR is initialized to H'FF by a reset and in standby mode.

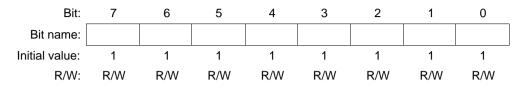


Table 13.3 shows examples of BRR settings in asynchronous mode; table 13.4 shows examples of BBR settings in clocked synchronous mode.

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

346 DataSheet4U.com

www.DataSheet4U.com Table 13.3 Bit Rates and BRR Settings in Asynchronous Mode

						Ψ	1411 12)					
		4			4.91	52		8			9.83	04
Bit Rate (bits/s)	n	Ν	Error (%)	n	Ν	Error (%)	n	Ν	Error (%)	n	N	Error (%)
110	1	70	0.03	1	86	0.31	1	141	0.03	1	174	-0.26
150	0	207	0.16	0	255	0.00	1	103	0.16	1	127	0.00
300	0	103	0.16	0	127	0.00	0	207	0.16	0	255	0.00
600	0	51	0.16	0	63	0.00	0	103	0.16	0	127	0.00
1200	0	25	0.16	0	31	0.00	0	51	0.16	0	63	0.00
2400	0	12	0.16	0	15	0.00	0	25	0.16	0	31	0.00
4800	_	_	_	0	7	0.00	0	12	0.16	0	15	0.00
9600	_	_	_	0	3	0.00	_	_	_	0	7	0.00
19200	_	_	_	0	1	0.00	_	_	_	0	3	0.00
31250	0	0	0.00	—	_	_	0	1	0.00	—	_	_
38400	_	_	_	0	0	0.00	—	_	_	0	1	0.00

≬ (MHz)

ф (MHz)

			12		[Da 14.5 4	156 t4U.c	om	16			19.6	608
	Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
	110	1	212	0.03	2	64	0.70	2	70	0.03	2	86	0.31
U.C	150	1	155	0.16	1	191	0.00	1	207	0.16	1	255	0.00 ^{Dat}
	300	1	77	0.16	1	95	0.00	1	103	0.16	1	127	0.00
	600	0	155	0.16	0	191	0.00	0	207	0.16	0	255	0.00
	1200	0	77	0.16	0	95	0.00	0	103	0.16	0	127	0.00
	2400	0	38	0.16	0	47	0.00	0	51	0.16	0	63	0.00
	4800	0	19	-2.34	0	23	0.00	0	25	0.16	0	31	0.00
	9600	0	9	-2.34	0	11	0.00	0	12	0.16	0	15	0.00
	19200	0	4	-2.34	0	5	0.00	_			0	7	0.00
	31250	0	2	0.00	_		_	0	3	0.00	0	4	-1.70
	38400	—	—	—	0	2	0.00	—	—	—	0	3	0.00

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com Table 13.3 Bit Rates and BRR Settings in Asynchronous Mode (cont)

						Ψ(wii 12)					
		20			24			24.57	76		28.	7
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	88	-0.25	2	106	-0.44	2	108	0.08	2	126	0.31
150	2	64	0.16	2	77	0.16	2	79	0.00	2	92	0.46
300	1	129	0.16	1	155	0.16	1	159	0.00	1	186	-0.08
600	1	64	0.16	1	77	0.16	1	79	0.00	1	92	0.46
1200	0	129	0.16	0	155	0.16	0	159	0.00	0	186	-0.08
2400	0	64	0.16	0	77	0.16	0	79	0.00	0	92	0.46
4800	0	32	-1.36	0	38	0.16	0	39	0.00	0	46	-0.61
9600	0	15	1.73	0	19	-2.34	0	19	0.00	0	22	1.55
19200	0	7	1.73	0	9	-2.34	0	9	0.00	0	11	-2.68
31250	0	4	0.00	0	5	0.00	0	5	2.40	0	6	2.50
38400	0	3	1.73	0	4	-2.34	0	4	0.00	0	5	-2.68

₼ (MH⁊)

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

348 DataSheet4U.com

www.DataSheet4U.com Table 13.4 Bit Rates and BRR Settings in Clocked Synchronous Mode

				φ	(MHz)			
Bit Rate		4		8		16		28.7
(bits/s)	n	Ν	n	Ν	n	Ν	n	Ν
110	2	141	3	70	3	141	3	254
250	1	249	2	124	2	249	3	111
500	1	124	1	249	2	124	2	223
1k	0	249	1	124	1	249	2	111
2.5k	0	99	0	199	1	99	1	178
5k	0	49	0	99	0	199	1	89
10k	0	24	0	49	0	99	0	178
25k	0	9	0	19	0	39	0	71
50k	0	4	0	9	0	19	0	35
100k	_	—	0	4	0	9	0	17
250k	0	0*	0	1	0	3		_
500k			0	0*	0	1		_
1M					0	0*	_	_

.

Note: Settings with an error of 1% or less are recommended.

Explanation of symbols:

DataSheet40.00

Blank: No setting possible

- -: Setting possible, but error occurs
 - *: Continuous transmission/reception not possible
- t4U.com The BRR setting is calculated as follows: Asynchronous mode:

$$N = \frac{\phi}{256 \times 2^{2n-1} \times B} \times 10^{6} - 1$$

Clocked synchronous mode:

$$N = \frac{\phi}{32 \times 2^{2n-1} \times B} \times 10^{6} - 1$$

- B: Bit rate (bit/s)
- N: BRR setting for baud rate generator (0 \leq N \leq 255)
- f: Operating frequency (MHz)
- n: Baud rate generator clock source (n = 0, 1, 2, 3) (For the clock sources and values of n, see table 13.6.)

DataSheet4U.com

www.DataSheet4U.com

RENESAS

DataShe

			SMR Settings	
n	Clock Source	CKS1	CKS0	
0	ф/ 4	0	0	
1	φ/16	0	1	
2	φ/164	1	0	
3	ф/256	1	1	

The bit rate error for asynchronous mode is given by the following equation:

Error (%) =
$$\left(\frac{\phi \times 10^6}{(N + 1) \times B \times 256 \times 2^{2n - 1}} - 1\right) \times 100$$

Table 13.6 shows the maximum bit rates in asynchronous mode when the baud rate generator is being used. Tables 13.7 and 13.8 show the maximum rates for external clock input.

Table 13.6 Maximum Bit Rates for Various Frequencies with Baud Rate Generator (Asynchronous Mode)

			Settings	
∲ (MHz)	Maximum Bit Rate (bits/s)	n	N	
4	31250	0	0	
4.9152	38400 DataSheet4U.c	0 0	0	
8	62500	0	0	
9.8304	76800	0	0	
3 12 n	93750	0	0	DataShe
14.7456	115200	0	0	
16	125000	0	0	
19.6608	153600	0	0	
20	156250	0	0	
24	187500	0	0	
24.576	192000	0	0	
28.7	224218	0	0	

DataSheet4U.com

www.DataSheet4U.com

350 DataSheet4U.com

www.DataSheet4U.com Table 13.7 Maximum Bit Rates with External Clock Input (Asynchronous Mode)

∲ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bits/s)
4	0.2500	15625
4.9152	0.3072	19200
8	0.5000	31250
9.8304	0.6144	38400
12	0.7500	46875
14.7456	0.9216	57600
16	1.0000	62500
19.6608	1.2288	76800
20	1.2500	78125
24	1.5000	93750
24.576	1.5360	96000
28.7	1.79375	112109

Table 13.8 Maximum Bit Rates with External Clock Input (Clocked Synchronous Mode)

♦ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bits/s)
8	0.3333)ataSheet4U.com	333333.3
16	0.6667	666666.7
24	1.0000	100000.0
28.7	1.1958	1195833.3
m		

DataSheet4U.com

www.DataSheet4U.com 13.3 Operation

13.3.1 Overview

For serial communication, the SCI has an asynchronous mode in which characters are synchronized individually, and a clocked synchronous mode in which communication is synchronized with clock pulses. Asynchronous/clocked synchronous mode and the communication format are selected in the serial mode register (SMR), as shown in table 13.9. The SCI clock source is selected by the C/\overline{A} bit in the serial mode register (SMR) and the CKE1 and CKE0 bits in the serial control register (SCR), as shown in table 13.10.

Asynchronous Mode:

- Data length is selectable. seven or eight bits.
- Parity and multiprocessor bits are selectable, as is the stop bit length (one or two bits). The preceding selections constitute the communication format and character length.
- In receiving, it is possible to detect framing errors, parity errors, overrun errors, and the break state.
- An internal or external clock can be selected as the SCI clock source.
 - When an internal clock is selected, the SCI operates using the built-in baud rate generator, and can output a serial clock signal with a frequency matching the bit rate.
 - When an external clock is selected, the external clock input must have a frequency 16 times the bit rate. (The built-in baud rate generator is not used.)

Clocked Synchronous Mode:

et4U.comThe communication format has a fixed eight-bit data length.

- In receiving, it is possible to detect overrun errors.
- An internal or external clock can be selected as the SCI clock source.
 - When an internal clock is selected, the SCI operates using the built-in baud rate generator, and outputs a synchronous clock signal to external devices.
 - When an external clock is selected, the SCI operates on the input synchronous clock. The built-in baud rate generator is not used.

DataSheet4U.com

www.DataSheet4U.com

		S	MR Set	tings		S	CI Commu	unication Fo	rmat
Mode	Bit 7 C/A	Bit 6 CHR	Bit 5 PE	Bit 2 MP	Bit 3 STOP	Data Length	Parity Bit	Multipro- cessor Bit	Stop Bit Length
Asynchronous 0	0	0	0	0	0	8-bit	Not set	Not set	1 bit
	-			1 0	1	Set		2 bits	
			1		0		Set	_	1 bit
					1				2 bits
		1	0	_	0	7-bit	Not set		1 bit
					1				2 bits
			1	_	0		Set	_	1 bit
					1				2 bits
Asynchronous 0 (multiprocessor format)	0	0	*	1	0	8-bit	Not set	Set	1 bit
			*	_	1	_			2 bits
		1	*		0	7-bit			1 bit
			*		1				2 bits
Clocked synchronous	1	*	*	*	*	8-bit	Not set	Not set	None

www.DataSheet4U.com Table 13.9 Serial Mode Register Settings and SCI Communication Formats

Note: Asterisks (*) in the table indicate don't care bits.com

Table 13.10 SMR and SCR Settings and SCI Clock Source Selection

J.com	SMR	SCR Settings		SCI Transmit/Receive Clock	
Mode	Bit 7 C/A	Bit 1 CKE1	Bit 0 CKE0	Clock Source	Bata SCK Pin Function
Asynchronous	0	0	0	Internal	SCI does not use the SCK pin
			1	_	Outputs a clock with frequency matching the bit rate
		1	0	External	Inputs a clock with frequency 16 times the bit rate
			1		
Clocked synch-	1	0	0	Internal	Outputs the synchronous clock
ronous			1		
		1	0	External	Inputs the synchronous clock
			1		

www.DataSheet4U.com 13.3.2 Operation in Asynchronous Mode

In asynchronous mode, each transmitted or received character begins with a start bit and ends with a stop bit. Serial communication is synchronized one character at a time.

The transmitting and receiving sections of the SCI are independent, so full duplex communication is possible. The transmitter and receiver are both double buffered, so data can be written and read while transmitting and receiving are in progress, enabling continuous transmitting and receiving.

Figure 13.2 shows the general format of asynchronous serial communication. In asynchronous serial communication, the communication line is normally held in the mark (high) state. The SCI monitors the line and starts serial communication when the line goes to the space (low) state, indicating a start bit. One serial character consists of a start bit (low), data (LSB first), parity bit (high or low), and stop bit (high), in that order.

When receiving in asynchronous mode, the SCI synchronizes on the falling edge of the start bit. The SCI samples each data bit on the eighth pulse of a clock with a frequency 16 times the bit rate. Receive data is latched at the center of each bit.

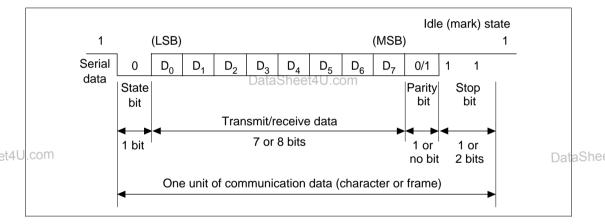


Figure 13.2 Example of Data Format in Asynchronous Communication (8-Bit Data with Parity and Two Stop Bits)

DataSheet4U.com

www.DataSheet4U.com

354 DataSheet4U.com

www.DataSheet4U.com Transmit/Receive Formats. Table 13.11 shows the 12 communication formats that can be

selected in asynchronous mode. The format is selected by settings in the serial mode register (SMR).

	SMR Bits				Ser	ial T	rans	mit/l	Rece	ive	Forn	nat and	Frame	Length	
CHR	PE	MP	STOP	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	START				8-b	it da	ta			STOP]	
0	0	0	1	START				8-b	it da	ta			STOP	STOP	
0	1	0	0	START				8-b	it da	ta			Р	STOP	
0	1	0	1	START				8-b	it da	ta			Р	STOP	STOP
1	0	0	0	START			7-	bit da	ata			STOP			
1	0	0	1	START			7-	bit da	ata			STOP	STOP		
1	1	0	0	START			7-	bit da	ata			Ρ	STOP		
1	1	0	1	START		Data	7-l	bit da	ata	m		Ρ	STOP	STOP	
0	—	1	0	START				8-b	it da	ta			MPB	STOP	
0	_	1	1	START				8-b	it da	ta			MPB	STOP	STOP
om	_	1	0	START			7-	bit da	ata			MPB	STOP		[
1	_	1	1	START			7-	bit da	ata			MPB	STOP	STOP	

 Table 13.11
 Serial Communication Formats (Asynchronous Mode)

-: Don't care bits. START: Start bit STOP: Stop bit P: Parity bit MPB: Multiprocessor bit

Clock: An internal clock generated by the built-in baud rate generator or an external clock input from the SCK pin can be selected as the SCI transmit/receive clock. The clock source is selected by the C/\overline{A} bit in the serial mode register (SMR) and bits CKE1 and CKE0 in the serial control register (SCR) (table 13.9).

When an external clock is input at the SCK pin, it must have a frequency equal to 16 times the desired bit rate.

When the SCI operates on an internal clock, it can output a clock signal at the SCK pin. The frequency of this output clock is equal to the bit rate. The phase is aligned as in figure 13.3 so that the rising edge of the clock occurs at the center of each transmit data bit.

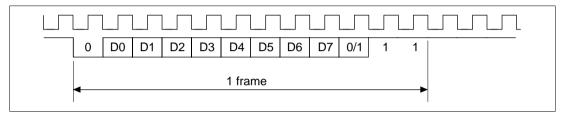


Figure 13.3 Output Clock and Serial Data Timing (Asynchronous Mode)

Transmitting and Receiving Data

SCI Initialization (Asynchronous Mode): Before transmitting or receiving, clear the TE and RE bits to 0 in the serial control register (SCR), then initialize the SCI as follows.

When changing the operation mode or communication format, always clear the TE and RE bits to 0 before following the procedure given below. Clearing TE to 0 sets TDRE to 1 and initializes the Gransmit shift register (TSR). Clearing RE to 0, however, does not initialize the RDRF, PER, FER, ataShe and ORER flags and receive data register (RDR), which retain their previous contents.

When an external clock is used, the clock should not be stopped during initialization or subsequent operation. SCI operation becomes unreliable if the clock is stopped.

Figure 13.4 shows a sample flowchart for initializing the SCI. The procedure for initializing the SCI is as follows:

- 1. Select the communication format in the serial mode register (SMR).
- 2. Write the value corresponding to the bit rate in the bit rate register (BRR) unless an external clock is used.
- 3. Select the clock source in the serial control register (SCR). Leave RIE, TIE, TEIE, MPIE, TE and RE cleared to 0. If clock output is selected in asynchronous mode, clock output starts www.DataSheet4U.com

immediately after the setting is made in SCR.

Www.DataSheet4U.com
Wait for at least the interval required to transmit or receive one bit, then set TE or RE in the serial control register (SCR) to 1. Also set RIE, TIE, TEIE and MPIE as necessary. Setting TE or RE enables the SCI to use the TxD or RxD pin. The initial states are the mark state when transmitting, and the idle state when receiving (waiting for a start bit).

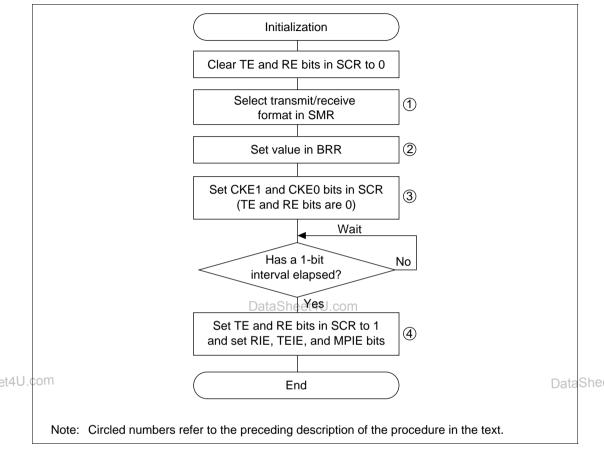


Figure 13.4 Sample Flowchart for SCI Initialization

www.DataSheet4U.com

Transmitting Serial Data (Asynchronous Mode): Figure 13.5 shows a sample flowchart for transmitting serial data. The procedure for transmitting serial data is as follows:

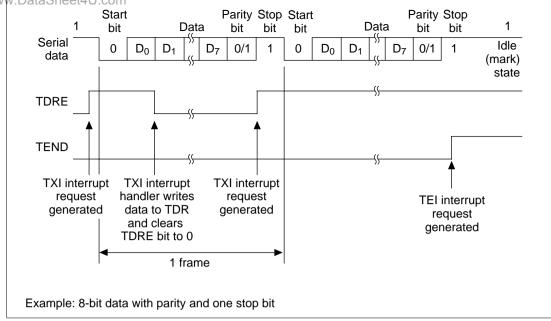
- 1. SCI status check and transmit data write: read the serial status register (SSR), check that the TDRE bit is 1, then write transmit data in the transmit data register (TDR) and clear TDRE to 0.
- 2. To continue transmitting serial data, read the TDRE bit to check whether it is safe to write (if it reads 1); if so, write data in TDR, then clear TDRE to 0. When the DMAC is started by a transmit-data-empty interrupt request (TXI) in order to write data in TDR, the TDRE bit is checked and cleared automatically.

Figure 13.5 Sample Flowchart for Transmitting Serial Data

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com In transmitting serial data, the SCI operates as follows:


- 1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to 0, the SCI recognizes that the transmit data register (TDR) contains new data, and loads this data from TDR into the transmit shift register (TSR).
- 2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to 1 and starts transmitting. If the transmit-data-empty interrupt enable bit (TIE) is set to 1 in SCR, the SCI requests a transmit-data-empty interrupt (TXI) at this time.

Serial transmit data is transmitted in the following order from the TxD pin:

- a. Start bit: one 0-bit is output.
- b. Transmit data: seven or eight bits of data are output, LSB first.
- c. Parity bit or multiprocessor bit: one parity bit (even or odd parity) or one multiprocessor bit is output. Formats in which neither a parity bit nor a multiprocessor bit is output can also be selected.
- d. Stop bit: one or two 1-bits (stop bits) are output.
- e. Mark state: output of 1-bits continues until the start bit of the next transmit data.
- 3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is 0, the SCI loads new data from TDR into TSR, outputs the stop bit, then begins serial transmission of the next frame. If TDRE is 1, the SCI sets the TEND bit to 1 in SSR, outputs the stop bit, then continues output of 1-bits (mark state). If the transmit-end interrupt enable bit (TEIE) in SCR is set to 1, a transmit-end interrupt (TEI) is requested.

Figure 13.6 shows an example of SCI transmit operation in asynchronous mode.

Figure 13.6 Example of SCI Transmit Operation in Asynchronous Mode (8-Bit Data with Parity and One Stop Bit)

Receiving Serial Data (Asynchronous Mode): Figure 13.7 shows a sample flowchart for receiving serial data. The procedure for receiving serial data is as follows:

- Receive error handling: if a receive error occurs, read the ORER, PER and FER bits of the SSR to identify the error. After executing the necessary error handling, clear ORER, PER and FER et4U.comall to 0. Receiving cannot resume if ORER, PER or FER remain set to 1.
 - 2. SCI status check and receive-data read: read the serial status register (SSR), check that RDRF is set to 1, then read receive data from the receive data register (RDR) and clear RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has changed from 0 to 1.
 - 3. To continue receiving serial data: read the RDRF and RDR bits and clear RDRF to 0 before the stop bit of the current frame is received. If the DMAC is started by a receive-data-full interrupt (RXI) to read RDR, the RDRF bit is cleared automatically so this step is unnecessary.

DataSheet4U.com

www.DataSheet4U.com

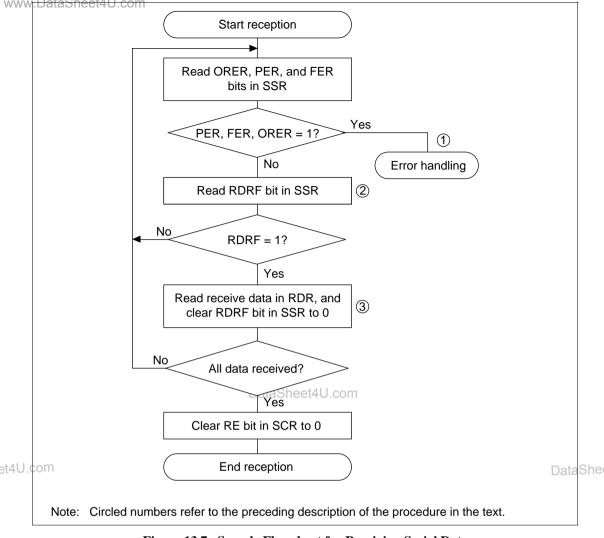


Figure 13.7 Sample Flowchart for Receiving Serial Data

DataSheet4U.com

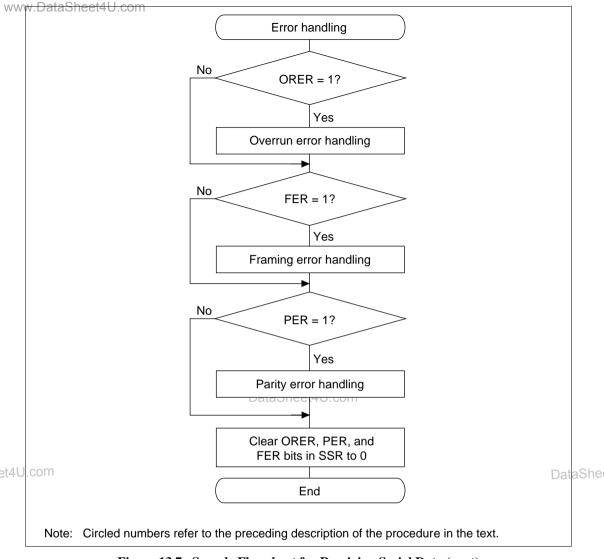


Figure 13.7 Sample Flowchart for Receiving Serial Data (cont)

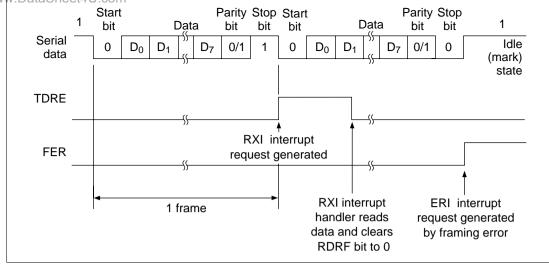
DataSheet4U.com

www.DataSheet4U.com

362 DataSheet4U.com

www.DataSheet4U.com In receiving, the SCI operates as follows:

- 1. The SCI monitors the receive data line. When it detects a start bit (0), the SCI synchronizes internally and starts receiving.
- 2. Receive data is shifted into RSR in order from LSB to MSB.
- 3. The parity bit and stop bit are received. After receiving these bits, the SCI makes the following checks:
 - a. Parity check: the number of 1s in the receive data must match the even or odd parity setting of the O/\overline{E} bit in SMR.
 - b. Stop bit check: the stop bit value must be 1. If there are two stop bits, only the first stop bit is checked.
 - c. Status check: RDRF must be 0 so that receive data can be loaded from RSR into RDR.


If these checks all pass, the SCI sets RDRF to 1 and stores the received data in RDR. If one of the checks fails (receive error), the SCI operates as indicated in table 13.11.

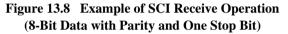

- Note: When a receive error flag is set, further receiving is disabled. In reception, the RDRF bit is not set to 1. Be sure to clear the error flags.
- 4. After setting RDRF to 1, if the receive-data-full interrupt enable bit (RIE) is set to 1 in SCR, the SCI requests a receive-data-full interrupt (RXI). If one of the error flags (ORER, PER, or FER) is set to 1 and the receive-data-full interrupt enable bit (RIE) in SCR is also set to 1, the SCI requests a receive-error interrupt (ERI)eet4U.com

Figure 13.8 shows an example of SCI receive operation in asynchronous mode.

Table 13.12	Receive Error	Conditions and SCI Operation
-------------	----------------------	-------------------------------------

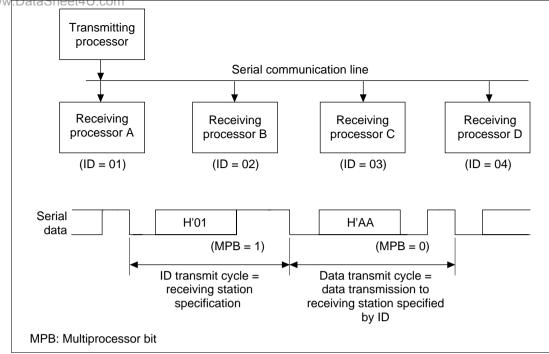
Receive Error	Abbreviation	Condition	Data Transfer
Overrun error	ORER	Receiving of next data ends while RDRF is still set to 1 in SSR	Receive data not loaded from RSR into RDR
Framing error	FER	Stop bit is 0	Receive data loaded from RSR into RDR
Parity error	PER	Parity of receive data differs from even/odd parity setting in SMR	Receive data loaded from RSR into RDR

13.3.3 Multiprocessor Communication

The multiprocessor communication function enables several processors to share a single serial communication line. The processors communicate in asynchronous mode using a format with an additional multiprocessor bit (multiprocessor format).

In multiprocessor communication, each receiving processor is addressed by a unique ID. A serial communication cycle consists of an ID-sending cycle that identifies the receiving processor, and a DataShe data-sending cycle. The multiprocessor bit distinguishes ID-sending cycles from data-sending cycles. The transmitting processor starts by sending the ID of the receiving processor with which it wants to communicate as data with the multiprocessor bit set to 1. Next, the transmitting processor sends transmit data with the multiprocessor bit cleared to 0.

Receiving processors skip incoming data until they receive data with the multiprocessor bit set to 1. When they receive data with the multiprocessor bit set to 1, receiving processors compare the data with their IDs. The receiving processor with a matching ID continues to receive further incoming data. Processors with IDs not matching the received data skip further incoming data until they again receive data with the multiprocessor bit set to 1. Multiple processors can send and receive data in this way.


Figure 13.9 shows an example of communication among processors using the multiprocessor format.

DataSheet4U.com

www.DataSheet4U.com

Renesas

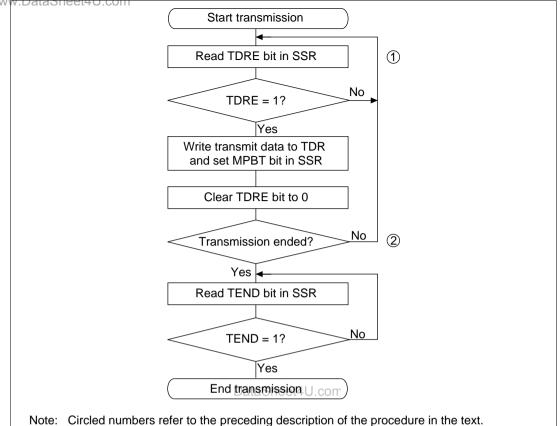
www.DataSheet4U.com-

Figure 13.9 Example of Communication among Processors Using Multiprocessor Format (Sending Data H'AA to Receiving Processor A)

Communication Formats: Four formats are available. Parity-bit settings are ignored when the multiprocessor format is selected. For details see table 13.8.

 $t_{4}\cup c_{0}$ Clock: See the description in the asynchronous mode section.

DataShe


Transmitting Multiprocessor Serial Data: Figure 13.10 shows a sample flowchart for transmitting multiprocessor serial data. The procedure for transmitting multiprocessor serial data is as follows:

- 1. SCI status check and transmit data write: read the serial status register (SSR), check that the TDRE bit is 1, then write transmit data in the transmit data register (TDR). Also set the MPBT (multiprocessor bit transfer) bit to 0 or 1 in SSR. Finally, clear TDRE to 0.
- 2. To continue transmitting serial data, read the TDRE bit to check whether it is safe to write (if it reads 1); if so, write data in TDR, then clear TDRE to 0. When the DMAC is started by a transmit-data-empty interrupt request (TXI) to write data in TDR, the TDRE bit is checked and cleared automatically.

DataSheet4U.com

www.DataSheet4U.com

Figure 13.10 Sample Flowchart for Transmitting Multiprocessor Serial Data

t4U.com

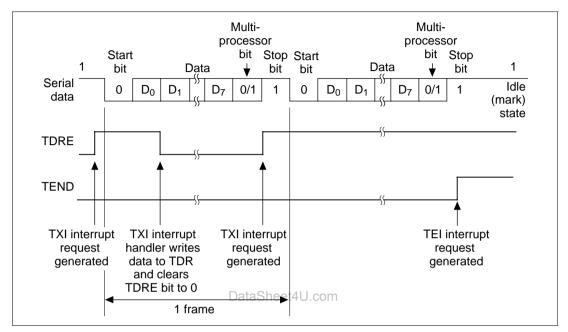
In transmitting serial data, the SCI operates as follows:

DataShe

- 1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to 0 the SCI recognizes that the transmit data register (TDR) contains new data, and loads this data from TDR into the transmit shift register (TSR).
- 2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to 1 and starts transmitting. If the transmit-data-empty interrupt enable bit (TIE) in SCR is set to 1, the SCI requests a transmit-data-empty interrupt (TXI) at this time.

Serial transmit data is transmitted in the following order from the TxD pin:

- a. Start bit: one 0 bit is output.
- b. Transmit data: seven or eight bits are output, LSB first.
- c. Multiprocessor bit: one multiprocessor bit (MPBT value) is output.


DataShedt4 Stop bit: one or two 1-bits (stop bits) are output.

e. Mark state: output of 1-bits continues until the start bit of the next transmit data.

366

RENESAS

www.DataSheet4U.com
3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is 0, the SCI loads data from TDR into TSR, outputs the stop bit, then begins serial transmission of the next frame. If TDRE is 1, the SCI sets the TEND bit in SSR to 1, outputs the stop bit, then continues output of 1-bits in the mark state. If the transmit-end interrupt enable bit (TEIE) in SCR is set to 1, a transmit-end interrupt (TEI) is requested at this time.

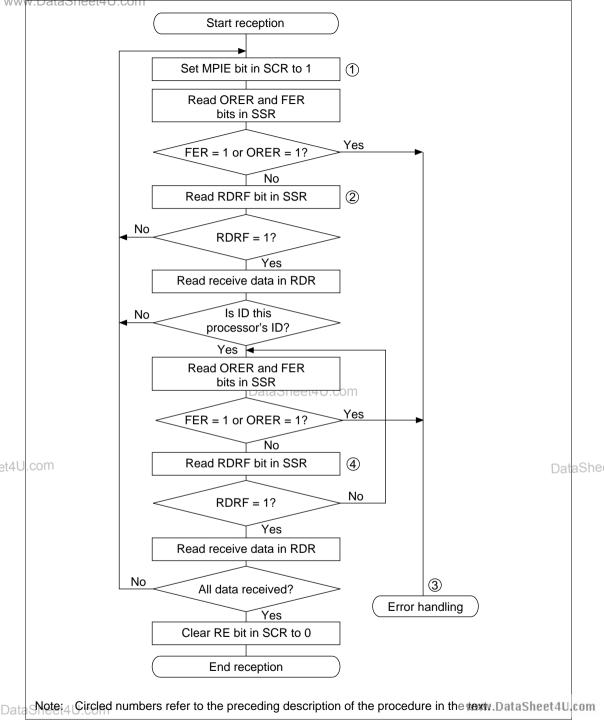


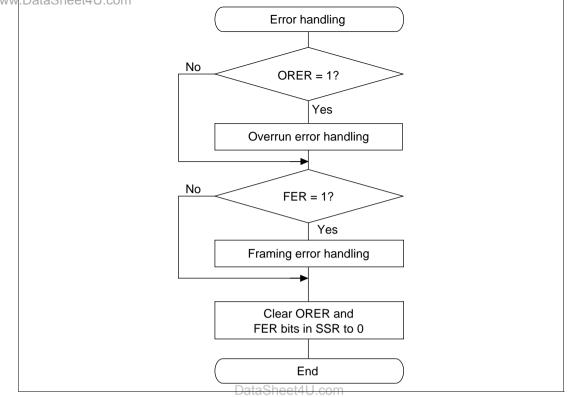
Figure 13.11 Example of SCI Multiprocessor Transmit Operation (8-Bit Data with Multiprocessor Bit and One Stop Bit)

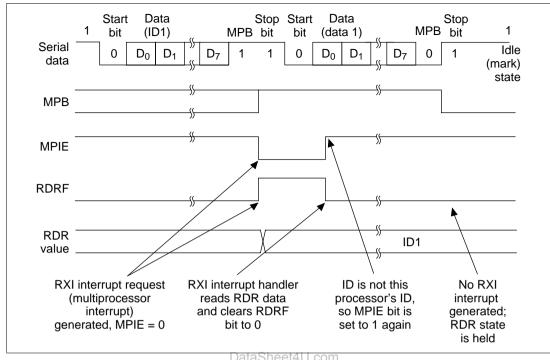
Receiving Multiprocessor Serial Data: Figure 13.12 shows a sample flowchart for receiving multiprocessor serial data. The procedure for receiving multiprocessor serial data is as follows.

- 1. ID receive cycle: set the MPIE bit in the serial control register (SCR) to 1.
- 2. SCI status check, ID reception and comparison: read the serial status register (SSR), check that RDRF is set to 1, then read data from the receive data register (RDR) and compare with the processor's own ID. If the ID does not match the receive data, set MPIE to 1 again and clear RDRF to 0. If the ID matches the receive data, clear RDRF to 0.
- 3. Receive error handling: if a receive error occurs (figure 13.12 (cont)), read the ORER and FER bits in SSR to identify the error. After executing the necessary error handling, clear both ORER and FER to 0. Receiving cannot resume if ORER or FER remains set to 1. When a framing error occurs, the RxD pin can be read to detect the break state.

4. SCI status check and data receiving: read SSR, check that RDRF is set to 1, then read data www.DataSheet4U.com DataSheefrom the receive data register (RDR).

368




Figure 13.12 Sample Flowchart for Receiving Multiprocessor Serial Data (cont)

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com Figure 13.13 shows an example of SCI receive operation using a multiprocessor format.

 DataSheet4U.com

 Figure 13.13
 Example of SCI Receive Operation

(Own ID Does Not Match Data, 8-Bit Data with Multiprocessor Bit and One Stop Bit)

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

370 DataSheet4U.com

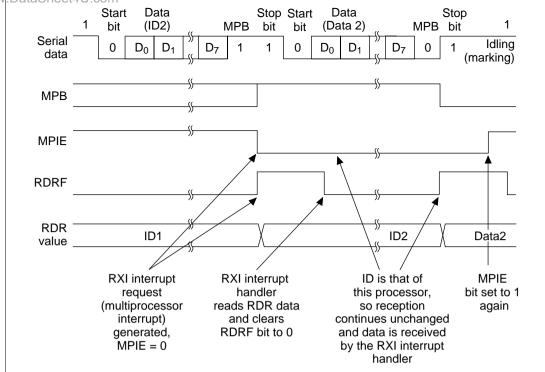


Figure 13.13 Example of SCI Receive Operation (Own ID Matches Data, 8-Bit Data with Multiprocessor Bit and One Stop Bit) (cont)

13.3.4 Clocked Synchronous Operation

t4U.com

In clocked synchronous mode, the SCI transmits and receives data in synchronization with clock pulses. This mode is suitable for high-speed serial communication.

The SCI transmitter and receiver are independent, so full duplex communication is possible while sharing the same clock. The transmitter and receiver are also double buffered, so continuous transmitting or receiving is possible by reading or writing data while transmitting or receiving is in progress.

Figure 13.14 shows the general format in clocked synchronous serial communication.

DataSheet4U.com

www.DataSheet4U.com

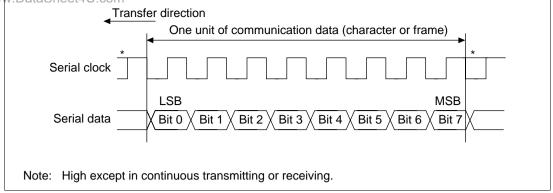


Figure 13.14 Data Format in Clocked Synchronous Communication

In clocked synchronous serial communication, each data bit is output on the communication line from one falling edge of the serial clock to the next. Data is guaranteed valid at the rising edge of the serial clock. In each character, the serial data bits are transmitted in order from LSB (first) to MSB (last). After output of the MSB, the communication line remains in the state of the MSB. In clocked synchronous mode, the SCI transmits or receives data by synchronizing with the falling edge of the serial clock.

Communication Format: The data length is fixed at eight bits. No parity bit or multiprocessor bit can be added.

DataSheet4U.com

Clock: An internal clock generated by the built-in baud rate generator or an external clock input from the SCK pin can be selected as the SCI transmit/receive clock. The clock source is selected by the C/\overline{A} bit in the serial mode register (SMR) and bits CKE1 and CKE0 in the serial control register (SCR). See table 13.9.

t4U.con

DataShe

When the SCI operates on an internal clock, it outputs the clock signal at the SCK pin. Eight clock pulses are output per transmitted or received character. When the SCI is not transmitting or receiving, the clock signal remains in the high state.

Figure 13.15 shows an example of SCI transmit operation. In transmitting serial data, the SCI operates as follows.

- 1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to 0 the SCI recognizes that the transmit data register (TDR) contains new data and loads this data from TDR into the transmit shift register (TSR).
- 2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to 1 and starts transmitting. If the transmit-data-empty interrupt enable bit (TIE) in SCR is set to 1, the SCI requests a transmit-data-empty interrupt (TXI) at this time.
- DataSheff clockoutput mode is selected, the SCI outputs eight synchronous clock pulses. The sheft ducom clock source is selected, the SCI outputs data in synchronization with the input clock. Data is output from the TxD pin in order from LSB (bit 0) to MSB (bit 7).

372

- www.DataSheet4U.com 3. The SCI checks the TDRE bit when it outputs the MSB (bit 7). If TDRE is 0, the SCI loads data from TDR into TSR, transmits the MSB, then begins serial transmission of the next frame. If TDRE is 1, the SCI sets the TEND bit in SSR to 1, transmits the MSB, then holds the transmit data pin (TxD) in the MSB state. If the transmit-end interrupt enable bit (TEIE) in SCR is set to 1, a transmit-end interrupt (TEI) is requested at this time.
 - 4. After the end of serial transmission, the SCK pin is held in the high state.

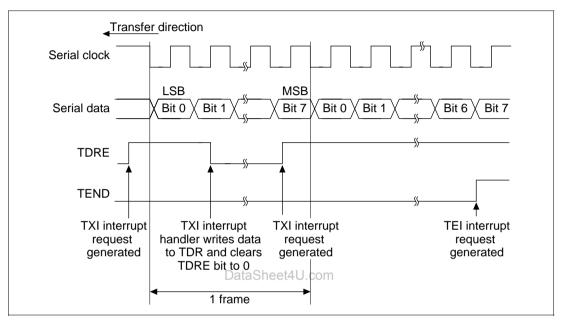


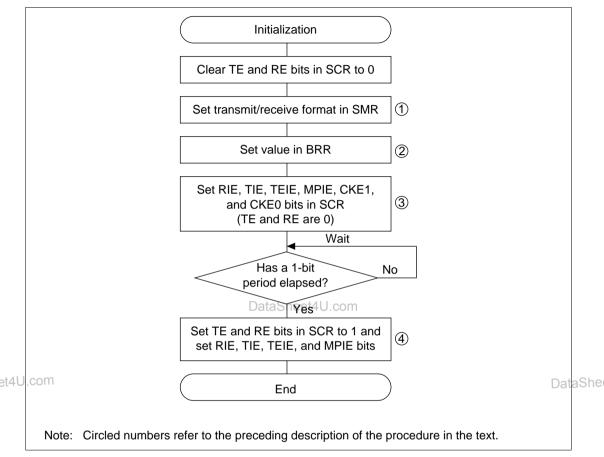
Figure 13.15 Example of SCI Transmit Operation

Transmitting and Receiving Data

SCI Initialization (Clocked Synchronous Mode): Before transmitting or receiving, software must clear the TE and RE bits to 0 in the serial control register (SCR), then initialize the SCI as follows.

When changing the mode or communication format, always clear the TE and RE bits to 0 before following the procedure given below. Clearing TE to 0 sets TDRE to 1 and initializes the transmit shift register (TSR). Clearing RE to 0, however, does not initialize the RDRF, PER, FER, and ORER flags and receive data register (RDR), which retain their previous contents.

Figure 13.16 shows a sample flowchart for initializing the SCI. The procedure for initializing the SCI is as follows.


DataS 1. Select the communication format in the serial mode register (SMR). www.DataSheet4U.com

2. Write the value corresponding to the bit rate in the bit rate register (BRR) unless an external clock is used.

DataSheet4U.com

www.DataSheet4U.con 3. Select the clock

- Select the clock source in the serial control register (SCR). Leave RIE, TIE, TEIE, MPIE, TE and RE cleared to 0.
- 4. Wait for at least the interval required to transmit or receive one bit, then set TE or RE in the serial control register (SCR) to 1. Also set RIE, TIE, TEIE and MPIE.

Figure 13.16 Sample Flowchart for SCI Initialization

Transmitting Serial Data (Clocked Synchronous Mode): Figure 13.17 shows a sample flowchart for transmitting serial data. The procedure for transmitting serial data is as follows.

- 1. SCI status check and transmit data write: read the serial status register (SSR), check that the TDRE bit is 1, then write transmit data in the transmit data register (TDR) and clear TDRE to 0.
- 2. To continue transmitting serial data, read the TDRE bit to check whether it is safe to write (if it reads 1); if so, write data in TDR, then clear TDRE to 0. When the DMAC is started by Sheet4U.com
- transmit-data-empty interrupt request (TXI) to write data in TDR, the TDRE bit is checked and cleared automatically.

374

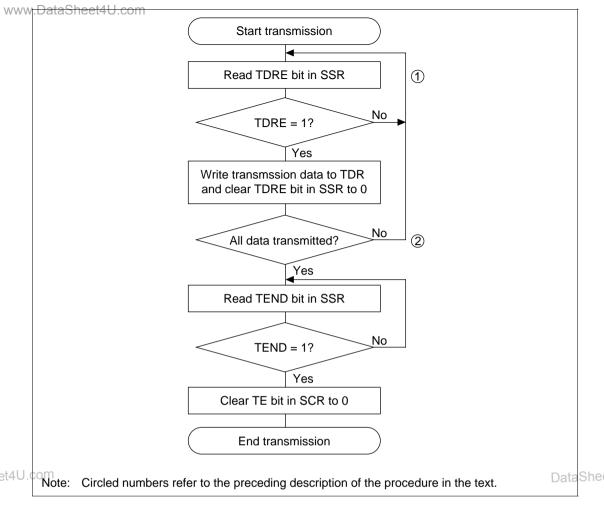


Figure 13.17 Sample Flowchart for Serial Transmitting

Receiving Serial Data (Clocked Synchronous Mode): Figure 13.18 shows a sample flowchart for receiving serial data. When switching from asynchronous mode to clocked synchronous mode, make sure that ORER, PER, and FER are cleared to 0. If PER or FER is set to 1, the RDRF bit will not be set and both transmitting and receiving will be disabled. Figure 13.19 shows an example of the SCI receive operation.

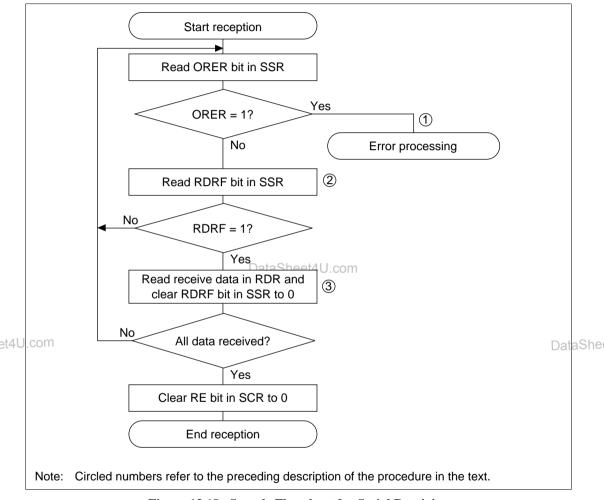
The procedure for receiving serial data is as follows:

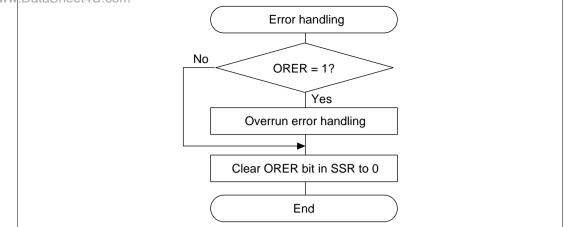
1. Receive error handling: if a receive error occurs, read the ORER bit in SSR to identify the error. After executing the necessary error handling, clear ORER to 0. Transmitting/receiving cannot resume if ORER remains set to 1.

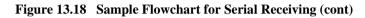
www.DataSheet4U.com

www.DataSheet4U.con 2. SCI status check

- 2. SCI status check and receive data read: read the serial status register (SSR), check that RDRF is set to 1, then read receive data from the receive data register (RDR) and clear RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has changed from 0 to 1.
- 3. To continue receiving serial data: read RDR, and clear RDRF to 0 before the MSB (bit 7) of the current frame is received. If the DMAC is started by a receive-data-full interrupt (RXI) to read RDR, the RDRF bit is cleared automatically so this step is unnecessary.




Figure 13.18 Sample Flowchart for Serial Receiving


DataSheet4U.com

www.DataSheet4U.com

376 DataSheet4U.com

www.DataSheet4U.com

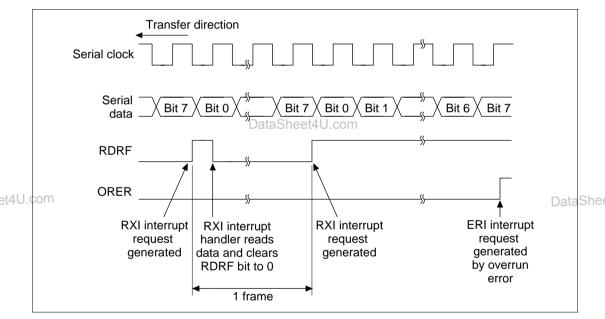


Figure 13.19 Example of SCI Receive Operation

DataSheet4U.com

www.DataSheet4U.com In receiving, the SCI operates as follows:

- 1. The SCI synchronizes with serial clock input or output and initializes internally.
- 2. Receive data is shifted into RSR in order from LSB to MSB. After receiving the data, the SCI checks that RDRF is 0 so that receive data can be loaded from RSR into RDR. If this check passes, the SCI sets RDRF to 1 and stores the received data in RDR. If the check does not pass (receive error), the SCI operates as indicated in table 13.8. The RDRF bit is not set to 1. Be sure to clear the error flag.
- 3. After setting RDRF to 1, if the receive-data-full interrupt enable bit (RIE) is set to 1 in SCR, the SCI requests a receive-data-full interrupt (RXI). If the ORER bit is set to 1 and the receive-data-full interrupt enable bit (RIE) in SCR is also set to 1, the SCI requests a receive-error interrupt (ERI).

Transmitting and Receiving Serial Data Simultaneously (Clocked Synchronous Mode):

Figure 13.20 shows a sample flowchart for transmitting and receiving serial data simultaneously. The procedure for transmitting and receiving serial data simultaneously is as follows:

- 1. SCI status check and transmit data write: read the serial status register (SSR), check that the TDRE bit is 1, then write transmit data in the transmit data register (TDR) and clear TDRE to 0. The TXI interrupt can also be used to determine if the TDRE bit has changed from 0 to 1.
- 2. Receive error handling: if a receive error occurs, read the ORER bit in SSR to identify the error. After executing the necessary error handling, clear ORER to 0. Transmitting/receiving cannot resume if ORER remains set to he Sheet4U.com
- 3. SCI status check and receive data read: read the serial status register (SSR), check that RDRF is set to 1, then read receive data from the receive data register (RDR) and clear RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has changed from 0 to 1.
- RDRF to 0 before the MSB (bit 7) of the current frame is received. Also read the TDRE bit to 0 before the MSB (bit 7) of the current frame is received. Also read the TDRE bit to 0 before the MSB (bit 7) of the current frame is transmitted. When the DMAC is started by a transmit-data-empty interrupt request (TXI) to write data in TDR, the TDRE bit is checked and cleared automatically. When the DMAC is started by a receive-data-full interrupt (RXI) to read RDR, the RDRF bit is cleared automatically.

DataSheet4U.com

www.DataSheet4U.com

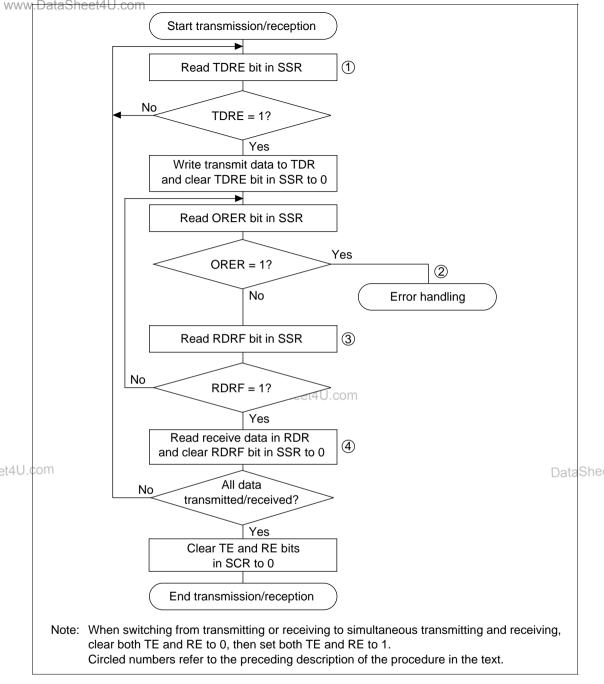


Figure 13.20 Sample Flowchart for Serial Transmitting

www.DataSheet4U.com 13.4 SCI Interrupt Sources and the DMAC

The SCI has four interrupt sources in each channel: transmit-end (TEI), receive-error (ERI), receive-data-full (RXI), and transmit-data-empty (TXI). Table 13.13 lists the interrupt sources and indicates their priority. These interrupts can be enabled and disabled by the TIE, RIE, and TEIE bits in the serial control register (SCR). Each interrupt request is sent separately to the interrupt controller.

TXI is requested when the TDRE bit in SSR is set to 1. TXI can start the direct memory access controller (DMAC) to transfer data. TDRE is automatically cleared to 0 when the DMAC writes data in the transmit data register (TDR).

RXI is requested when the RDRF bit in SSR is set to 1. RXI can start the DMAC to transfer data. RDRF is automatically cleared to 0 when the DMAC reads the receive data register (RDR).

ERI is requested when the ORER, PER, or FER bit in SSR is set to 1. ERI cannot start the DMAC.

TEI is requested when the TEND bit in SSR is set to 1. TEI cannot start the DMAC. Where the TXI interrupt indicates that transmit data writing is enabled, the TEI interrupt indicates that the transmit operation is complete.

Interrupt Source	Description DataSheet411.com	DMAC Availability	Priority
ERI	Receive error (ORER, PER, or FER)	No	High
RXI	Receive data register full (RDRF)	Yes	↑
ТХІ	Transmit data register empty (TDRE)	Yes	\downarrow
U.cpei	Transmit end (TEND)	No	Low DataShe

Table 13.13 SCI Interrupt Sources

See section 4, Exception Handling, for information on the priority order and relationship to non-SCI interrupts.

13.5 Usage Notes

Note the following points when using the SCI.

TDR Write and TDRE Flag: The TDRE bit in the serial status register (SSR) is a status flag indicating loading of transmit data from TDR into TSR. The SCI sets TDRE to 1 when it transfers data from TDR to TSR. Data can be written to TDR regardless of the TDRE bit status. If new data is written in TDR when TDRE is 0, however, the old data stored in TDR will be lost because the data has not yet been transferred to TSR. Before writing transmit data to TDR, be sure to check that TDRE is set to 1.

www.DataSheet4U.com Simultaneous Multiple Receive Errors: Table 13.14 indicates the state of the SSR status flags

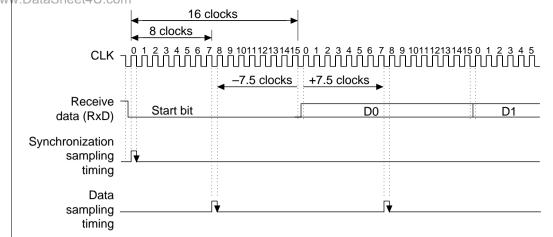
Simultaneous Multiple Receive Errors: Table 13.14 indicates the state of the SSR status flags when multiple receive errors occur simultaneously. When an overrun error occurs, the RSR contents cannot be transferred to RDR, so receive data is lost.

		Receive Data Transfer			
Receive Error Status	RDRF	ORER FER		PER	$RSR \to RDR$
Overrun error	1	1	0	0	Х
Framing error	0	0	1	0	0
Parity error	0	0	0	1	0
Overrun error + framing error	1	1	1	0	Х
Overrun error + parity error	1	1	0	1	Х
Framing error + parity error	0	0	1	1	0
Overrun error + framing error + parity error	1	1	1	1	Х

Table 13.14 SSR Status Flags and Transfer of Receive Data

O: Receive data is transferred from RSR to RDR.

X: Receive data is not transferred from RSR to RDR.


Break Detection and Processing: In the break state, the input from the RxD pin consists of all 0s, so FER is set and the parity error flag (PER) may also be set. In the break state, the SCI receiver continues to operate, so if the FER bit is cleared to 0, it will be set to 1 again.

Receive Error Flags and Transmitter Operation (Clocked Synchronous Mode Only): When a et4U.coreceive error flag (ORER, PER, or FER) is set to 1, the SCI will not start transmitting even if DataSher TDRE is set to 1. Be sure to clear the receive error flags to 0 before starting to transmit. Note that

clearing RE to 0 does not clear the receive error flags.

Receive Data Sampling Timing and Receive Margin in Asynchronous Mode: In asynchronous mode, the SCI operates on a base clock of 16 times the bit rate frequency. In receiving, the SCI synchronizes internally with the falling edge of the start bit, which it samples on the base clock. Receive data is latched on the rising edge of the eighth base clock pulse. See figure 13.21.

DataSheet4U.com

The receive margin in asynchronous mode can therefore be expressed as in equation 1.

Equation 1:

$$M = \left| \begin{pmatrix} 0.5 - \frac{1}{2N} - 1 \end{pmatrix} - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$

$$M: \text{ Receive margin (\%)} \qquad \text{DataSheet4U.com}$$

$$N: \text{ Ratio of clock frequency to bit rate (N = 16)}$$

$$D: \text{ Clock duty cycle (D = 0-1.0)}$$

$$L: \text{ Frame length (L = 9-12)}$$

$$F: \text{ Absolute deviation of clock frequency}$$

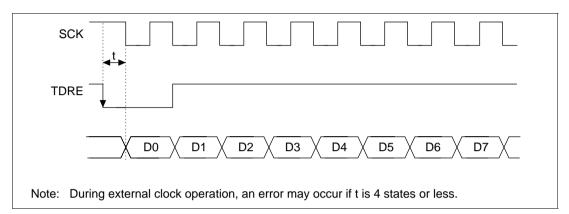
et4U.com

From equation (1), if F = 0 and D = 0.5 the receive margin is 46.875%, as given by equation 2.

Equation 2:

This is a theoretical value. A reasonable margin to allow in system designs is 20-30%.

DataSheet4U.com


www.DataSheet4U.com

382

DataSheet4U.com

www.DataSheet4U.com Constraints on DMAC Use:

- When using an external clock source for the serial clock, update TDR with the DMAC, and then after twenty system clock cycles or more elapse, input a transmit clock. If a transmit clock is input in the first four states after TDR is written, an error may occur (figure 13.22).
- Before reading the receive data register (RDR) with the DMAC, select the receive-data-full interrupt of the SCI as an activation source using the resource select bit (RS) in the channel control register (CHCR).

Figure 13.22 Example of Clocked Synchronous Transmission with DMAC

Cautions for Clocked Synchronous External Clock Mode:

• Set TE = RE = 1 only when external clock SCK is 1.

• Do not set TE = RE = 1 until at least four clock cycles after external clock SCK has changed t4U.com from 0 to 1.

• When receiving, RDRF is set to 1 when RE is cleared to 0 2.5–3.5 clocks after the rising edge of the RxD D7 bit SCK input, but it cannot be copied to RDR.

Caution for Clocked Synchronous Internal Clock Mode: When receiving, RDRF is set to 1 when RE is cleared to 0 1.5 clocks after the rising edge of the RxD D7 bit SCK output, but it cannot be copied to RDR.

DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

384 DataSheet4U.com

Section 14 Power-Down Modes

14.1 Overview

The SH7604 has a module standby function (which selectively halts operation of some on-chip peripheral modules), a sleep mode (which halts CPU function), and a standby mode (which halts all functions).

14.1.1 Power-Down Modes

In addition to the sleep mode and standby mode, the SH7604 also has a third power-down mode, the module standby function, which halts the DMAC, multiplication unit, division unit, free-running timer, and SCI on-chip peripheral modules.

Table 14.1 shows the transition conditions for entering the modes from the program execution state, as well as the CPU and peripheral module states in each mode and the procedures for canceling each mode.

DataSheet4U.com

t4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com Table 14.1 Power-Down Modes

				Stat	te			
Mode	Transition Condition	Clock	CPU, MULT, Cache	UBC, BSC	FRT, SCI, DMAC, DIV, INTC, WDT,		- Canceling Procedure	
Sleep mode	SLEEP instruction executed with SBY bit set to 0 in SBYCR	Runs	Halted	Runs	Runs	Runs	 Interrupt DMA address error 	
							 Power- on reset Manual reset 	
Standby mode	SLEEP instruction executed with SBY bit set to 1 in SBYCR	Halted	Halted	Held	Halted	Held or high impedance	 NMI interrupt Power- on reset Manual reset 	
Module standby function	MSTP bit for relevant module is set to 1	Runs	Run (MULT is held)	Runs Sheet4U.co	When MSTP bit is 1, the supply of the clock to the relevant module is halted.	FRT and SCI pins are initialized, and others operate.	Clear MSTP bit to 0	

14.1.2 Register

Table 14.2 shows the register configuration.

Table 14.2 Register Configuration

Name	Abbreviation	R/W	Initial Value	Address
Standby control register	SBYCR	R/W	H'60	H'FFFFFE91

DataSheet4U.com

www.DataSheet4U.com

386 DataSheet4U.com

14.2.1 Standby Control Register (SBYCR)

The standby control register (SBYCR) is an 8-bit read/write register that sets the power-down mode. SBYCR is initialized to H'00 by a reset.

Bit:	7	6	5	4	3	2	1	0
Bit name:	SBY	HIZ	—	MSTP4	MSTP3	MSTP2	MSTP1	MSTP0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W		R/W	R/W	R/W	R/W	R/W

Bit 7—Standby (SBY): Specifies transition to standby mode. The SBY bit cannot be set to 1 while the watchdog timer is running (when the TME bit in the WDt's WTCSR register is 1). To enter the standby mode, halt the WDT (set the TME bit in WTCSR to 0) and set the SBY bit.

Bit 7: SBY	Description	
0	Executing a SLEEP instruction puts the chip into sleep mode	(Initial value)
1	Executing a SLEEP instruction puts the chip into standby mode	

DataSheet4U.com

Bit 6—Port High Impedance (HIZ): Selects whether output pins are set to high impedance or retain the output state in standby mode. When HIZ = 0 (initial state), the specified pin retains its output state. When HIZ = 1, the pin goes to the high-impedance state. See Appendix A.1, Pin States during Resets, Power-Down States and Bus Release State, for which pins are controlled.

t4U.com

Bit 6: HIZ	Description	
0	Pin state retained in standby mode	(Initial value)
1	Pin goes to high impedance in standby mode	

- Bit 5—Reserved: This bit always reads 0. The write value should always be 0.
- Bit 4: Module stop 4 (MSTP4): Specifies halting the clock supply to the DMAC. When MSTP4 bit is set to 1, the supply of the clock to the DMAC is halted. When the clock halts, the DMAC retains its pre-halt state. When MSTP4 is cleared to 0 and the DMAC begins running again, its starts operating from its pre-halt state. Set this bit while the DMAC is halted; this bit cannot be set while the DMAC is operating (transferring data).

DataSheet4U.com

www.DataSheet4U.com

ww	Bit 4: MSTP4	Description	
	0	DMAC running	(Initial value)
	1	Clock supply to DMAC halted	

• Bit 3—Module Stop 3 (MSTP3): Specifies halting the clock supply to the multiplication unit (MULT). When the MSTP3 bit is set to 1, the supply of the clock to MULT is halted. When the clock halts, MULT retains its pre-halt state. This bit should be set when the MULT is halted.

Bit 3: MSTP3	Description	
0	MULT running	(Initial value)
1	Clock supply to MULT halted	

• Bit 2—Module Stop 2 (MSTP2): Specifies halting the clock supply to the division unit (DIVU). When the MSTP2 bit is set to 1, the supply of the clock to DIVU is halted. When the clock halts, the DIVU registers retain their pre-halt state. This bit should be set when the DIVU is halted.

Bit 2: MSTP2 Description

0	DIVU running	(Initial value)
1	Clock supply to DIVU halted heet4U.com	

- Bit 1—Module Stop 1 (MSTP1): Specifies halting the clock supply to the 16-bit free-running timer (FRT). When the MSTP1 bit is set to 1, the supply of the clock to the FRT is halted.
- et4U.comWhen the clock halts, all FRT registers are initialized except the FRT interrupt vector register_{DataShe} in INTC, which holds its previous value. When MSTP1 is cleared to 0 and the FRT begins running again, its starts operating from its initial state.

Bit 1: MSTP1	Description		
0	FRT running	(Initial value)	
1	Clock supply to FRT halted		

• Bit 0—Module Stop 0 (MSTP0): Specifies halting the clock supply to the serial communication interface (SCI). When the MSTP0 bit is set to 1, the supply of the clock to the SCI is halted. When the clock halts, all SCI registers are initialized except the SCI interrupt vector register in INTC, which holds its previous value. When MSTP0 is cleared to 0 and the SCI begins running again, its starts operating from its initial state.

DataSheet4U.com

www.DataSheet4U.com

388 DataSheet4U.com

14.3 Sleep Mode

14.3.1 Transition to Sleep Mode

Executing the SLEEP instruction when the SBY bit in SBYCR is 0 causes a transition from the program execution state to sleep mode. Although the CPU halts immediately after executing the SLEEP instruction, the contents of its internal registers remain unchanged. The on-chip peripheral modules continue to run in sleep mode.

14.3.2 Canceling Sleep Mode

Sleep mode is canceled by an interrupt, DMA address error, power-on reset, or manual reset.

Cancellation by an Interrupt: When an interrupt occurs, sleep mode is canceled and interrupt exception handling is executed. Sleep mode is not canceled if the interrupt cannot be accepted because its priority level is equal to or less than the mask level set in the CPU's status register (SR) or if an interrupt by an on-chip peripheral module is disabled at the peripheral module.

Cancellation by a DMA Address Error: If a DMA address error occurs, sleep mode is canceled and DMA address error exception handling is executed.

et4U.co**Cancellation by a Power-On Reset:** A power-on reset cancels sleep mode.

DataShe

Cancellation by a Manual Reset: A manual reset cancels sleep mode.

14.4 Standby Mode

14.4.1 Transition to Standby Mode

To enter standby mode, set the SBY bit to 1 in SBYCR, then execute the SLEEP instruction. The chip switches from the program execution state to standby mode. The NMI interrupt cannot be accepted when the SLEEP instruction is executed, or for the following five cycles. In standby mode, power consumption is greatly reduced by halting not only the CPU, but the clock and on-chip peripheral modules as well. CPU register contents are held, and some on-chip peripheral modules are initialized.

DataSheet4U.com

Module	Registers Initialized	Registers that Retain Data	Registers with Undefined Contents
Interrupt controller (INTC)	_	All registers	_
User break controller (UBC)	_	All registers	_
Bus state controller (BSC)	_	All registers	_
DMAC	DMA channel control register 0	All registers except DMA channel control register 0, DMA channel control register 1, and DMA operation register	_
	DMA channel control register 1		
	DMA operation register		
DIVU	_	_	All registers
Watchdog timer (WDT)	Bits 7–5 of the timer control/status register	Bits 2–0 of the timer control/status register	_
	Reset control/status register	Timer counter	
16-bit free-running timer (FRT)	All registers		_
Serial communication interface (SCI)	All registers	_	_
Others	_	Standby control register	_
com		Frequency modification register	Data

14.4.2 Canceling Standby Mode

Standby mode is canceled by an NMI interrupt, a power-on reset, or a manual reset.

Cancellation by an NMI: When a rising edge or falling edge is detected in the NMI signal, after the elapse of the time set in the WDT timer control/status register, clocks are supplied to the entire chip, standby mode is canceled, and NMI exception handling begins.

Cancellation by a Power-On Reset: A power-on reset cancels standby mode.

Cancellation by a Manual Reset: A manual reset cancels standby mode.

DataSheet4U.com

et4U

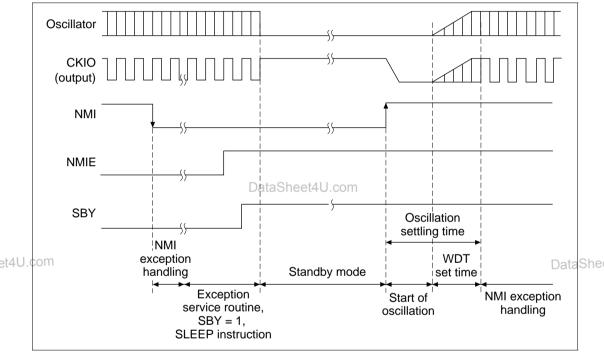
www.DataSheet4U.com

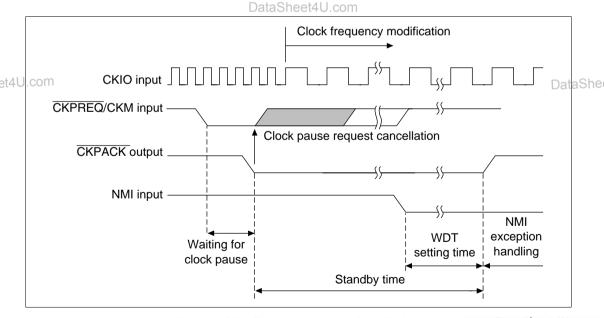
Renesas

14.4.3 Standby Mode Cancellation by NMI

The following example describes moving to the standby mode upon the fall of the NMI signal and clearing the standby when the NMI signal rises. Figure 14.1 shows the timing.

When the NMI pin level changes from high to low after the NMI edge select bit (NMIE) of the interrupt control register (ICR) has been set to 0 (detect falling edge), an NMI interrupt is accepted. When the NMIE bit is set to 1 (detect rising edge) by the NMI exception service routine, the standby bit (SBY) of the standby control register (SBYCR) is set to 1 and a SLEEP instruction is executed, the standby mode is entered. The standby mode is cleared the next time the NMI pin level changes from low level to high level.




Figure 14.1 Standby Mode Cancellation by NMI

14.4.4 Clock Pause Function

When the clock is input from the CKIO pin, the clock frequency can be modified or the clock stopped. The SH7604 has a CKPREQ/CKM pin for this purpose. The clock pause function is used as described below. Note that clock pauses are not accepted while the watchdog timer (WDT) is operating (i.e. when the timer enable bit (TME) in the WDT's timer control/status register DataSt(WFCSR) is 1).

- 1. Set the TME bit in the watchdog timer's WTCSR register to 0.
- 2. Set the overflow time in bits CKS2 to CKS0 bits in the watchdog timer's WTCSR register (overflow time should be calculated using the clock frequency after modification).
- 3. After the SLEEP instruction is executed and standby mode is entered, apply a low level from the CKPREQ/CKM pin.
- 4. When the chip is internally ready to modify the operating clock, a low level is output from the $\overline{\text{CKPACK}}$ pin.
- 5. After the $\overline{\text{CKPACK}}$ pin goes low, the clocks are stopped and the frequency is modified. The internal chip state is the same as in standby mode.
- 6. When the clock pause state (standby) is canceled, the WDT starts to count up at the falling edge or rising edge of the NMI pin (when the NMIE bit of INTC is set).
- 7. When a frequency is modified, the $\overline{\text{CKPACK}}$ pin goes high after the time set by the WDT, and the clock pause function gives external notification that the chip can again be operated (standby mode is canceled).
- 8. When a clock is halted, the clock is applied again to the CKIO pin and NMI input is generated. After the time set by the WDT, the CKPACK pin goes high, and the clock pause function gives external notification that the chip can again be operated (standby mode is canceled).

The standby state, all internal functions and all pin states during clock pause are equivalent to those of the normal standby mode. Figure 14.2 shows the timing chart for the clock pause function.

DataSheet4U.com

Figure 14.2 Clock Pause Function Timing

www.DataSheet4U.com

392 DataSheet4U.com

Renesas

14.4.5 Notes on Standby Mode

- 1. When the SH7604 enters standby mode during use of the cache, disable the cache before making the mode transition. Initialize the cache beforehand when the cache is used after returning to standby mode. The contents of the on-chip RAM are not retained in standby mode when cache is used as on-chip RAM.
- 2. If an on-chip peripheral register is written in the 10 clock cycles before the SH7604 transits to standby mode, read the register before executing the SLEEP instruction.
- 3. When using clock mode 0, 1, or 2, the CKIO pin is the clock output pin. Note the following when standby mode is used in these clock modes. When standby mode is canceled by NMI, an unstable clock is output from the CKIO pin during the oscillation settling time after NMI input. This also applies to clock output in the case of cancellation by a power-on reset or manual reset. Power-on reset and manual reset input should be continued for a period at least equal to for the oscillation settling time.

14.5 Module Standby Function

14.5.1 Transition to Module Standby Function

By setting one of standby control register bits MSTP4–MSTP0 to 1, the supply of the clock to the corresponding on-chip peripheral module can be halted. This function can be used to reduce the power consumption in sleep mode. Do not perform read/write operations for a module in module standby mode.

The external pins and registers of the DMAC, MULT, and DIVU on-chip peripheral modules retain their states prior to halting. The external pins of the FRT and SCI are reset and all their registers are initialized.

DataShee

Do not switch on-chip peripheral modules to module standby mode while they are running.

14.5.2 Clearing the Module Standby Function

Clear the module standby function by clearing the MSTP4–MSTP0 bits, or by a power-on reset or manual reset.

To effect a module stop, halt the relevant module or disable interrupts.

DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

394 DataSheet4U.com

15.1 Absolute Maximum Ratings

Table 15.1 shows the absolute maximum ratings.

Table 15.1 Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.3 to +7.0	V
Input voltage	Vin	-0.3 to V _{CC} + 0.3	V
Operating temperature	Topr	–20 to +75	°C
Storage temperature	Tstg	–55 to +125	°C

Caution: Operating the chip in excess of the absolute maximum rating may result in permanent damage.

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com 15.2 DC Characteristics

Tables 15.2 and 15.3 list DC characteristics.

1	ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
	Input high-	RES, NMI,	V _{IH}	$V_{CC} - 0.5$		V _{CC} + 0.3	V	During standby
	level voltage	MD5-MD0		V _{CC} - 0.7		V _{CC} + 0.3	V	Normal operation
'		EXTAL, CKIO		$V_{CC} - 0.7$	—	$V_{CC} + 0.3$	V	
_		Other input pins	·	2.2	—	V _{CC} + 0.3	V	
	Input low-	RES, NMI,	V _{IL}	-0.3		0.5	V	During standby
-	level	MD5-MD0		-0.3	_	0.8	V	Normal operation
١	voltage	Other input pins		-0.3	_	0.8	V	
I	Input leak	RES	lin	_	_	1.0	μΑ	Vin = 0.5 to V_{CC} – 0.5 V
(current	NMI, MD5–MD0		_	_	1.0	μΑ	Vin = 0.5 to V_{CC} – 0.5 V
	-	Other input pins		_	_	1.0	μΑ	Vin = 0.5 to V _{CC} – 0.5 V
l	3-state leak current	A26–A0, D31– D0, BS, CS3– CS0, RD/WR,	I _{STI}	_	_	1.0	μΑ	Vin = 0.5 to V_{CC} – 0.5 V
((while off)	RAS, CAS, WE3-WE0, RD, IVECF		DataShee				
	Output	All output pins	V _{OH}	$V_{CC} - 0.5$			V	I _{OH} = -200 μA
	high-level voltage			3.5	—	_	V	I _{OH} = -1 mA
I	Output low-level voltage	All output pins	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
	Input	RES	Cin			15	pF	Vin = 0 V
	capaci-	NMI		_	_	15	pF	[–] f = 1 MHz To – 25°C
ı	tance	All other input pins (including D31–D0)		_	_	15	pF	– Ta = 25°C

Table 15.2 DC Characteristics (Conditions: V_{CC} = 5.0 V ± 10%, Ta = -20 to +75° C)

DataSheet4U.com

www.DataSheet4U.com

396 DataSheet4U.com

ltem		Symbol	Min	Тур	Мах	Unit	Test Conditions
Current	Normal	I _{CC}	_	60	80	mA	f = 8 MHz
consump- tion	operation		—	80	100	mA	f = 16 MHz
			_	110	160	mA	f = 28.7 MHz
	Sleep		_	30	55	mA	f = 8 MHz
			_	50	70	mA	f = 16 MHz
			_	80	100	mA	f = 28.7 MHz
	Standby			1	15	μΑ	Ta ≤ 50°C
					60	μΑ	50°C < Ta

Table 15.2 DC Characteristics (Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75° C) (cont)

Notes: 1. When no PLL is used, do not leave the $\mathsf{PLLV}_{\mathsf{CC}}$ and $\mathsf{PLLV}_{\mathsf{SS}}$ pins open. Connect $\mathsf{PLLV}_{\mathsf{CC}}$ to V_{CC} and $\mathsf{PLLV}_{\mathsf{SS}}$ to $\mathsf{V}_{\mathsf{SS}}.$

2. Current consumption values shown are the values at which all output pins are without load under conditions of V_{IH} min = V_{CC} – 0.5 V, V_{IL} max = 0.5 V.

Table 15.3 Permitted Output Current Values (Conditions: V_{CC} = 5.0 V ± 10%, Ta = -20 to +75°C)

Item	Symbol	Min	Тур	Мах	Unit
Output low-level permissible current (per pin) here	e lo U.com	_	_	2.0	mA
Output low-level permissible current (total)	Σ I _{OL}	—	—	80	mA
Output high-level permissible current (per pin)	–I _{OH}	—	—	2.0	mA
Output high-level permissible current (total)	$\Sigma(-I_{OH})$	_		25	mA

et4U.coCaution: To ensure chip reliability, do not exceed the output current values given in table 15.3. DataShe

DataSheet4U.com

www.DataSheet4U.com 15.3 AC Characteristics

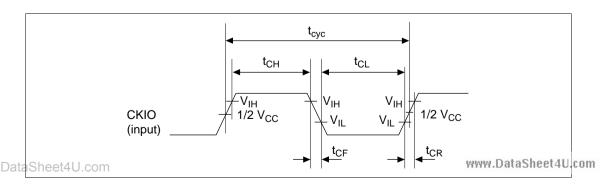
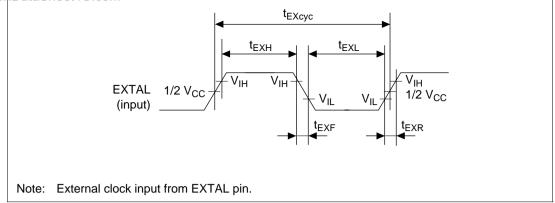

15.3.1 Clock Timing

Table 15.4 Clock Timing (Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
Operating frequency	f _{OP}	4	28.7	MHz	15.1
Clock cycle time	t _{cyc}	35	143 ^{*1} or 250 ^{*2}	ns	
Clock high pulse width	t _{CH}	8 ^{*1} or 15 ^{*2}		ns	_
Clock low pulse width	t _{CL}	8 ^{*1} or 15 ^{*2}		ns	
Clock rise time	t _{CR}		5	ns	
Clock fall time	t _{CF}		5	ns	
EXTAL clock input frequency	f _{EX}	4	8	MHz	15.2
EXTAL clock input cycle time	t _{EXcyc}	125	250	ns	
EXTAL clock input low-level pulse width	t _{EXL}	50	_	ns	
EXTAL clock input high-level pulse width	t _{EXH}	50	_	ns	
EXTAL clock input rise time	t _{EXR}		5	ns	
EXTAL clock input clock fall time Dat	a Š≢xF et4U	.com	5	ns	
Power-on oscillation settling time	t _{OSC1}	10	_	ms	15.3
Software standby oscillation settling time 1	t _{OSC2}	10	_	ms	15.4
Software standby oscillation settling time 2	t _{OSC3}	10	_	ms	15.5
PLL synchronization settling time	t _{PLL}	1	_	μs	15.6

Notes: 1. With PLL circuit 1 operating.

2. With PLL circuit 1 not used.



DataSheet4U.com

398

et4U

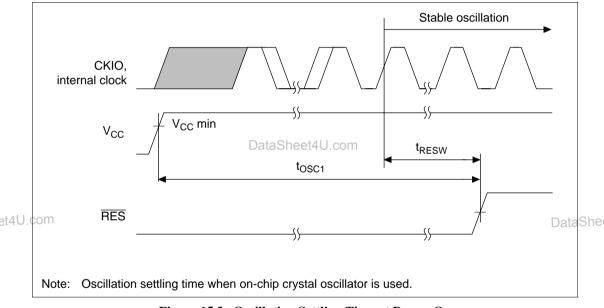


Figure 15.3 Oscillation Settling Time at Power-On

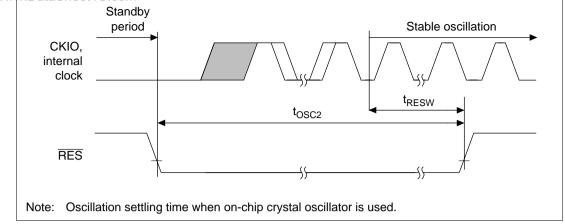


Figure 15.4 Oscillation Settling Time at Standby Return (via RES)

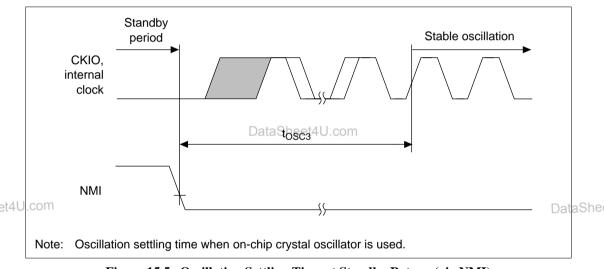


Figure 15.5 Oscillation Settling Time at Standby Return (via NMI)

DataSheet4U.com

www.DataSheet4U.com

400 DataSheet4U.com

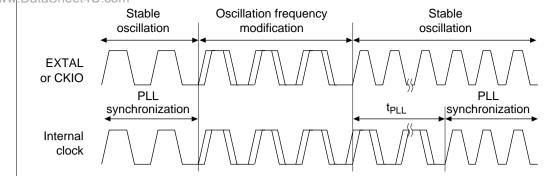


Figure 15.6 PLL Synchronization Settling Time

et4U.com

DataShe

DataSheet4U.com

Item	Symbol	Min	Max	Unit	Figure
RES rise, fall	t _{RESr} , t _{RESf}	_	200	ns	15.7
RES pulse width	t _{RESW}	20	_	t _{cyc}	
NMI reset setup time	t _{NMIRS}	tcyc + 10	_	ns	
NMI reset hold time	t _{NMIRH}	tcyc + 10	_	ns	
NMI rise, fall	t _{NMIr} , t _{NMIf}	—	200	ns	
NMI minimum pulse width	t _{IRQES}	3	_	tcyc	
RES setup time*	t _{RESS}	30	_	ns	15.8,
NMI setup time [*]	t _{NMIS}	30	_	ns	15.9
IRL3–IRL0 setup time*	t _{IRLS}	30	_	ns	_
RES hold time	t _{RESH}	10	_	ns	15.8,
NMI hold time	t _{NMIH}	10	_	ns	15.9
IRL3–IRL0 hold time	t _{IRLH}	10	_	ns	
BRLS setup time 1 (PLL on)	t _{BLSS1}	1/2 tcyc + 9	_	ns	15.10
BRLS hold time 1 (PLL on)	t _{BLSH1}	9 – 1/2 tcyc	_	ns	
BGR delay time 1 (PLL on)	t _{BGRD1}	_	1/2 tcyc + 18	ns	
BRLS setup time 1 (PLL on, 1/4 cycle delay)	t _{BLSS1}	1/4 tcyc + 9	_	ns	15.10
BRLS hold time 1 (PLL on, 1/4 cycle delay)	t _{BLSH1}	9 – 1/4 tcyc	_	ns	Data
BGR delay time 1 (PLL on, 1/4 cycle delay)	t _{BGRD1}	_	3/4 tcyc + 18	ns	
BRLS setup time 2 (PLL off)	t _{BLSS2}	9	_	ns	15.11
BRLS hold time 2 (PLL off)	t _{BLSH2}	19	_	ns	
BGR delay time 2 (PLL off)	t _{BGRD2}	_	28	ns	

Table 15.5	Control Signal Timing	(Conditions: V _{CC} =	$= 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)
------------	------------------------------	--------------------------------	---

Note: The RES, NMI and IRL3-IRL0 signals are asynchronous inputs, but when the setup times shown here are observed, the signals are considered to have changed at clock fall. If the setup times are not observed, recognition may be delayed until the next clock fall.

DataSheet4U.com

www.DataSheet4U.com

402 DataSheet4U.com

www.DataSheet4U.com Table 15.5 Control Signal Timing (Conditions: V_{CC} = 5.0 V ± 10%, Ta = -20 to +75°C) (cont)

Item	Symbol	Min	Max	Unit	Figure
BREQ delay time 1 (PLL on)	t _{BRQD1}	_	1/2 tcyc + 18	ns	15.12
BACK setup time 1 (PLL on)	t _{BAKS1}	1/2 tcyc + 9	_	ns	
BACK hold time 1 (PLL on)	t _{BAKH1}	9 – 1/2 tcyc	_	ns	
BREQ delay time 1 (PLL on, 1/4 cycle delay)	t _{BRQD1}	_	3/4 tcyc + 18	ns	15.12
BACK setup time 1 (PLL on, 1/4 cycle delay)	t _{BAKS1}	1/4 tcyc + 9	_	ns	_
BACK hold time 1 (PLL on, 1/4 cycle delay)	t _{BAKH1}	9 – 1/4 tcyc	_	ns	
BREQ delay time 2 (PLL off)	t _{BRQD2}	_	28	ns	15.13
BACK setup time 2 (PLL off)	t _{BAKS2}	9	_	ns	
BACK hold time 2 (PLL off)	t _{BAKH2}	19	_	ns	_
Bus tri-state delay time 1 (PLL on)	t _{BOFF1}	0	25	ns	15.10,
Bus buffer on time 1 (PLL on)	t _{BON1}	0	18	ns	ns 15.12 ns 15.13 ns 15.13 ns 15.13 ns 15.10, ns 15.10, ns 15.12 ns 15.11, ns 15.13 ns 15.11, ns 15.12 ns 15.12 ns 15.12 ns 15.12, ns 15.11, ns 15.12, ns 15.13, ns 15.13, ns 15.14, ns 15.14,
Bus tri-state delay time 1 (PLL on, 1/4 cycle delay)	t _{BOFF1}	1/4 tcyc	1/4 tcyc + 25	ns	
Bus buffer on time 1 (PLL on, 1/4 cycle delay)	t _{BON1}	1/4 tcyc	1/4 tcyc + 18	ns	
Bus tri-state delay time 1 (PLL off)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Bus buffer on time 1 (PLL off) DataSl	tenta U.co	0	25	ns	15.13
Bus tri-state delay time 2 (PLL on)	t _{BOFF2}	1/2 tcyc	1/2 tcyc + 25	ns	
Bus buffer on time 2 (PLL on)	t _{BON2}	1/2 tcyc	1/2 tcyc + 18	ns	15.12
Bus tri-state delay time 2 (PLL on, 1/4 cycle delay)	t _{BOFF2}	3/4 tcyc	3/4 tcyc + 25	ns	15.12 15.12 15.12 15.13 15.10, 15.10, 15.12 15.10, 15.12 15.11, 15.12 15.11, 15.12 15.10, 15.12 15.10, 15.12 15.12
Bus buffer on time 2 (PLL on, 1/4 cycle delay)	t _{BON2}	3/4 tcyc	3/4 tcyc + 18	ns	15.12
Bus tri-state delay time 3 (PLL off)	t _{BOFF3}	0	30	ns	15.11,
Bus buffer on time 3 (PLL off)	t _{BON3}	0	25	ns	15.12 15.12 15.12 15.13 15.10, 15.10, 15.12 15.10, 15.12 15.11, 15.12 15.10, 15.12 15.11, 15.12 15.11, 15.12 15.11,

DataSheet4U.com

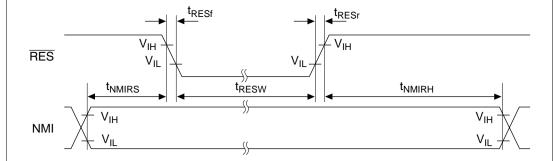
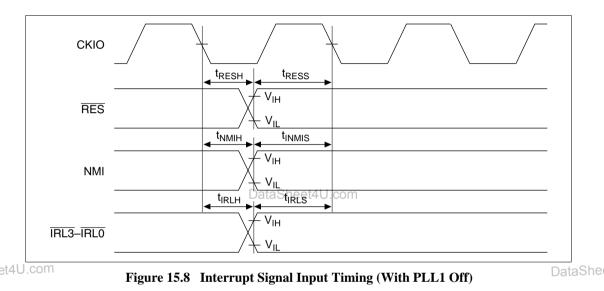



Figure 15.7 Reset Input Timing

DataSheet4U.com

404 DataSheet4U.com

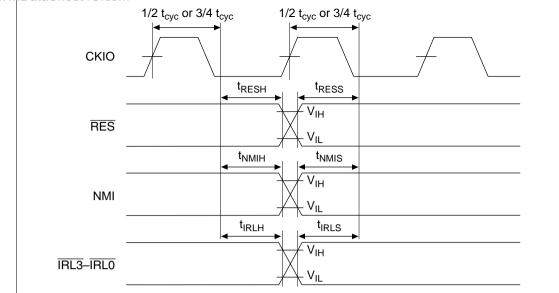


Figure 15.9 Interrupt Signal Input Timing (PLL1 On)

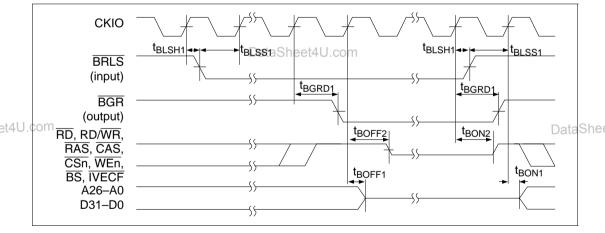


Figure 15.10 Bus Release Timing (Master Mode, PLL1 On)

DataSheet4U.com

www.DataSheet4U.com

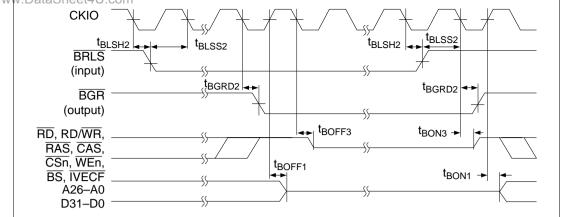


Figure 15.11 Bus Release Timing (Master Mode, PLL1 Off)

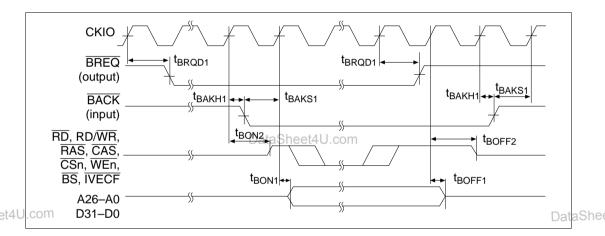


Figure 15.12 Bus Release Timing (Slave Mode, PLL1 On)

www.DataSheet4U.com

DataSheet4U.com

406

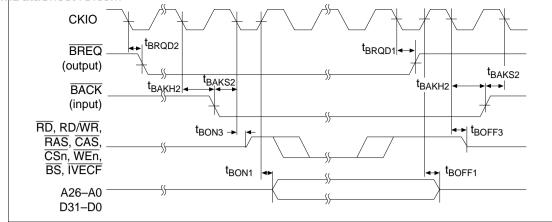


Figure 15.13 Bus Release Timing (Slave Mode, PLL1 Off)

et4U.com

DataShe

DataSheet4U.com

Table 15.6	Bus Timing With PLL On [Mode 0, 4] (Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$,
	$Ta = -20 to + 75^{\circ}C)$

Item	Symbol	Min	Max	Unit	Figures
Address delay time	t _{AD}	3	18	ns	15.14, 15.20, 15.40, 15.52, 15.66, 15.68
BS delay time	t _{BSD}	_	21	ns	15.14, 15.20, 15.40, 15.52, 15.66
CS delay time 1	t _{CSD1}	_	21	ns	15.14, 15.20, 15.40, 15.52, 15.66
CS delay time 2	t _{CSD2}	_	1/2 tcyc + 21	ns	15.14, 15.66
Read/write delay time	t _{RWD}	3	18	ns	15.14, 15.20, 15.40, 15.52, 15.66
Read strobe delay time 1	t _{RSD1}	_	1/2 tcyc + 16	ns	15.14, 15.40, 15.52, 15.66, 15.68
Read data setup time 1	t _{RDS1}	1/2 tcyc + 10	_	ns	15.14, 15.40, 15.52, 15.66, 15.68
Read data setup time 3 (SDRAM)	t _{RDS3}	1/2 tcyc + 8	_	ns	15.20
Read data hold time 2	t _{RDH2}	DataSheet4U	J.com	ns	15.14, 15.66
Read data hold time 4 (SDRAM)	t _{RDH4}	0	_	ns	15.20
Read data hold time 5 (DRAM)	t _{RDH5}	0		ns	15.40
Read data hold time 6 (PSRAM)	t _{RDH6}	0	_	ns	15.52
Read data hold time 7 (interrupt vector)	t _{RDH7}	0		ns	15.68
Write enable delay time	t _{WED1}	1/2 tcyc + 3	1/2 tcyc + 18	ns	15.14, 15.15, 15.52, 15.53
Write data delay time 1	t _{WDD}	3	18	ns	15.15, 15.27, 15.41, 15.53
Write data hold time 1	t _{WDH1}	3	_	ns	15.15, 15.27, 15.41, 15.53
Data buffer on time	t _{DON}	_	18	ns	15.15, 15.27, 15.41, 15.53
Data buffer off time Sheet4U.com	t _{DOF}	—	18	ns	15.15, 15.27, 15.41, 15.53 ^{www.DataSheet}

www.DataSheet4U.com Table 15.6 Bus Timing With PLL On [Mode 0, 4] (cont)

(Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
DACK delay time 1	t _{DACD1}	_	18	ns	15.14, 15.20, 15.40, 15.52, 15.66
DACK delay time 2	t _{DACD2}		1/2 tcyc + 18	ns	15.14, 15.20, 15.40, 15.52, 15.66
WAIT setup time	t _{WTS}	20	—	ns	15.19, 15.43, 15.55, 15.66, 15.70
WAIT hold time	t _{WTH}	5	_	ns	15.19, 15.43, 15.55, 15.66, 15.70
RAS delay time 1 (SDRAM)	t _{RASD1}	_	18	ns	15.20
RAS delay time 2 (DRAM)	t _{RASD2}	1/2 tcyc + 3	1/2 tcyc + 18	ns	15.40
CAS delay time 1 (SDRAM)	t _{CASD1}	_	18	ns	15.20
CAS delay time 2 (DRAM)	t _{CASD2}	1/2 tcyc + 3	1/2 tcyc + 18	ns	15.40
DQM delay time	t _{DQMD}	—	18	ns	15.20
CKE delay time	t _{CKED}	—	21	ns	15.37
CE delay time 1	t _{CED1}	1/2 tcyc + 3	1/2 tcyc + 18	ns	15.52
OE delay time 1	t _{OED1}	—	1/2 tcyc + 18	ns	15.52
IVECF delay time	t _{IVD}	DataSheet4U.	C1811	ns	15.68
Address input setup time	t _{ASIN}	14	_	ns	15.71
Address input hold time	t _{AHIN}	3	_	ns	15.71
BS input setup time	t _{BSS}	15	_	ns	15.71
BS input hold time	t _{BSH}	3	—	ns	15.71
Read/write input setup time	t _{RWS}	15	_	ns	15.71
Read/write input hold time	t _{RWH}	3	—	ns	15.71
Address hold time 1	t _{AH1}	5		ns	15.15

DataSheet4U.com

www.DataSheet4U.com Table 15.7 Bus Timing With PLL On and 1/4 Cycle Delay [Mode 1, 5] (Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures	
Address delay time	t _{AD}	1/4 tcyc + 3	1/4 tcyc + 18	ns	15.14, 15.20, 15.40, 15.52, 15.66, 15.68	
BS delay time	t _{BSD}	_	1/4 tcyc + 21	ns	15.14, 15.20, 15.40, 15.52, 15.66	
CS delay time 1	t _{CSD1}	_	1/4 tcyc + 21	ns	15.14, 15.20, 15.40, 15.52, 15.66	
CS delay time 2	t _{CSD2}	_	3/4 tcyc + 21	ns	15.14, 15.66	
Read/write delay time	t _{RWD}	1/4 tcyc + 3	1/4 tcyc + 18	ns	15.14, 15.20, 15.40, 15.52, 15.66	
Read strobe delay time 1	t _{RSD1}	_	3/4 tcyc + 16	ns	15.14, 15.40, 15.52, 15.66, 15.68	
Read data setup time 1	t _{RDS1}	1/4 tcyc + 10	—	ns	15.14, 15.40, 15.52, 15.66, 15.68	
Read data setup time 3 (SDRAM)	t _{RDS3}	1/4 tcyc + 8	_	ns	15.20	
Read data hold time 2	t _{RDH2}	0	_	ns	15.14, 15.66	
Read data hold time 4 (SDRAM)	t _{RDH4}	0 DataSheet4L	J.com	ns	15.20	
Read data hold time 5 (DRAM)	t _{RDH5}	0	_	ns	15.40	
Read data hold time 6 (PSRAM)	t _{RDH6}	0	_	ns	15.52 Da	taShe
Read data hold time 7 (interrupt vector)	t _{RDH7}	0	_	ns	15.68	
Write enable delay time	t _{WED1}	3/4 tcyc + 3	3/4 tcyc + 18	ns	15.14, 15.15, 15.52, 15.53	
Write data delay time 1	t _{WDD}	1/4 tcyc + 3	1/4 tcyc + 18	ns	15.15, 15.27, 15.41, 15.53	
Write data hold time 1	t _{WDH1}	1/4 tcyc + 3	_	ns	15.15, 15.27, 15.41, 15.53	
Data buffer on time	t _{DON}	_	1/4 tcyc + 18	ns	15.15, 15.27, 15.41, 15.53	
Data buffer off time	t _{DOF}	_	1/4 tcyc + 18	ns	15.15, 15.27, 15.41, 15.53	

DataSheet4U.com

et4U

www.DataSheet4U.com

www.DataSheet4U.com Table 15.7 Bus Timing With PLL On and 1/4 Cycle Delay [Mode 1, 5] (cont) (Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
DACK delay time 1	t _{DACD1}		1/4 tcyc + 18	ns	15.14, 15.20, 15.40, 15.52, 15.66
DACK delay time 2	t _{DACD2}	_	3/4 tcyc + 18	ns	15.14, 15.20, 15.40, 15.52, 15.66
WAIT setup time	t _{WTS}	20 – 1/4 tcyc	—	ns	15.19, 15.43, 15.55, 15.66, 15.70
WAIT hold time	t _{WTH}	1/4 tcyc + 5	—	ns	15.19, 15.43, 15.55, 15.66, 15.70
RAS delay time 1 (SDRAM)	t _{RASD1}	_	1/4 tcyc + 18	ns	15.20
RAS delay time 2 (DRAM)	t _{RASD2}	3/4 tcyc + 3	3/4 tcyc + 18	ns	15.40
CAS delay time 1 (SDRAM)	t _{CASD1}	—	1/4 tcyc + 18	ns	15.20
CAS delay time 2 (DRAM)	t _{CASD2}	3/4 tcyc + 3	3/4 tcyc + 18	ns	15.40
DQM delay time	t _{DQMD}	—	1/4 tcyc + 18	ns	15.20
CKE delay time	t _{CKED}	—	1/4 tcyc + 21	ns	15.37
CE delay time 1	t _{CED1}	3/4 tcyc + 3	3/4 tcyc + 18	ns	15.52
OE delay time 1	t _{OED1}	—	3/4 tcyc + 18	ns	15.52
IVECF delay time	t _{IVD}	DataSheet4U.	1/4 tcyc + 18	ns	15.68
Address input setup time	t _{ASIN}	14 – 1/4 tcyc	_	ns	15.71
Address input hold time	t _{AHIN}	1/4 tcyc + 3	_	ns	15.71
BS input setup time	t _{BSS}	15 – 1/4 tcyc	_	ns	15.71
BS input hold time	t _{BSH}	1/4 tcyc + 3	_	ns	15.71
Read/write input setup time	t _{RWS}	15 – 1/4 tcyc		ns	15.71
Read/write input hold time	t _{RWH}	1/4 tcyc + 3	_	ns	15.71
Address hold time 1	t _{AH1}	5	_	ns	15.15

DataSheet4U.com

www.DataSheet4U.com Table 15.8 Bus Timing With PLL Off (CKIO Input) [Mode 6]

(Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures	
Address delay time	t _{AD}	13	28	ns	15.16, 15.38, 15.47, 15.60, 15.67, 15.69	
BS delay time	t _{BSD}	_	30	ns	15.16, 15.38, 15.47, 15.60, 15.67	
CS delay time 1	t _{CSD1}	_	30	ns	15.16, 15.38, 15.47, 15.60, 15.67	
CS delay time 3	t _{CSD3}	_	28	ns	15.16, 15.67	
Read write delay time	t _{RWD}	13	28	ns	15.16, 15.38, 15.47, 15.60, 15.67	
Read strobe delay time 2	t _{RSD2}		26	ns	15.16, 15.47, 15.60, 15.67, 15.69	
Read data setup time 2	t _{RDS2}	10	_	ns	15.16, 15.38, 15.47, 15.60, 15.67, 15.69	
Read data hold time 2	t _{RDH2}	0		ns	15.16, 15.67	
Read data hold time 3	t _{RDH3}	15		ns	15.38	
Read data hold time 5 (DRAM)	t _{RDH5}	0	_	ns	15.47	
Read data hold time 6 (PSRAM)	t _{RDH6}	D <mark>a</mark> taShe	eet4U. <u>co</u> m	ns	15.60	
Read data hold time 7 (interrupt vector)	t _{RDH7}	0	_	ns	15.69	
Write enable delay time 2	t _{WED2}	10	25	ns	15.17, 15.61 DataS	he
Write data delay time	t _{WDD}	10	25	ns	15.17, 15.39, 15.48, 15.61	
Write data hold time 1	t _{WDH1}	3		ns	15.17, 15.39, 15.48, 15.61	
Write data hold time 2	t _{WDH2}	5		ns	15.17	
Write data hold time 3	t _{WDH3}	3		ns	15.61	
DACK delay time 1	t _{DACD1}	_	25	ns	15.16, 15.38, 15.47, 15.60, 15.67	
DACK delay time 3	t _{DACD3}	_	25	ns	15.16, 15.38, 15.47, 15.60, 15.67	

DataSheet4U.com

et4U

www.DataSheet4U.com Table 15.8 Bus Timing With PLL Off (CKIO Input) [Mode 6] (cont)

(Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
WAIT setup time	t _{WTS}	20	_	ns	15.19, 15.43, 15.55, 15.67, 15.70
WAIT hold time	t _{WTH}	15	—	ns	15.19, 15.43, 15.55, 15.67, 15.70
RAS delay time 1 (SDRAM)	t _{RASD1}	_	25	ns	15.38
RAS delay time 3 (DRAM)	t _{RASD3}	10	25	ns	15.47
CAS delay time 1 (SDRAM)	t _{CASD1}	_	25	ns	15.38
CAS delay time 3 (DRAM)	t _{CASD3}	10	25	ns	15.47
DQM delay time	t _{DQMD}	_	25	ns	15.38
CKE delay time	t _{CKED}	_	25	ns	15.37
CE delay time 2	t _{CED2}	10	25	ns	15.60
OE delay time 2	t _{OED2}	_	25	ns	15.60
IVECF delay time	t _{IVD}	—	25	ns	15.69
WE setup time	t _{WES1}	0	_	ns	15.16
Address setup time 1	t _{AS1}	0	—	ns	15.17
Address setup time 2	t _{AS2}	DataSheet	t4U.com	ns	15.60
Address hold time 2	t _{AH2}	0	—	ns	15.17
Row address setup time	t _{ASR}	3	—	ns	15.47
Column address setup time	t _{ASC}	3	—	ns	15.47
Write command setup time	t _{WCS}	3	_	ns	15.48 Data
Write data setup time	t _{WDS}	3	—	ns	15.48
Address input setup time*	t _{ASIN}	15	—	ns	15.71
Address input hold time*	t _{AHIN}	10		ns	15.71
BS input setup time*	t _{BSS}	15		ns	15.71
BS input hold time*	t _{BSH}	10	—	ns	15.71
Read/write input setup time*	t _{RWS}	15		ns	15.71
Read/write input hold time*	t _{RWH}	10	—	ns	15.71
Data buffer on time	t _{DON}	—	25	ns	15.17, 15.39, 15.48, 15.61
Data buffer off time	t _{DOF}	_	25	ns	15.17, 15.39, 15.48, 15.61

DataSi Note: When the external addresses monitor function is used, the PLL must be on.

www.DataSheet4U.com Table 15.9 Bus Timing With PLL Off (CKIO Output) [Mode 2]

(Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
Address delay time	t _{AD}	3	18	ns	15.16, 15.38, 15.47, 15.60, 15.67, 15.69
BS delay time	t _{BSD}	—	21	ns	15.16, 15.38, 15.47, 15.60, 15.67
CS delay time 1	t _{CSD1}	—	21	ns	15.16, 15.38, 15.47, 15.60, 15.67
CS delay time 3	t _{CSD3}	—	21	ns	15.16, 15.67
Read write delay time	t _{RWD}	3	18	ns	15.16, 15.38, 15.47, 15.60, 15.67
Read strobe delay time 2	t _{RSD2}	—	16	ns	15.16, 15.47, 15.60, 15.67, 15.69
Read data setup time 2	t _{RDS2}	12	—	ns	15.16, 15.38, 15.47, 15.60, 15.67, 15.69
Read data hold time 2	t _{RDH2}	0	—	ns	15.16, 15.67
Read data hold time 3 (SDRAM)	t _{RDH3}	1/2 tcyc	—	ns	15.38
Read data hold time 5 (DRAM)	t _{RDH5}	0 DataSheet	4U.com	ns	15.47
Read data hold time 6 (PSRAM)	t _{RDH6}	0	_	ns	15.60
Read data hold time 7 (interrupt vector)	t _{RDH7}	0	—	ns	15.69 Da
Write enable delay time 2	t _{WED2}	3	18	ns	15.17, 15.61
Write data delay time	t _{WDD}	3	18	ns	15.17, 15.39, 15.48, 15.61
Write data hold time 1	t _{WDH1}	3	—	ns	15.17, 15.39, 15.48, 15.61
Write data hold time 2	t _{WDH2}	5	_	ns	15.17
Write data hold time 3	t _{WDH3}	3	_	ns	15.61
DACK delay time 1	t _{DACD1}	_	18	ns	15.16, 15.38, 15.47, 15.60, 15.67
DACK delay time 3	t _{DACD3}	_	18	ns	15.16, 15.38, 15.47, 15.60, 15.67

DataSheet4U.com

et4U

www.DataSheet4U.com

www.DataSheet4U.com Table 15.9 Bus Timing With PLL Off (CKIO Output) [Mode 2] (cont)

(Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
WAIT setup time	t _{WTS}	22	_	ns	15.19, 15.43, 15.55, 15.67, 15.70
WAIT hold time	t _{WTH}	5	_	ns	15.19, 15.43, 15.55, 15.67, 15.70
RAS delay time 1 (SDRAM)	t _{RASD1}	_	18	ns	15.38
RAS delay time 3 (DRAM)	t _{RASD3}	3	18	ns	15.47
CAS delay time 1 (SDRAM)	t _{CASD1}	_	18	ns	15.38
CAS delay time 3 (DRAM)	t _{CASD3}	3	18	ns	15.47
DQM delay time	t _{DQMD}	_	18	ns	15.38
CKE delay time	t _{CKED}	_	21	ns	15.37
CE delay time 2	t _{CED2}	3	18	ns	15.60
OE delay time 2	t _{OED2}	_	18	ns	15.60
IVECF delay time	t _{IVD}		18	ns	15.69
Address input setup time*	t _{ASIN}	14	—	ns	15.71
Address input hold time*	t _{AHIN}	3	—	ns	15.71
BS input setup time*	t _{BSS}	DataShe	et4U.com	ns	15.71
BS input hold time*	t _{BSH}	3	—	ns	15.71
Read/write input setup time*	t _{RWS}	15	—	ns	15.71
Read/write input hold time*	t _{RWH}	3		ns	15.71
Data buffer on time	t _{DON}	_	18	ns	15.17, 15.39, 15.48, ataS 15.61
Data buffer off time	t _{DOF}	_	18	ns	15.17, 15.39, 15.48, 15.61
Address hold time 2	t _{AH2}	5	_	ns	15.17

Note: When the external addresses monitor function is used, the PLL must be on.

DataSheet4U.com

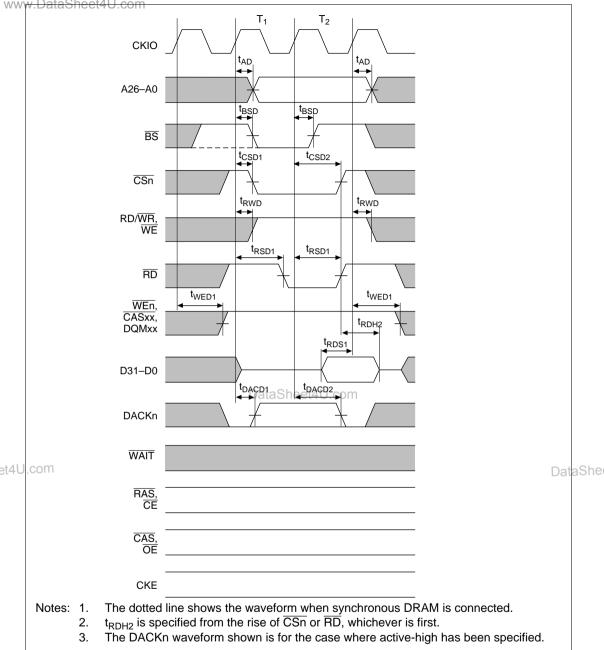


Figure 15.14 Basic Read Cycle (No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

416

DataSheet4U.com

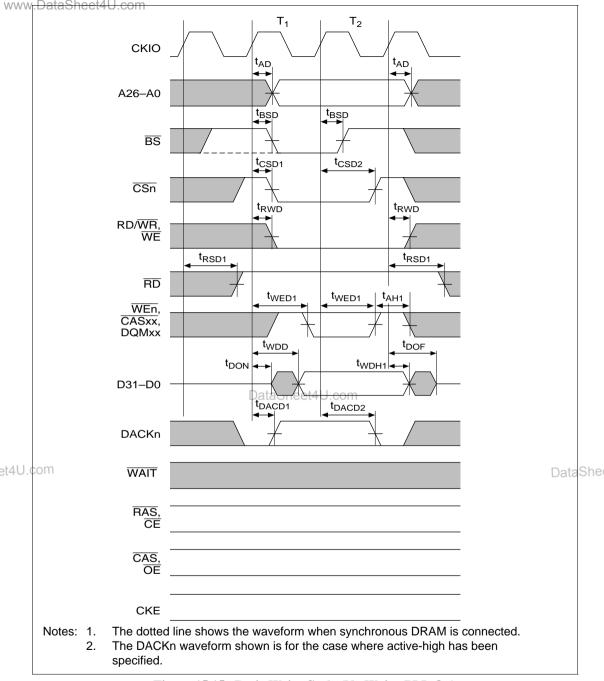


Figure 15.15 Basic Write Cycle (No Waits, PLL On)

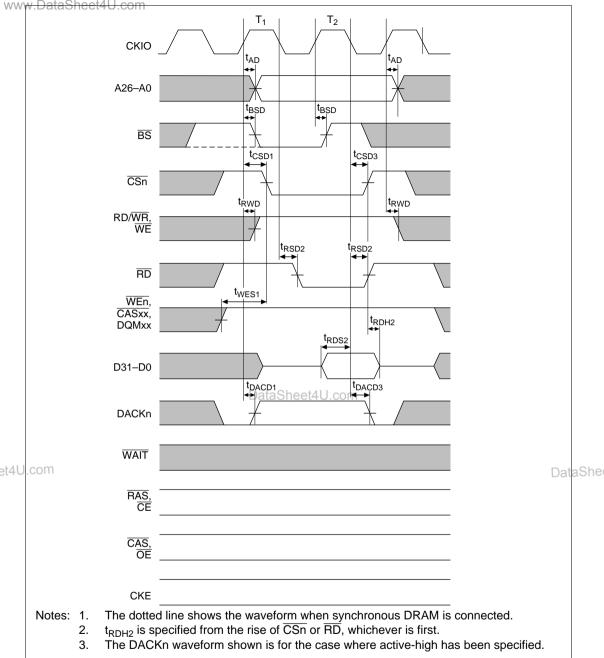
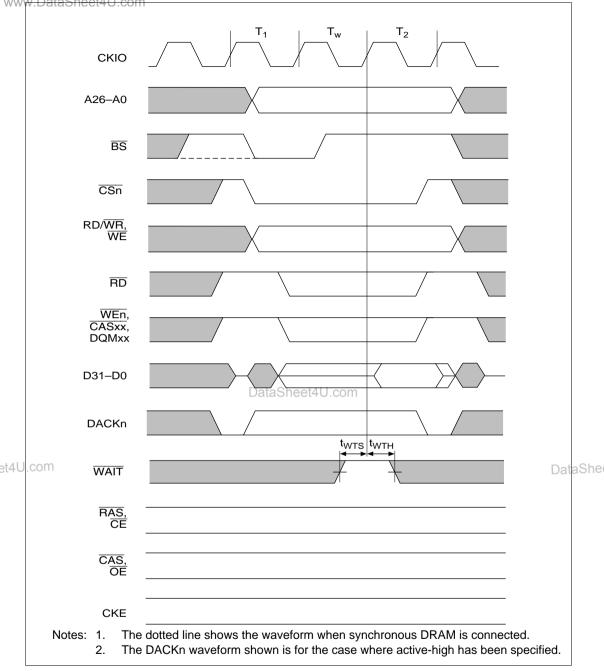
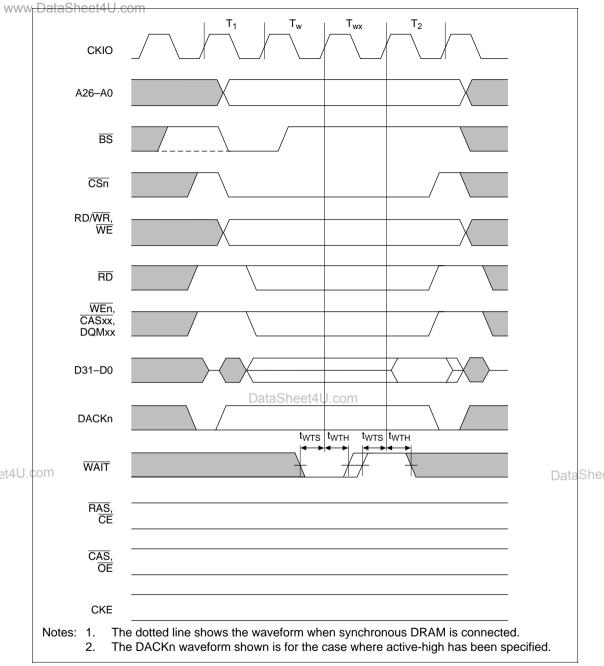


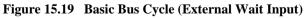
Figure 15.16 Basic Read Cycle (No Waits, PLL Off)

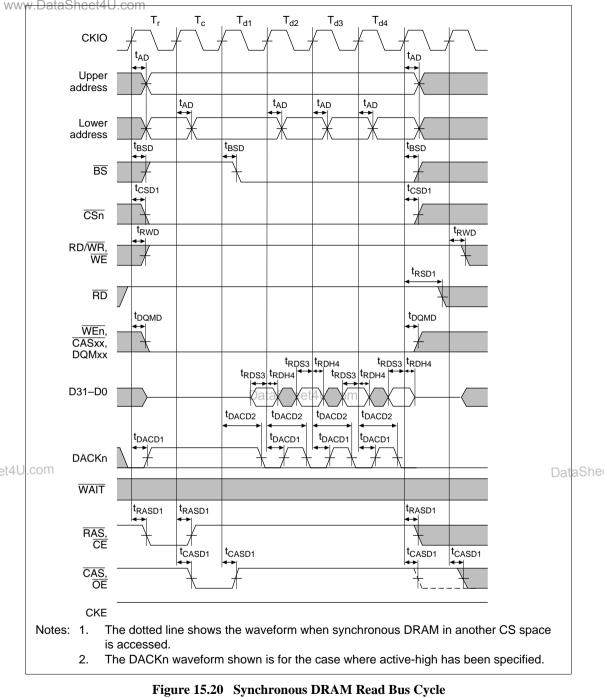

DataSheet4U.com

www.DataSheet4U.com

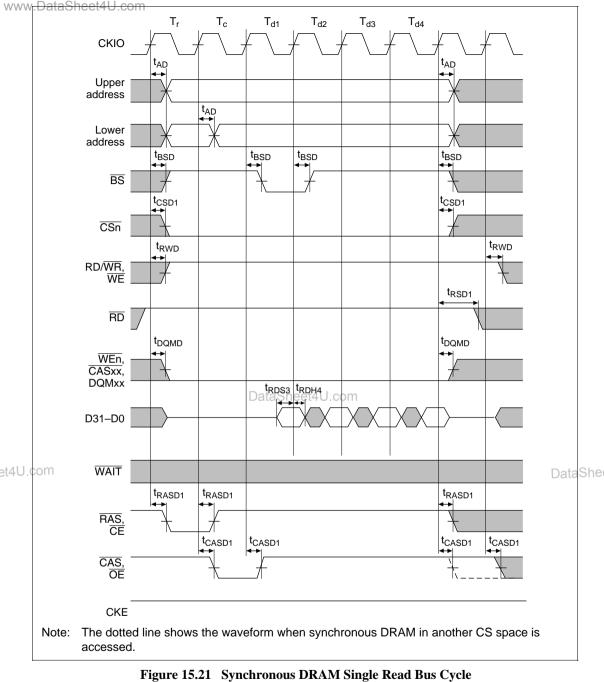
Figure 15.17 Basic Write Cycle (No Waits, PLL Off)

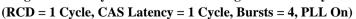

www.DataSheet4U.com

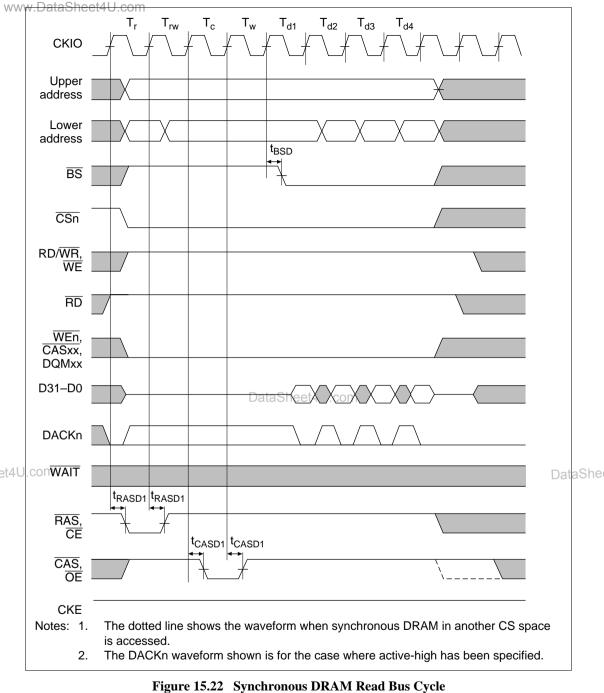



DataSheet4U.com

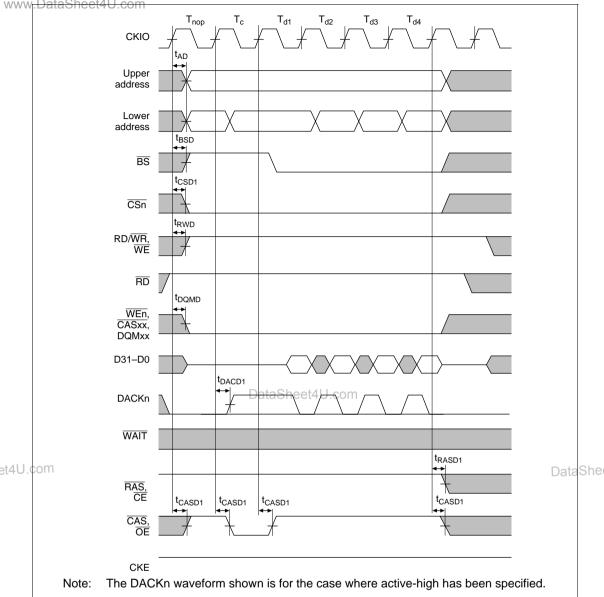
www.DataSheet4U.com




www.DataSheet4U.com


(RCD = 1 Cycle, CAS Latency = 1 Cycle, Bursts = 4, PLL On WW.DataSheet4U.com

422


www.DataSheet4U.com

(RCD = 2 Cycles, CAS Latency = 2 Cycles, Bursts = 4)

DataSheet4U.com

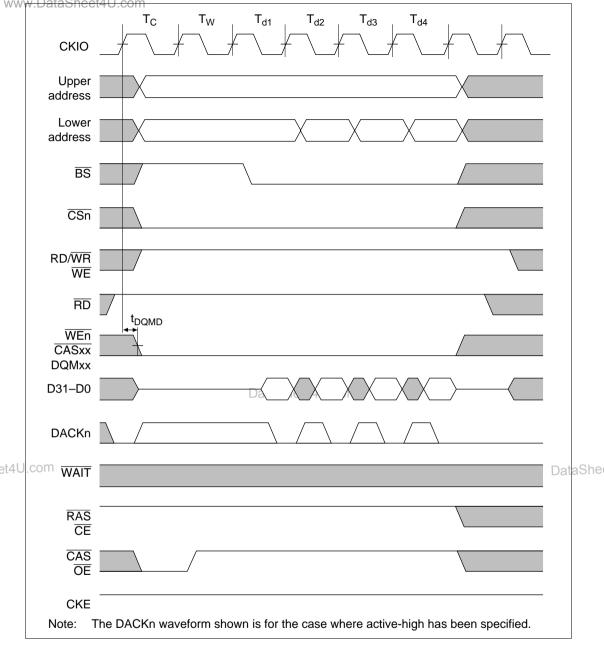

www.DataSheet4U.com

Figure 15.23 Synchronous DRAM Read Bus Cycle (Bank Active, Same Row Access, CAS Latency = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

Figure 15.24 Synchronous DRAM Read Bus Cycle (Bank Active, Same Row Access, CAS Latency = 2 Cycles)

DataSheet4U.com

www.DataSheet4U.com

426 DataSheet4U.com

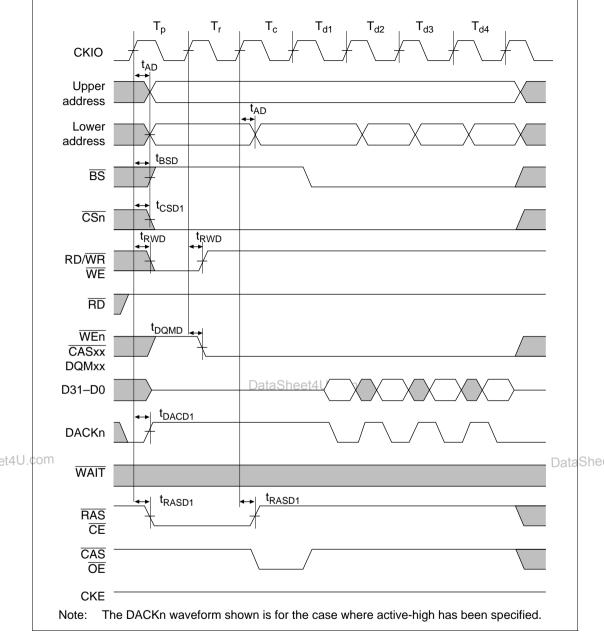


Figure 15.25 Synchronous DRAM Read Bus Cycle (Bank Active, Different Row Access, TRP = 1 Cycle, RCD = 1 Cycle, CAS Latency = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

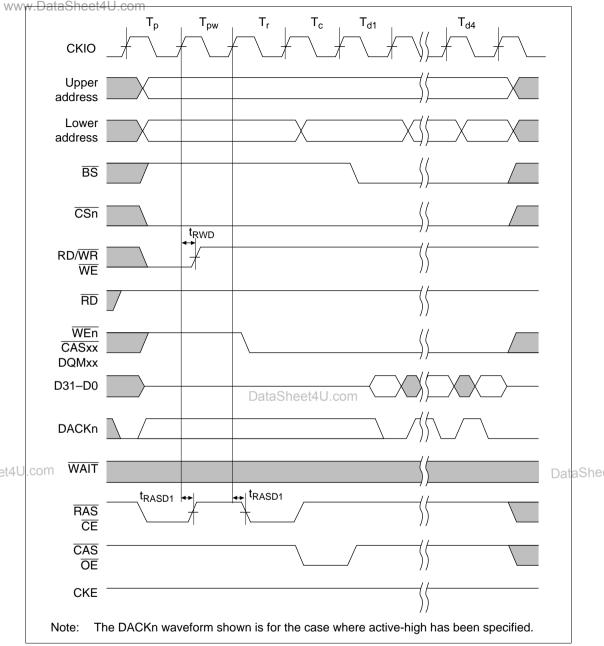


Figure 15.26 Synchronous DRAM Read Bus Cycle (Bank Active, Different Row Access, TRP = 2 Cycles, RCD = 1 Cycle, CAS Latency = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

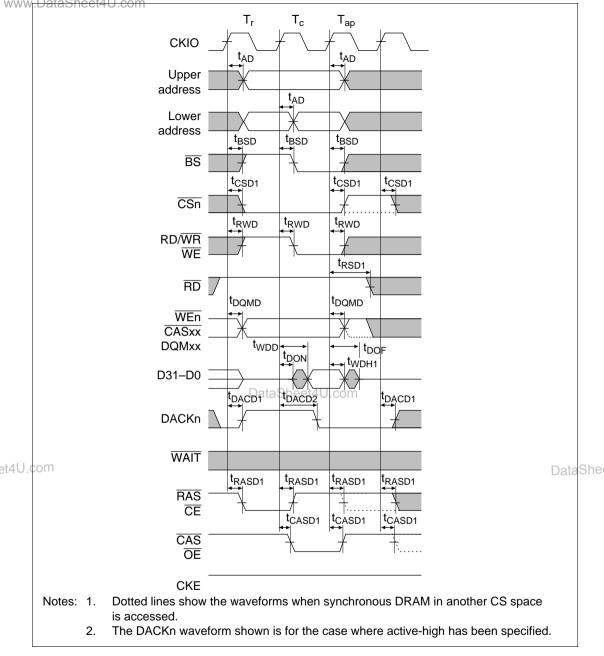
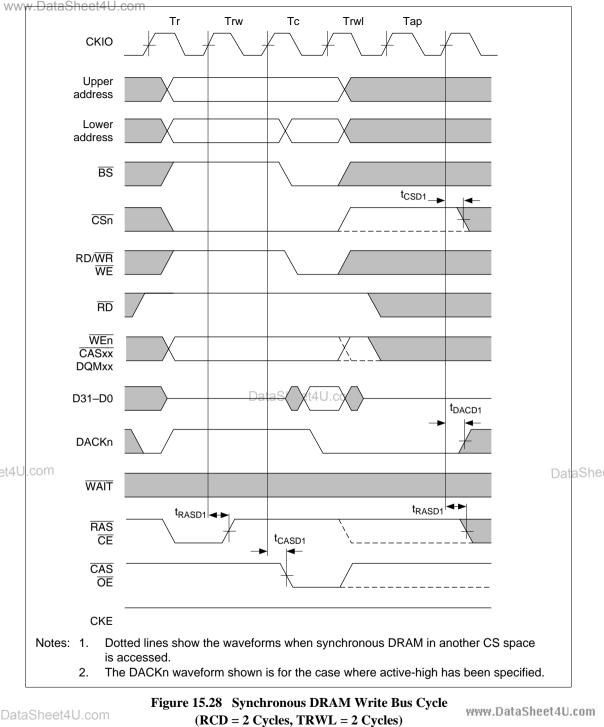



Figure 15.27 Synchronous DRAM Write Bus Cycle (RCD = 1 Cycle, TRWL = 1 Cycle, PLL On)

DataSheet4U.com

www.DataSheet4U.com

430 DataSheet4U.com

www.DataSheet4U.com

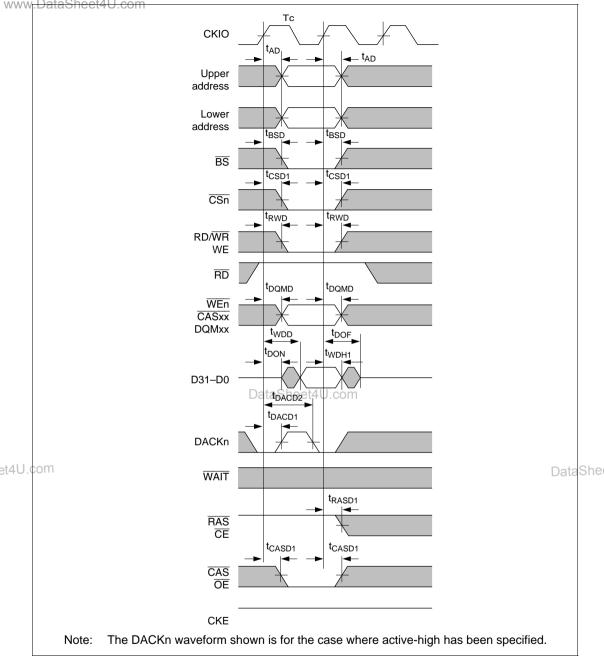
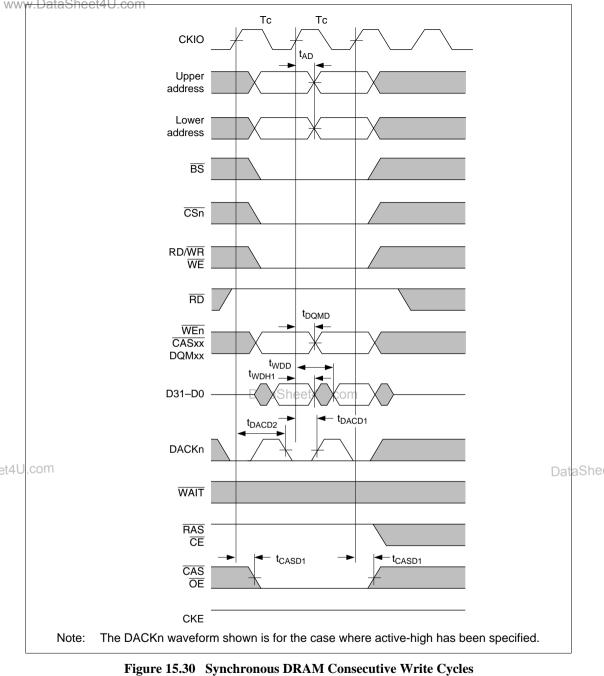



Figure 15.29 Synchronous DRAM Write Bus Cycle (Bank Active, Same Row Access)

DataSheet4U.com

www.DataSheet4U.com

(Bank Active, Same Row Access)

DataSheet4U.com

www.DataSheet4U.com

432

DataSheet4U.com

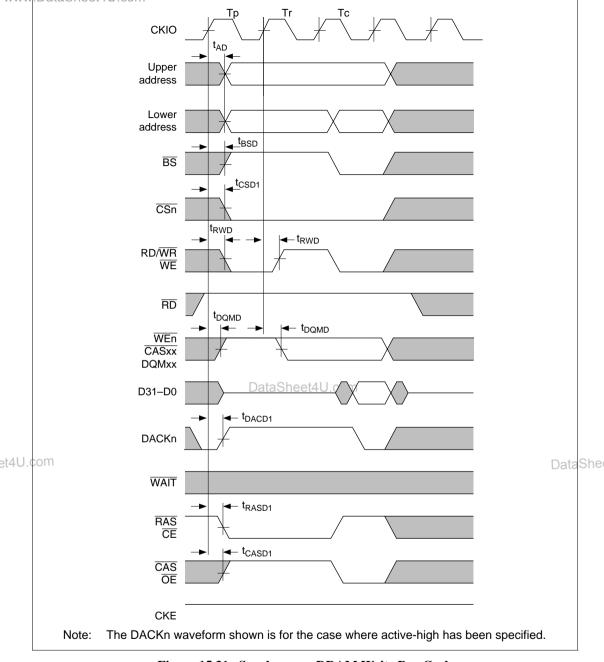
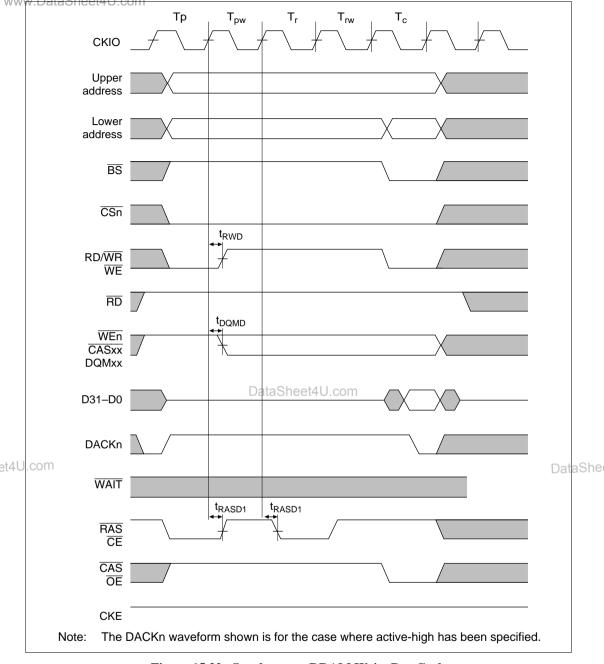



Figure 15.31 Synchronous DRAM Write Bus Cycle (Bank Active, Different Row Access, TRP = 1 Cycle, RCD = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

Figure 15.32 Synchronous DRAM Write Bus Cycle (Bank Active, Different Row Access, TRP = 2 Cycles, RCD = 2 Cycles)

DataSheet4U.com

www.DataSheet4U.com

434 DataSheet4U.com

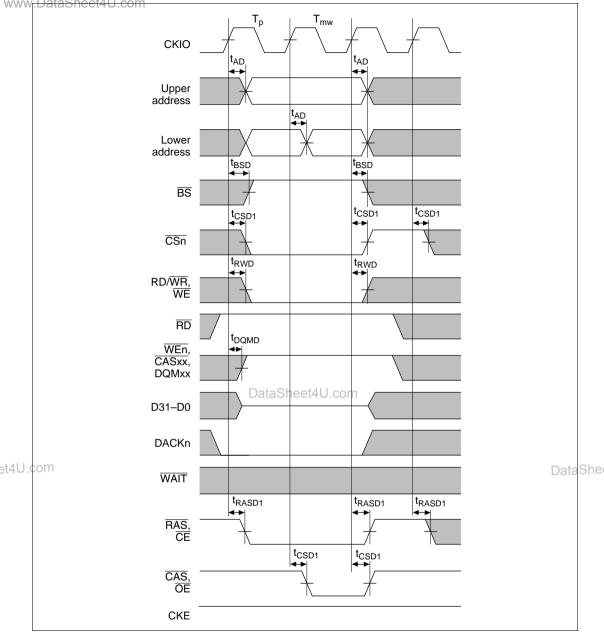


Figure 15.33 Synchronous DRAM Mode Register Write Cycle (TRP = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

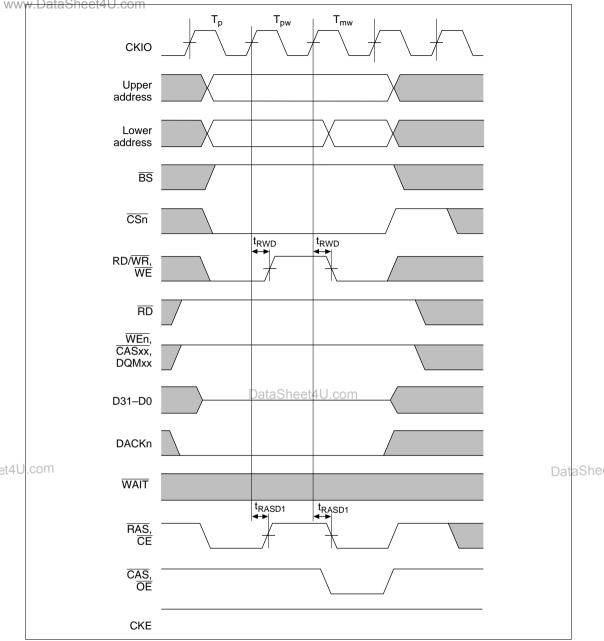


Figure 15.34 Synchronous DRAM Mode Register Write Cycle (TRP = 2 Cycles)

DataSheet4U.com

www.DataSheet4U.com

436 DataSheet4U.com

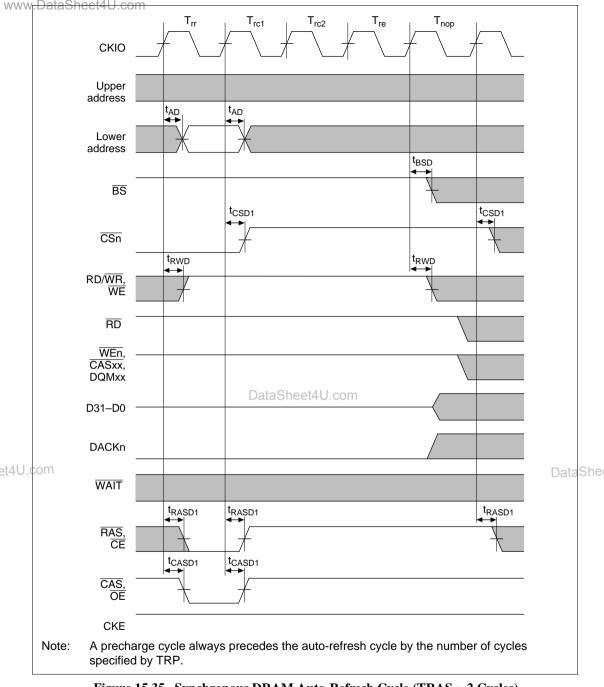
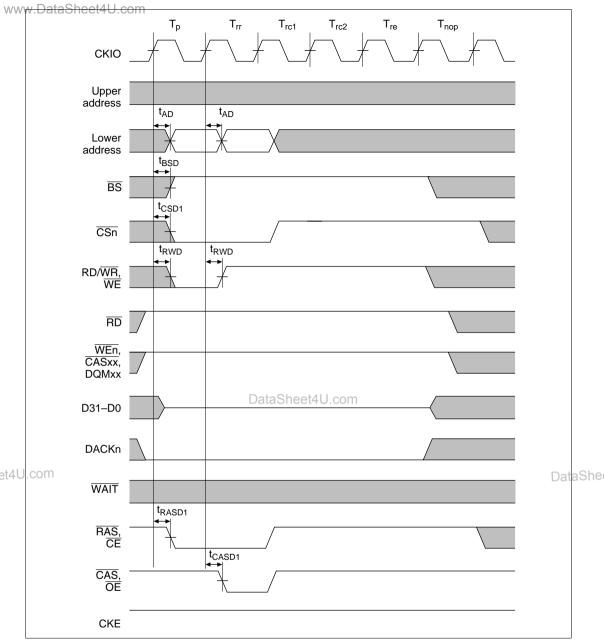
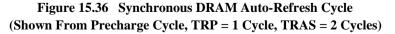




Figure 15.35 Synchronous DRAM Auto-Refresh Cycle (TRAS = 2 Cycles)

DataSheet4U.com

www.DataSheet4U.com

438 DataSheet4U.com

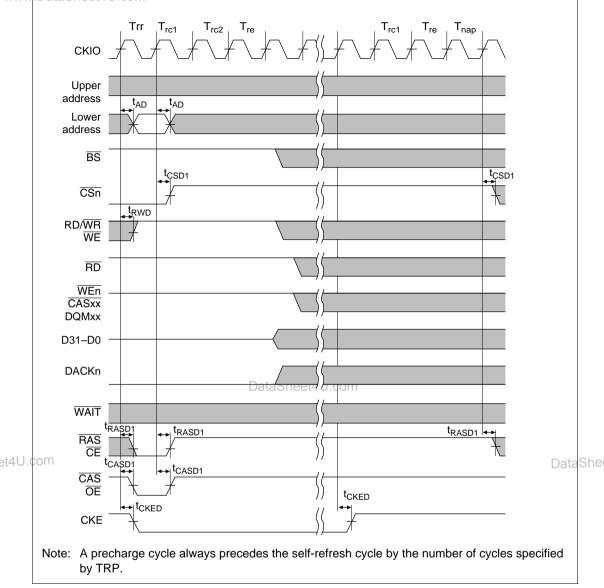
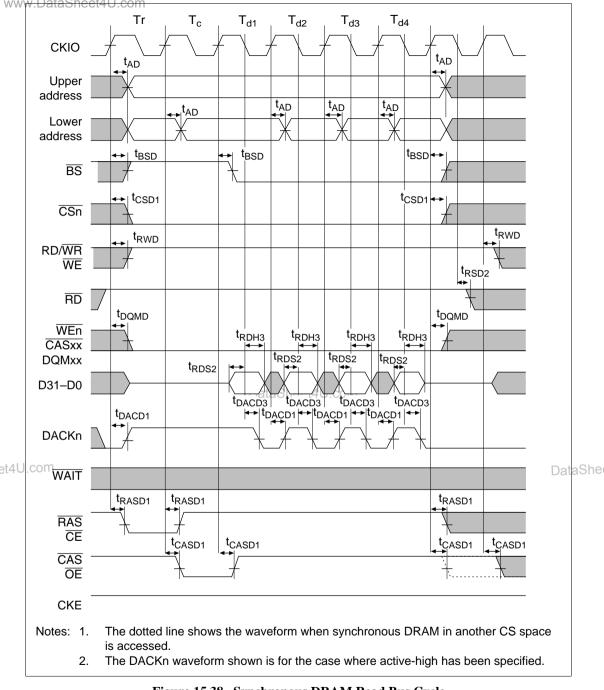
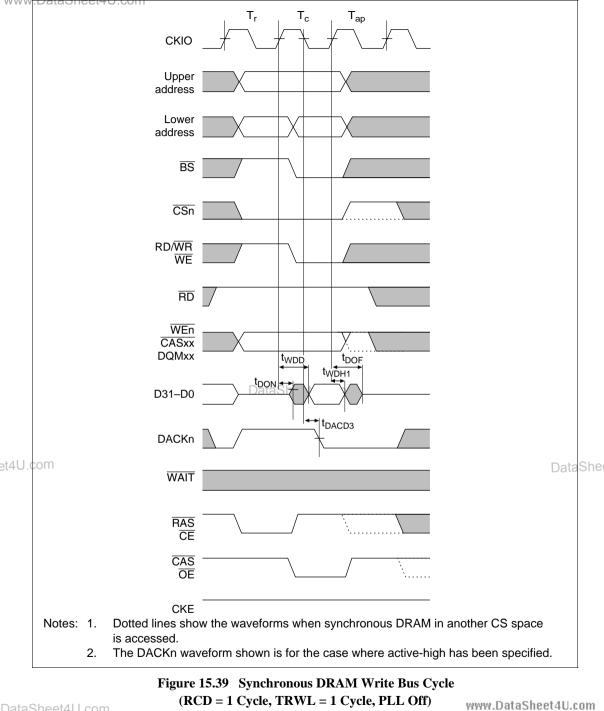



Figure 15.37 Synchronous DRAM Self-Refresh Cycle (TRAS = 2)


DataSheet4U.com

www.DataSheet4U.com

Figure 15.38 Synchronous DRAM Read Bus Cycle

DataSheet4URCP = 1 Cycle, CAS Latency = 1 Cycle, TRP = 1 Cycle, Bursts = 4, Phil. Off Sheet4U.com

DataSheet4U.com

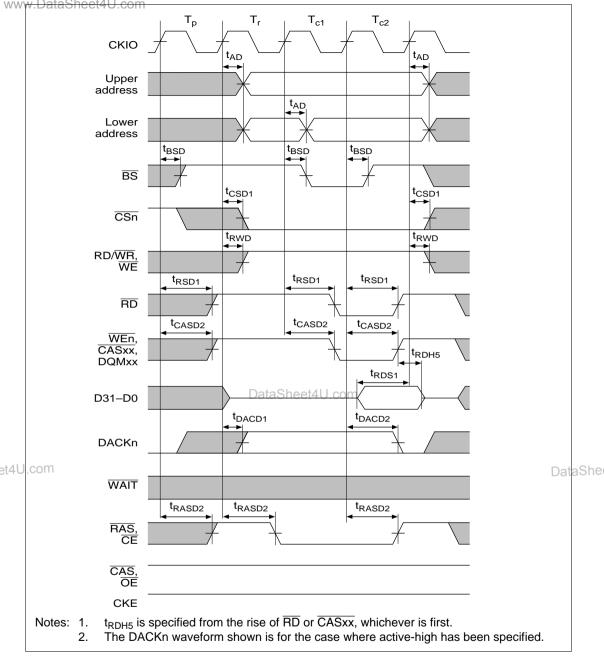
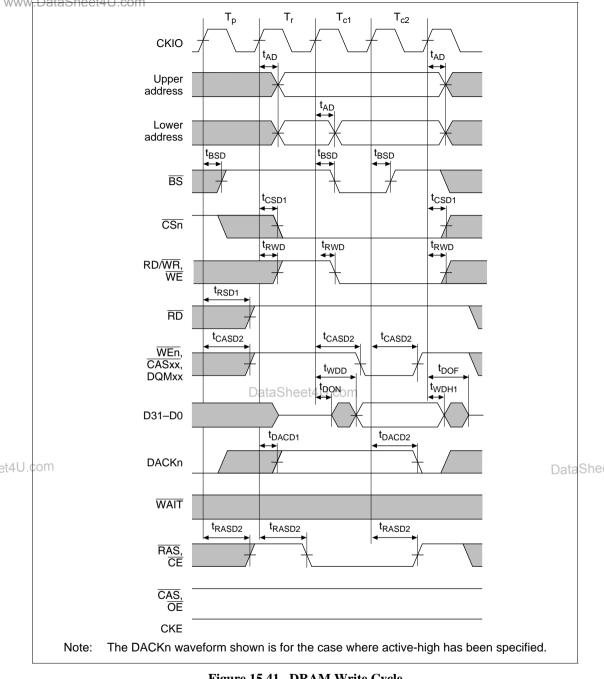



Figure 15.40 DRAM Read Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

442 DataSheet4U.com

Figure 15.41 DRAM Write Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

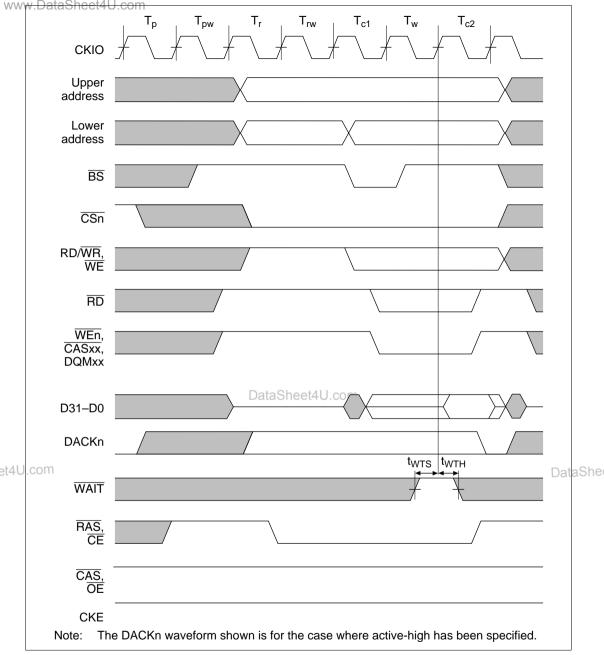


Figure 15.42 DRAM Bus Cycle (TRP = 2 Cycles, RCD = 2 Cycles, 1 Wait)

DataSheet4U.com

www.DataSheet4U.com

444 DataSheet4U.com

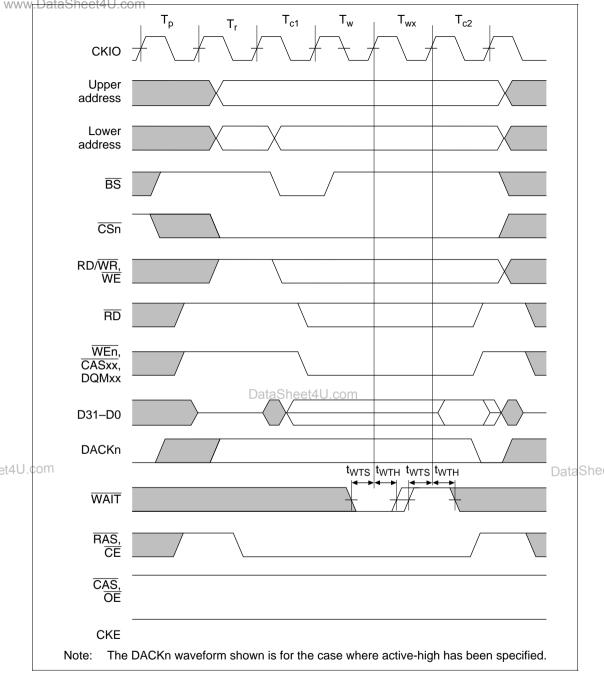
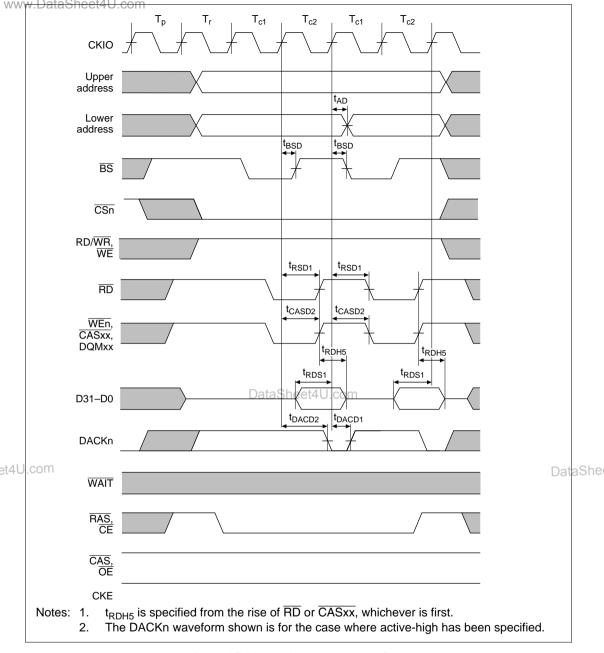



Figure 15.43 DRAM Bus Cycle (TRP = 1 Cycle, RCD = 1 Cycle, External Wait Input)

DataSheet4U.com

www.DataSheet4U.com

Figure 15.44 DRAM Burst Read Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

446 DataSheet4U.com

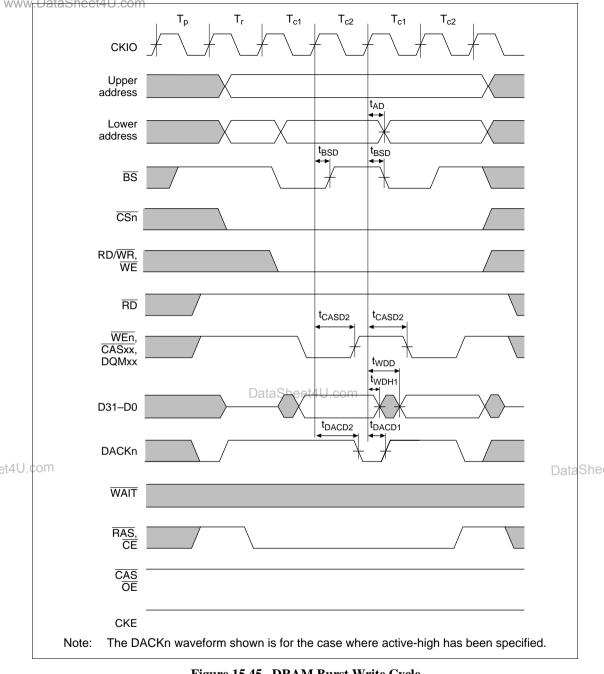
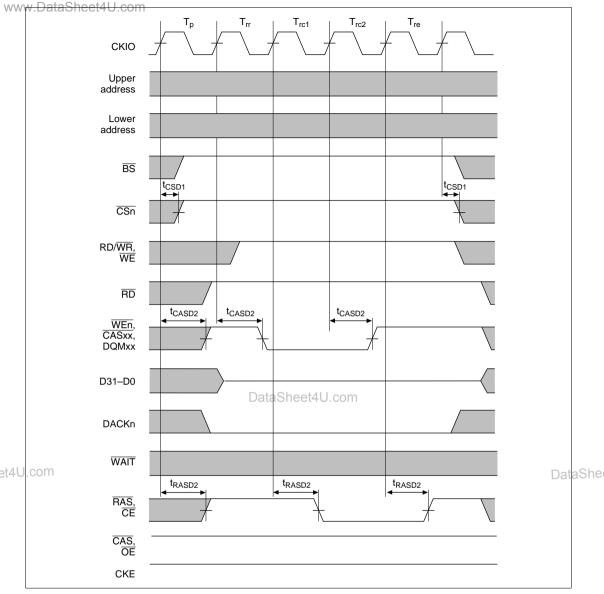
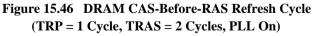




Figure 15.45 DRAM Burst Write Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

448 DataSheet4U.com

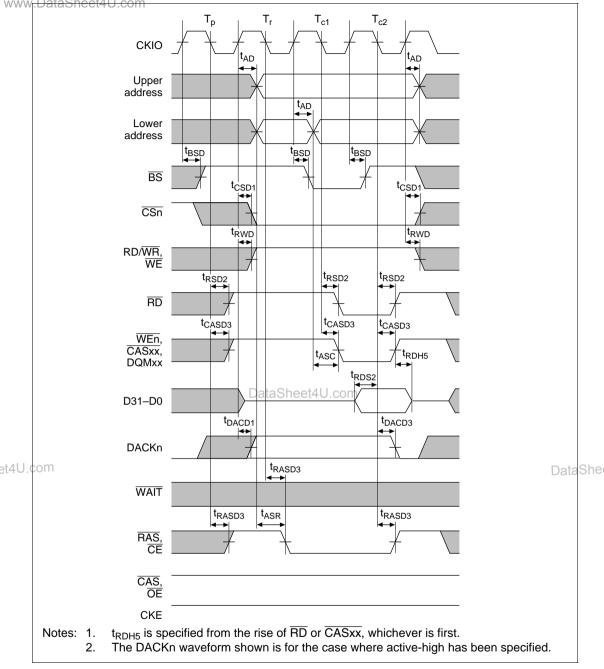


Figure 15.47 DRAM Read Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL Off)

www.DataSheet4U.com

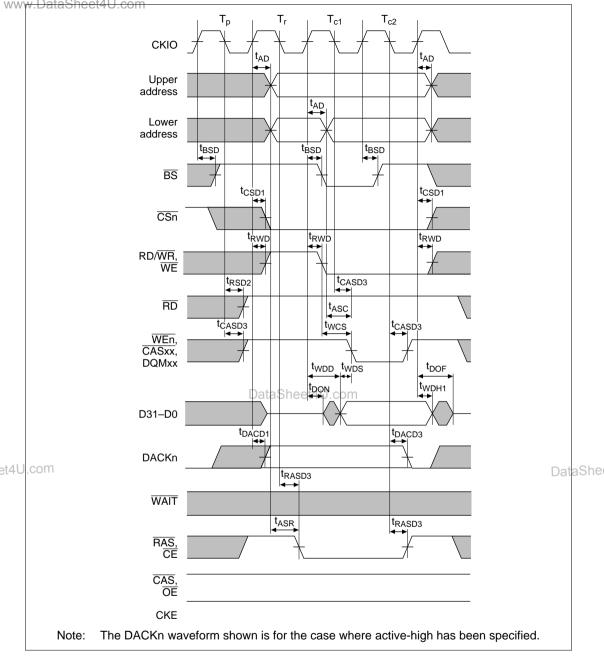
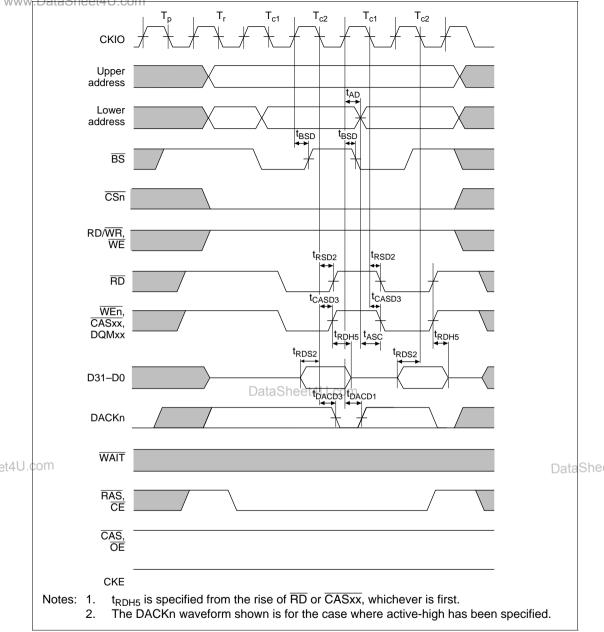



Figure 15.48 DRAM Write Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL Off)

DataSheet4U.com

www.DataSheet4U.com

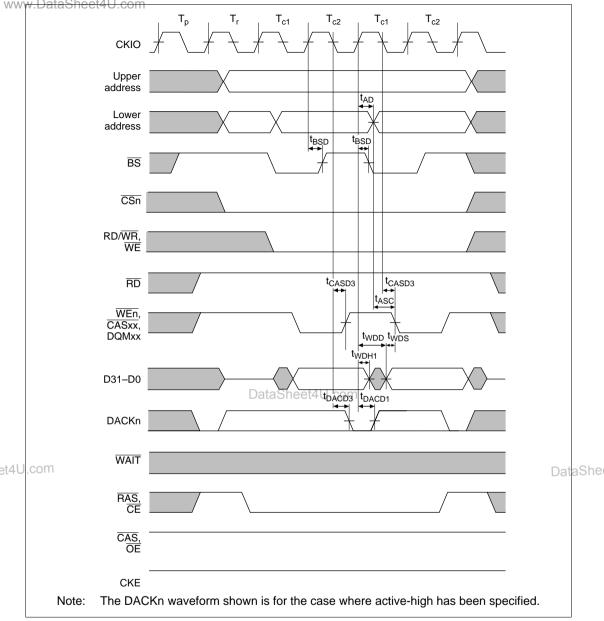

450 DataSheet4U.com

Figure 15.49 DRAM Burst Read Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL Off)

DataSheet4U.com

www.DataSheet4U.com

Figure 15.50 DRAM Burst Write Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL Off)

DataSheet4U.com

www.DataSheet4U.com

452 DataSheet4U.com

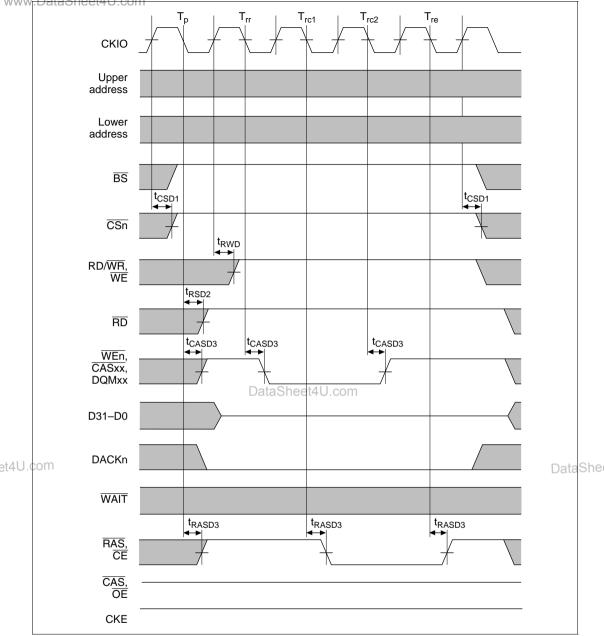
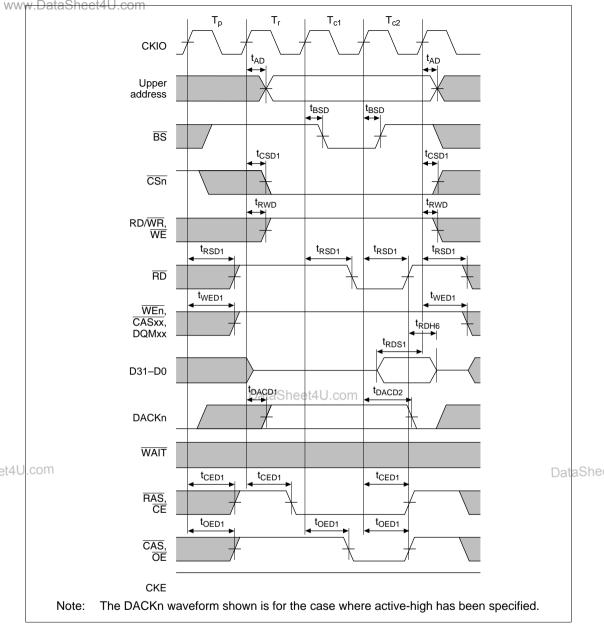



Figure 15.51 DRAM CAS-Before-RAS Refresh Cycle (TRP = 1 Cycle, TRAS = 2 Cycles, PLL Off)

DataSheet4U.com

www.DataSheet4U.com

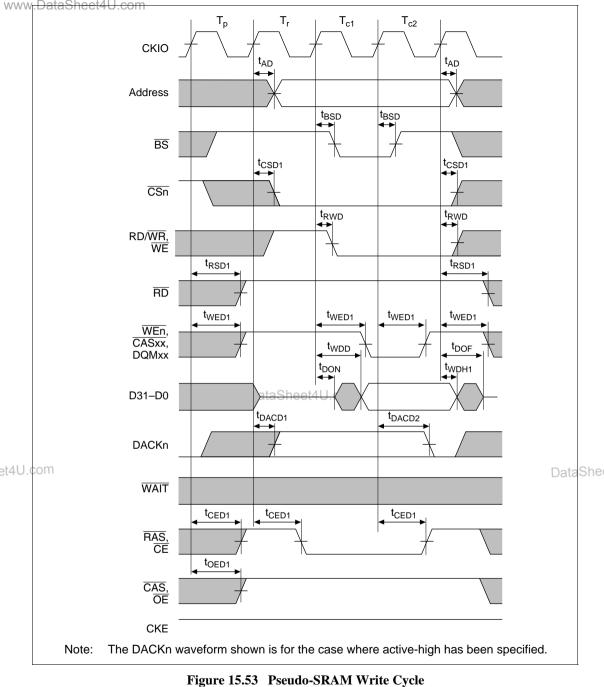


Figure 15.52 Pseudo-SRAM Read Cycle (PLL On, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com

www.DataSheet4U.com

454 DataSheet4U.com

(PLL On, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com

www.DataSheet4U.com

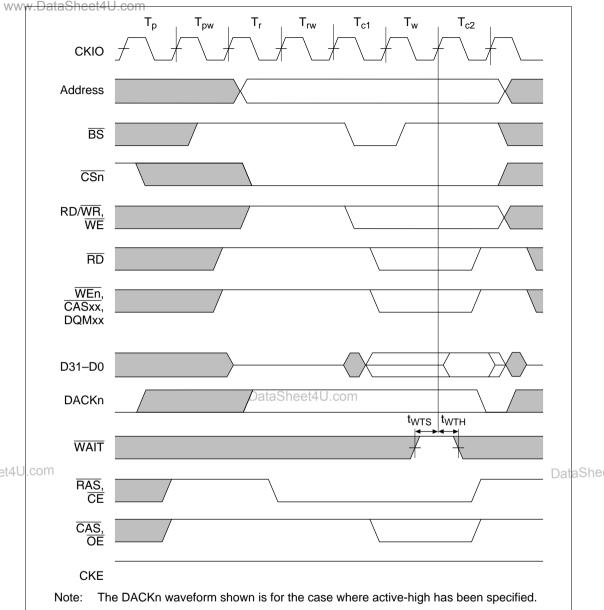
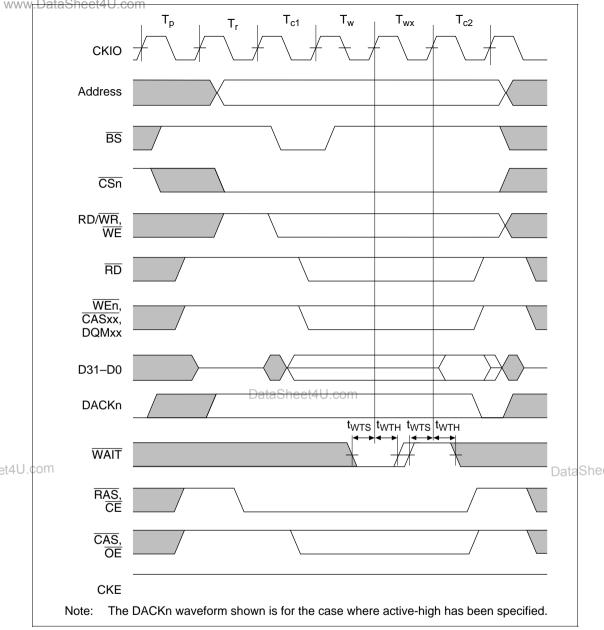



Figure 15.54 Pseudo-SRAM Bus Cycle (TRP = 2 Cycles, RCD = 2 Cycles, 1 Wait)

DataSheet4U.com

www.DataSheet4U.com

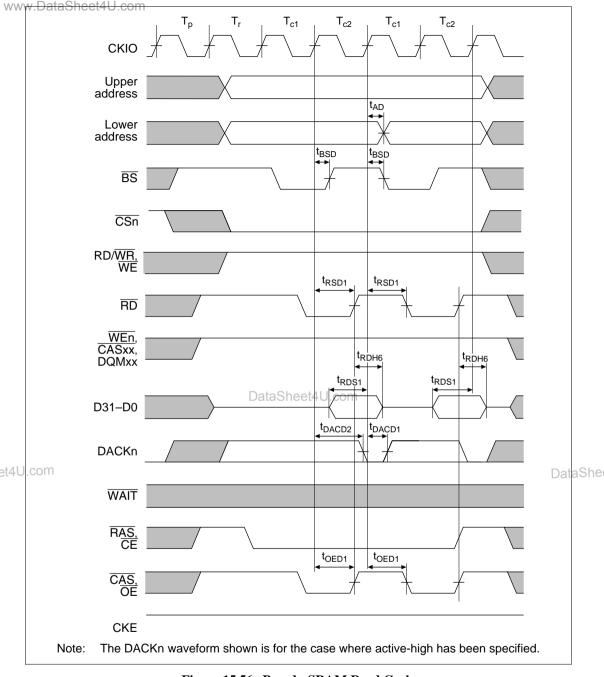

456 DataSheet4U.com

Figure 15.55 Pseudo-SRAM Bus Cycle (TRP = 1 Cycle, RCD = 1 Cycle, External Wait Input)

DataSheet4U.com

www.DataSheet4U.com

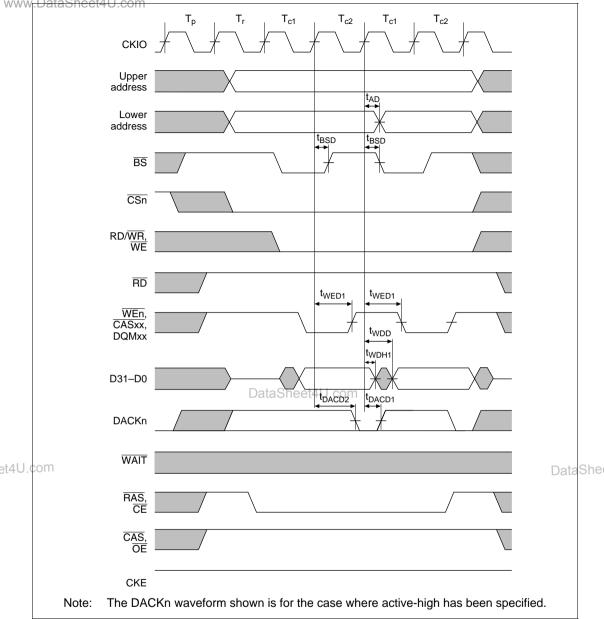
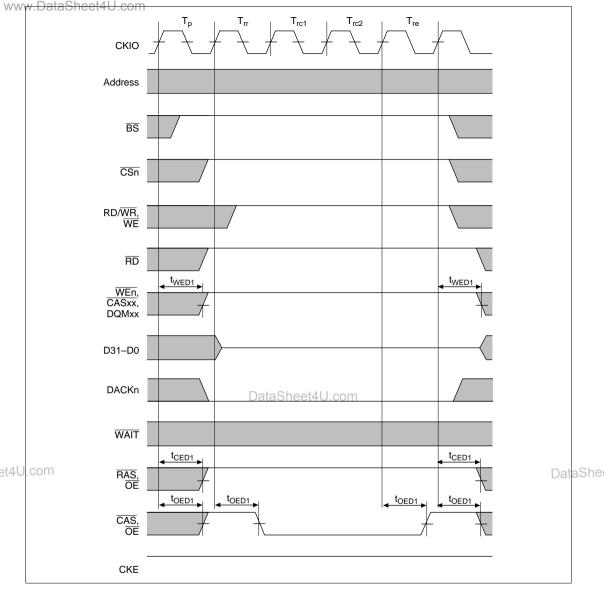


Figure 15.56 Pseudo-SRAM Read Cycle (Static Column Mode, PLL On, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

www.DataSheet4U.com

458


DataSheet4U.com

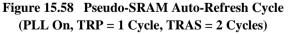
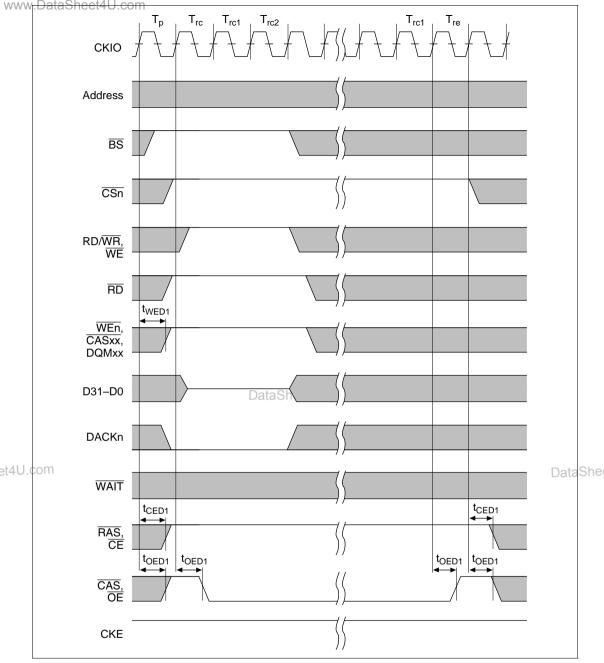
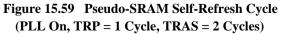


Figure 15.57 Pseudo-SRAM Write Cycle (Static Column Mode, PLL On, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com

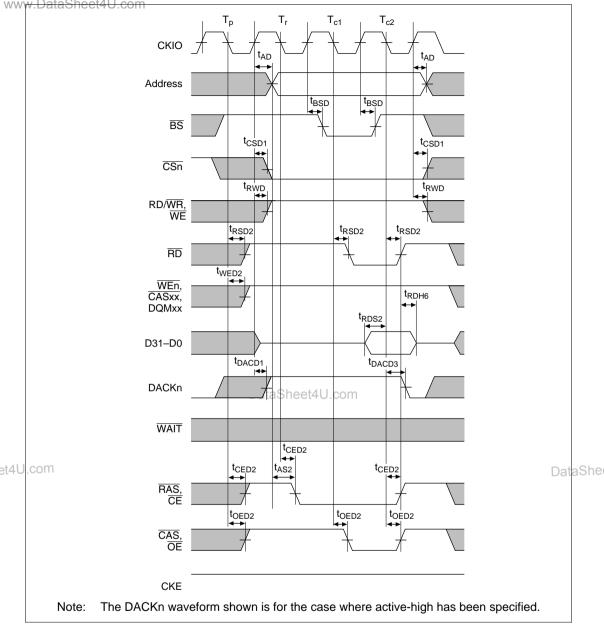
www.DataSheet4U.com





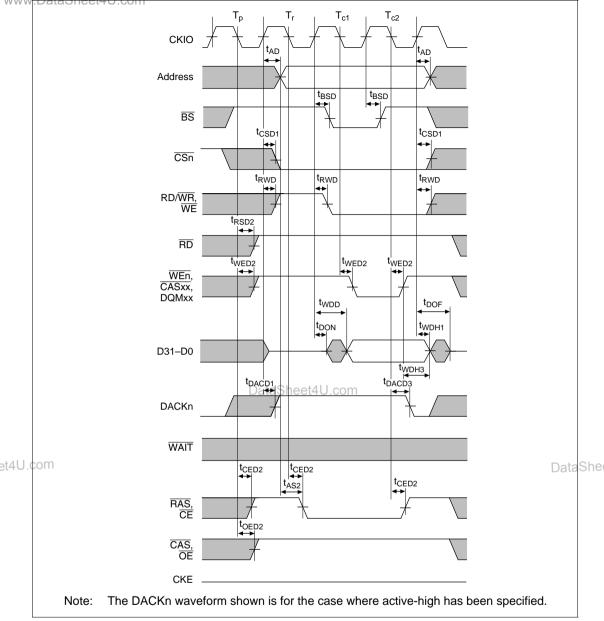
DataSheet4U.com

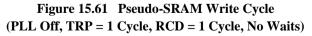
www.DataSheet4U.com


460 DataSheet4U.com

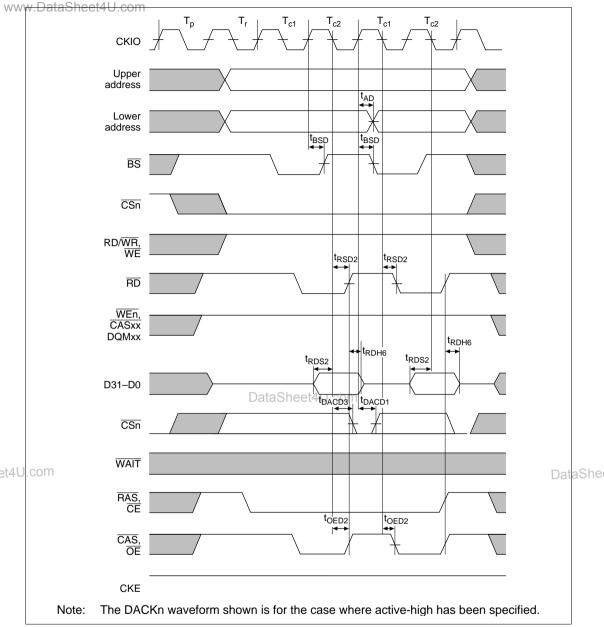
DataSheet4U.com

www.DataSheet4U.com




Figure 15.60 Pseudo-SRAM Read Cycle (PLL Off, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com


www.DataSheet4U.com

462 DataSheet4U.com

www.DataSheet4U.com

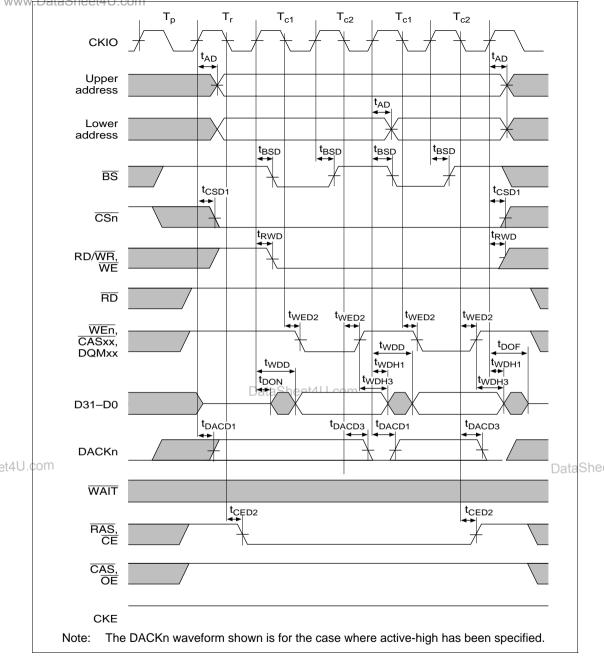
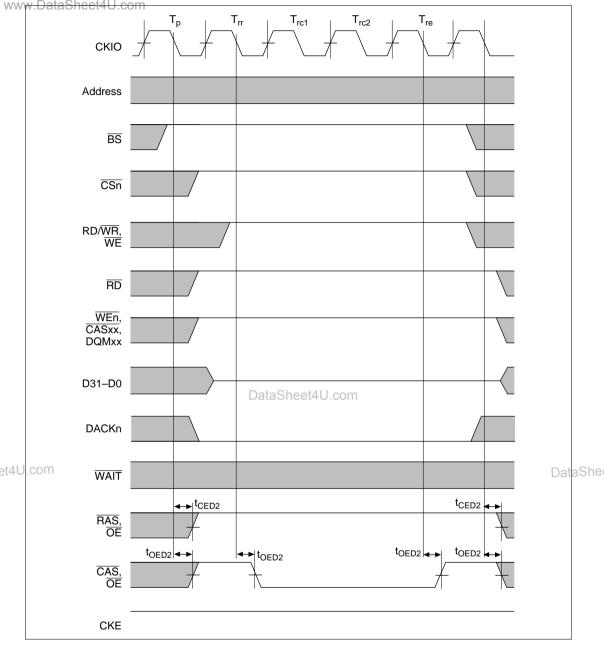


Figure 15.62 Pseudo-SRAM Read Cycle (Static Column Mode, PLL Off, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com


www.DataSheet4U.com

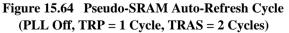
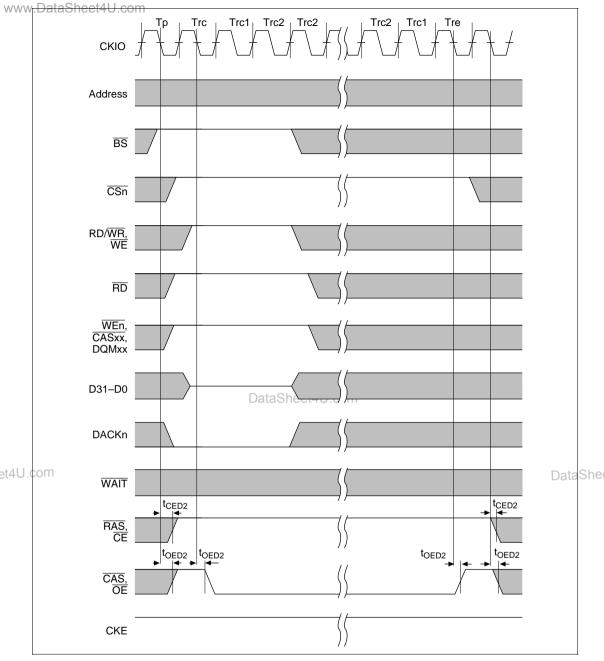
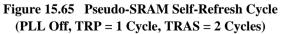

464 DataSheet4U.com

Figure 15.63 Pseudo-SRAM Write Cycle (Static Column Mode, PLL Off, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

www.DataSheet4U.com




DataSheet4U.com

www.DataSheet4U.com

466

DataSheet4U.com

www.DataSheet4U.com

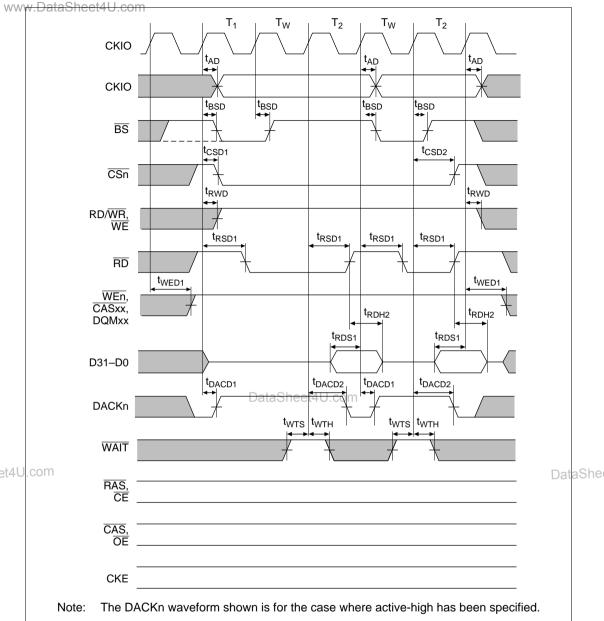


Figure 15.66 Burst ROM Read Cycle (PLL On, 1 Wait)

DataSheet4U.com

www.DataSheet4U.com

468 DataSheet4U.com

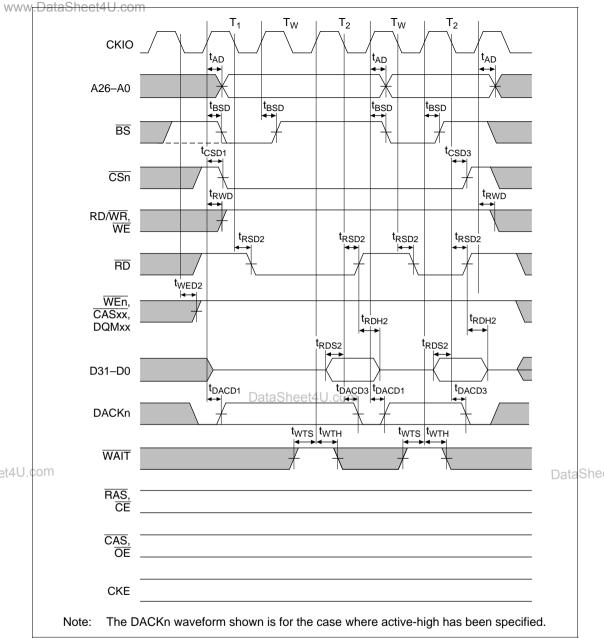


Figure 15.67 Burst ROM Read Cycle (PLL Off, 1 Wait)

www.DataSheet4U.com

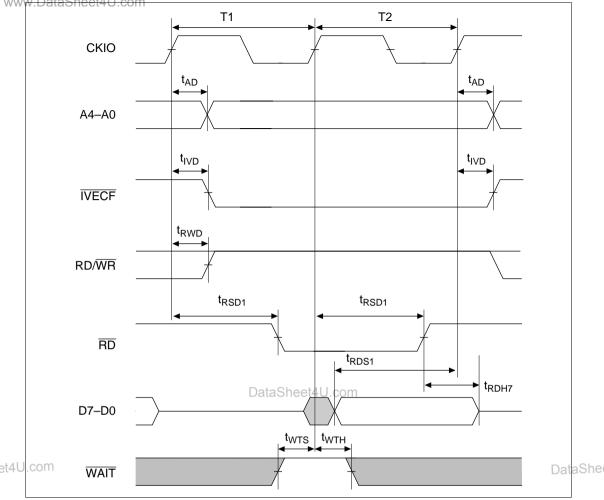


Figure 15.68 Interrupt Vector Fetch Cycle (PLL On, No Waits)

www.DataSheet4U.com

470 DataSheet4U.com

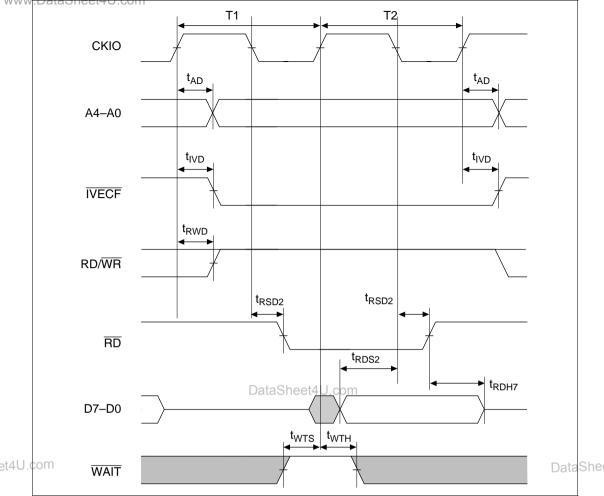


Figure 15.69 Interrupt Vector Fetch Cycle (PLL Off, No Waits)

DataSheet4U.com

www.DataSheet4U.com

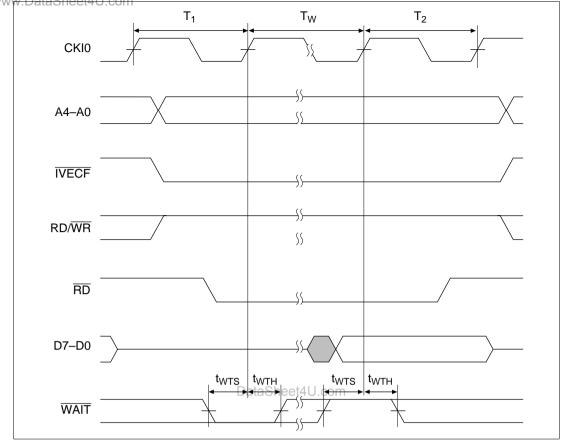


Figure 15.70 Interrupt Vector Fetch Cycle (1 External Wait Cycle)

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

472 DataSheet4U.com

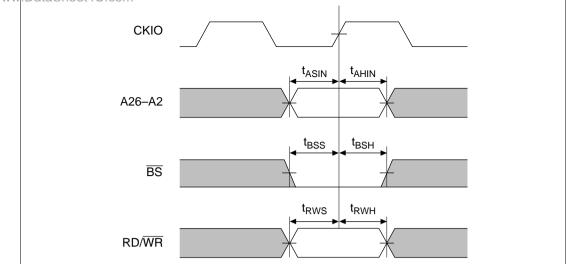


Figure 15.71 Address Monitor Cycle

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

Table 15.10 DMAC Timing (Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figure
DREQ0, DREQ1 setup time (PLL Off, On)	t _{DRQS}	30	_	ns	15.72
DREQ0, DREQ1 setup time (PLL On, 1/4 cycle delay)	t _{DRQS}	30 – 1/4 tcyc	—	ns	
DREQ0, DREQ1 hold time (PLL Off, On)	t _{DRQH}	15	—	ns	-
DREQ0, DREQ1 hold time (PLL On, 1/4 cycle delay)	t _{DRQH}	1/4 tcyc + 15	—	ns	_
DREQ0, DREQ1 low level width	t _{DRQW}	1.5		t _{cyc}	_

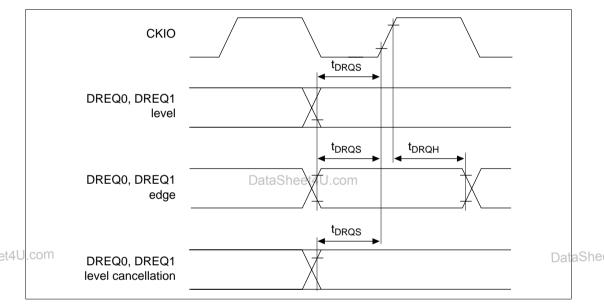
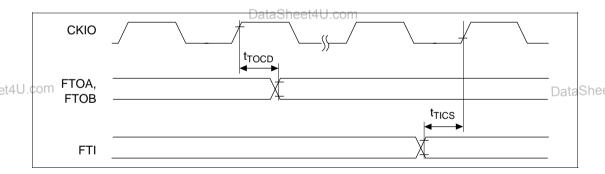


Figure 15.72 DREQ0, DREQ1 Input Timing

DataSheet4U.com


www.DataSheet4U.com

474 DataSheet4U.com

15.3.5 Free-Running Timer Timing

Table 15.11 Free-Running Timer Timing (Conditions: V_{CC} = 5.0 V $\pm 10\%,$ Ta = –20 to $+75^{\circ}C)$

Item	Symbol	Min	Мах	Unit	Figure
Output compare output delay time (PLL Off, On)	t _{TOCD}	—	160	ns	15.73
Output compare output delay time (PLL On, 1/4 cycle delay)	t _{TOCD}	_	1/4 tcyc + 160	ns	
Input capture input setup time (PLL Off, On)	t _{TICS}	80	_	ns	_
Input capture input setup time (PLL On, 1/4 cycle delay)	t _{TICS}	80 – 1/4 tcyc	_	ns	_
Timer clock input setup time (PLL Off, On)	t _{TCKS}	80	—	ns	15.74
Timer clock input setup time (PLL On, 1/4 cycle delay)	t _{TCKS}	80 –1/4 tcyc	_	ns	_
Timer clock pulse width (single edge)	t _{TCKWH}	4.5	_	t _{cyc}	_
Timer clock pulse width (both edges)	t _{TCKWL}	8.5	_	t _{cyc}	

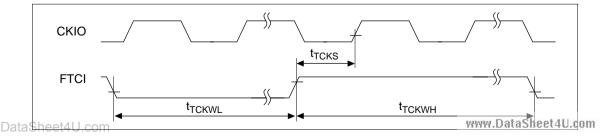


Figure 15.74 FRT Clock Input Timing

Table 15.12	Watchdog Timer	Timing (Conditions	$: V_{CC} = 5.0 V \pm 10\%$	$6, Ta = -20 \text{ to } +75^{\circ}\text{C}$
--------------------	----------------	--------------------	-----------------------------	---

Item	Symbol	Min	Max	Unit	Figure
WDTOVF delay time (PLL Off, On)	t _{WOVD}	_	70	ns	15.75
WDTOVF delay time (PLL On, 1/4 cycle delay)	t _{WOVD}	_	1/4 tcyc + 70	ns	

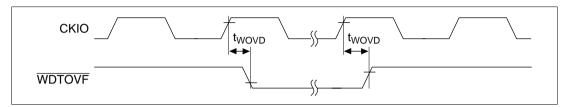


Figure 15.75 Watchdog Timer Output Timing

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

476 DataSheet4U.com

15.3.7 Serial Communication Interface Timing

Table 15.13Serial Communication Interface Timing
(Conditions: $V_{CC} = 5.0 V \pm 10\%$, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figure
Input clock cycle	t _{scyc}	16	_	t _{cyc}	15.76
Input clock cycle (clocked synchronous mode)	t _{scyc}	24		t _{cyc}	
Input clock pulse width	t _{sckw}	0.4	0.6	t _{scyc}	
Transmit data delay time (clocked synchronous mode)	t _{TXD}	_	70	ns	15.77
Receive data setup time (clocked synchronous mode)	t _{RXS}	70	—	ns	
Receive data hold time (clocked synchronous mode)	t _{RXH}	70	—	ns	

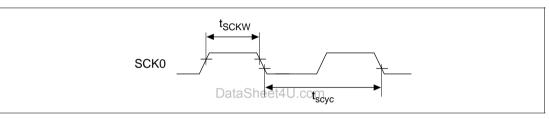


Figure 15.76 Input Clock Input/Output Timing

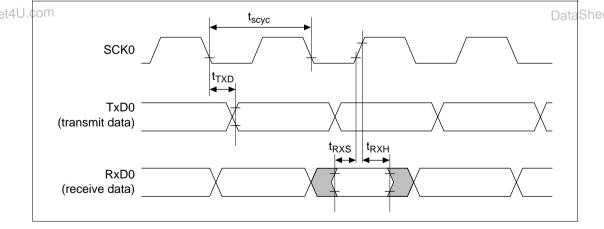
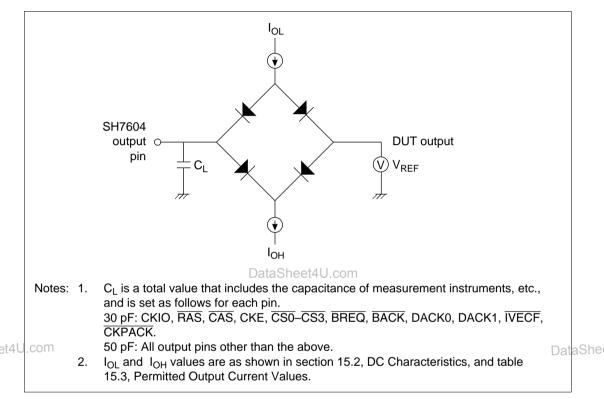



Figure 15.77 SCI Input/Output Timing (Clocked Synchronous Mode)

DataSheet4U.com

15.3.8 AC Characteristics Measurement Conditions

- I/O signal reference level: 1.5 V
- Input pulse level: V_{SS} to 3.0 V (where RES, NMI, CKIO and MD5-MD0 are within the range V_{SS} to V_{CC})
- Input rise and fall times: 1 ns

Figure 15.78 Output Load Circuit

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com Section 16 Electrical Characteristics (3V Version)

16.1 Absolute Maximum Ratings

Table 16.1 shows the absolute maximum ratings.

Table 16.1 Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.3 to +7.0	V
Input voltage	Vin	-0.3 to V _{CC} + 0.3	V
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	–55 to +125	°C

Caution: Operating the chip in excess of the absolute maximum rating may result in permanent damage.

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com 16.2 DC Characteristics

Tables 16.2 and 16.3 list DC characteristics.

lter	∌m		Symbol	Min	Тур	Max	Unit	Test Conditions
•		RES, NMI,	V _{IH}	$V_{CC} imes 0.9$		V _{CC} + 0.3	V	During standby
lev	vel oltage -	MD5–MD0		$V_{CC} \times 0.9$		V _{CC} + 0.3	V	Normal operation
VUI	llaye	EXTAL, CKIO		$V_{CC} imes 0.9$		V _{CC} + 0.3	V	
_		Other input pins		$V_{CC} \times 0.7$		V _{CC} + 0.3	V	
	•	RES, NMI,	V _{IL}	-0.3		V _{CC} ×0.1	V	During standby
lev		MD5-MD0		-0.3	_	V _{CC} ×0.1	V	Normal operation
VUI	oltage -	Other input pins	·	-0.3	—	V _{CC} ×0.1	V	
•		RES	lin		—	1.0	μA	Vin = 0.5 to V _{CC} – 0.5 V
cur	urrent	NMI, MD5–MD0		_	_	1.0	μΑ	Vin = 0.5 to V_{CC} – 0.5 V
	-	Other input pins		_	_	1.0	μA	Vin = 0.5 to V _{CC} – 0.5 V
lea cur	ak urrent	A26–A0, D31– D0, BS, CS3– CS0, RD/WR, RAS, CAS,	I _{STI}	_	_	1.0	μΑ	Vin = 0.5 to V_{CC} – 0.5 V
(001		WE3-WE0, RD, IVECF		DataShee				
	•	All output pins	V _{OH}	$V_{CC} - 0.5$			V	I _{OH} = -200 μA
0	gh-level oltage			V _{CC} – 1.0	_	_	V	I _{OH} = -1 mA DataS
lev	•	All output pins	V _{OL}	_	_	0.4	V	I _{OL} = 1.6 mA
Inr	put	RES	Cin		_	15	pF	Vin = 0 V
•		NMI		_	_	15	pF	[−] f = 1 MHz − Ta = 25°C
tan		All other input pins (including D31–D0)		_	_	15	pF	· 1a = 25°C

Table 16.2 DC Characteristics (Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75° C)

DataSheet4U.com

www.DataSheet4U.com

480 DataSheet4U.com

ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
Current	Normal	I _{CC}	_	25	30	mA	f = 8 MHz
consump- tion	operation	peration -	_	45	55	mA	f = 16 MHz
lion				60	70	mA	f = 28.7 MHz
	Sleep		_	15	20	mA	f = 8 MHz
	Standby			30	40	mA	f = 16 MHz
				40	50	mA	f = 28.7 MHz
		Standby		_	1	5	μΑ
			_	_	20	μA	50°C < Ta

Table 16.2 DC Characteristics (Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75° C) (cont)

Notes: 1. When no PLL is used, do not leave the PLLV_{CC} and PLLV_{SS} pins open. Connect PLLV_{CC} to V_{CC} and PLLV_{SS} to $\mathsf{V}_{SS}.$

2. Current consumption values shown are the values at which all output pins are without load under conditions of V_{IH} min = V_{CC} – 0.5 V, V_{IL} max = 0.5 V.

Table 16.3 Permitted Output Current Values (Conditions: V_{CC} = 5.0 V ± 10%, Ta = -20 to +75°C)

Item	Symbol	Min	Тур	Max	Unit
Output low-level permissible current (per pin) he	e lo U.com	_	_	2.0	mA
Output low-level permissible current (total)	ΣI_{OL}	—	—	80	mA
Output high-level permissible current (per pin)	–I _{OH}	—	—	2.0	mA
Output high-level permissible current (total)	$\Sigma(-I_{OH})$		_	25	mA

et4U.coCaution: To ensure chip reliability, do not exceed the output current values given in table 16.3. DataShe

DataSheet4U.com

www.DataSheet4U.com 16.3 AC Characteristics

16.3.1 Clock Timing

Table 16.4 Clock Timing (Conditions: $V_{CC} = 3.0$ to 0.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Мах	Unit	Figures
Operating frequency	f _{OP}	4	20	MHz	16.1
Clock cycle time	t _{cyc}	50	143 ^{*1} or 250 ^{*2}	ns	_
Clock high pulse width	t _{CH}	8 ^{*1} or 15 ^{*2}	_	ns	_
Clock low pulse width	t _{CL}	8 ^{*1} or 15 ^{*2}	_	ns	_
Clock rise time	t _{CR}	_	5	ns	_
Clock fall time	t _{CF}	_	5	ns	_
EXTAL clock input frequency	f_{EX}	4	8	MHz	16.2
EXTAL clock input cycle time	t _{EXcyc}	125	250	ns	_
EXTAL clock input low level pulse width	t _{EXL}	50	—	ns	_
EXTAL clock input high level pulse width	t _{EXH}	50	_	ns	_
EXTAL clock input rise time	t _{EXR}	_	5	ns	_
EXTAL clock input clock fall time	t _{EXF}	_	5	ns	_
Power-on oscillation settling time Data	aSheet4U	.c 10 11	_	ms	16.3
Software standby oscillation settling time 1	t _{OSC2}	10	—	ms	16.4
Software standby oscillation settling time 2	t _{OSC3}	10	—	ms	16.5
PLL synchronization settling time	t _{PLL}	1	_	μs	16.6 D

Notes: 1. With PLL circuit 1 operating.

2. With PLL circuit 1 not used.

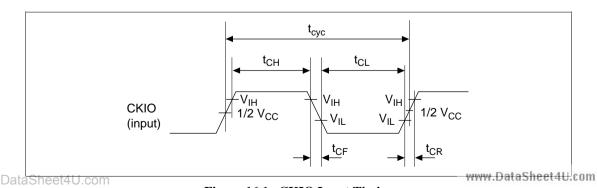
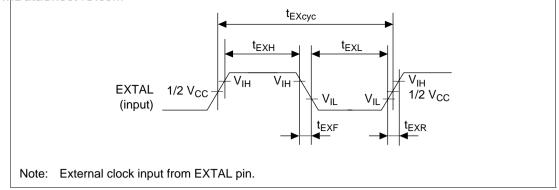



Figure 16.1 CKIO Input Timing

482

et4U

DataSheet4U.com

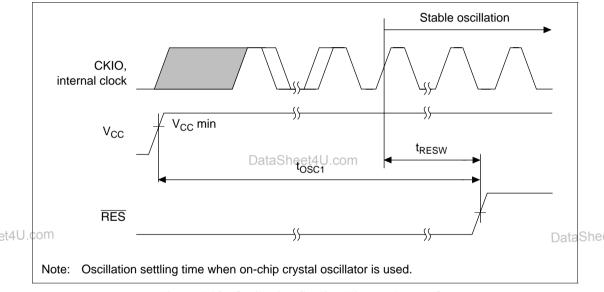


Figure 16.3 Oscillation Settling Time at Power-On

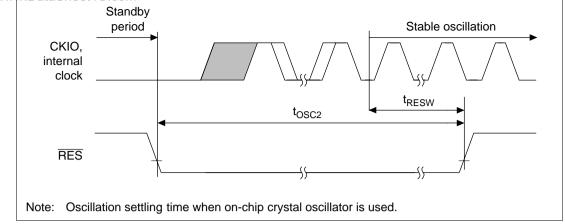


Figure 16.4 Oscillation Settling Time at Standby Return (via RES)

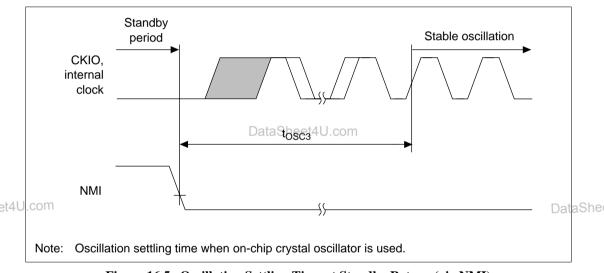


Figure 16.5 Oscillation Settling Time at Standby Return (via NMI)

DataSheet4U.com

www.DataSheet4U.com

484 DataSheet4U.com

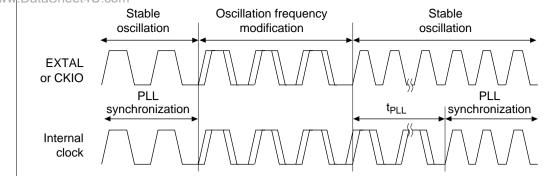


Figure 16.6 PLL Synchronization Settling Time

et4U.com

DataShe

DataSheet4U.com

Item	Symbol	Min	Max	Unit	Figure
RES rise, fall	t _{RESr} , t _{RESf}	_	200	ns	16.7
RES pulse width	t _{RESW}	20	_	t _{cyc}	
NMI reset setup time	t _{NMIRS}	tcyc + 10	_	ns	
NMI reset hold time	t _{NMIRH}	tcyc + 10	_	ns	
NMI rise, fall	t _{NMIr} , t _{NMIf}	—	200	ns	
NMI minimum pulse width	t _{IRQES}	3	_	tcyc	
RES setup time*	t _{RESS}	40	_	ns	16.8,
NMI setup time [*]	t _{NMIS}	40	_	ns	16.9
IRL3–IRL0 setup time*	t _{IRLS}	40	_	ns	_
RES hold time	t _{RESH}	20	_	ns	16.8,
NMI hold time	t _{NMIH}	20	_	ns	16.9
IRL3–IRL0 hold time	t _{IRLH}	20	_	ns	
BRLS setup time 1 (PLL on)	t _{BLSS1}	1/2 tcyc + 20	_	ns	16.10
BRLS hold time 1 (PLL on)	t _{BLSH1}	15 – 1/2 tcyc	—	ns	_
BGR delay time 1 (PLL on)	t _{BGRD1}	_	1/2 tcyc + 25	ns	_
BRLS setup time 1 (PLL on, 1/4 cycle delay)	t _{BLSS1}	1/4 tcyc + 20	_	ns	16.10
BRLS hold time 1 (PLL on, 1/4 cycle delay)	t _{BLSH1}	15 – 1/4 tcyc	—	ns	Da
BGR delay time 1 (PLL on, 1/4 cycle delay)	t _{BGRD1}	_	3/4 tcyc + 25	ns	
BRLS setup time 2 (PLL off)	t _{BLSS2}	20	_	ns	16.11
BRLS hold time 2 (PLL off)	t _{BLSH2}	30	_	ns	
BGR delay time 2 (PLL off)	t _{BGRD2}	_	40	ns	

Table 16.5	Control Signal Timing	(Conditions:	$V_{CC} = 3.0$ to 5.5 V	$, Ta = -20 \text{ to } +75^{\circ}\text{C})$
-------------------	------------------------------	--------------	-------------------------	---

Note: The RES, NMI and IRL3-IRL0 signals are asynchronous inputs, but when the setup times shown here are observed, the signals are considered to have changed at clock fall. If the setup times are not observed, recognition may be delayed until the next clock fall.

www.DataSheet4U.com

486 DataSheet4U.com

www.DataSheet4U.com Table 16.5 Control Signal Timing (cont)

(Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figure
BREQ delay time 1 (PLL on)	t _{BRQD1}	_	1/2 tcyc + 25	ns	16.12
BACK setup time 1 (PLL on)	t _{BAKS1}	1/2 tcyc + 20	_	ns	
BACK hold time 1 (PLL on)	t _{BAKH1}	15 – 1/2 tcyc	_	ns	
BREQ delay time 1 (PLL on, 1/4 cycle delay)	t _{BRQD1}	_	3/4 tcyc + 25	ns	16.12
BACK setup time 1 (PLL on, 1/4 cycle delay)	t _{BAKS1}	1/4 tcyc + 20	_	ns	_
BACK hold time 1 (PLL on, 1/4 cycle delay)	t _{BAKH1}	15 – 1/4 tcyc	_	ns	_
BREQ delay time 2 (PLL off)	t _{BRQD2}	_	40	ns	16.13
BACK setup time 2 (PLL off)	t _{BAKS2}	20	_	ns	
BACK hold time 2 (PLL off)	t _{BAKH2}	30	_	ns	
Bus tri-state delay time 1 (PLL on)	t _{BOFF1}	0	35	ns	16.10,
Bus buffer on time 1 (PLL on)	t _{BON1}	0	33	ns	16.12
Bus tri-state delay time 1 (PLL on, 1/4 cycle delay)	t _{BOFF1}	1/4 tcyc	1/4 tcyc + 35	ns	16.10,
Bus buffer on time 1 (PLL on, 1/4 cycle delay)	t _{BON1}	1/4 tcyc	1/4 tcyc + 33	ns	16.12
Bus tri-state delay time 1 (PLL off)	t _{BOFF1}	0	45	ns	16.11,
Bus buffer on time 1 (PLL off) DataS	teon10.0	. 0 11	40	ns	16.13
Bus tri-state delay time 2 (PLL on)	t _{BOFF2}	1/2 tcyc	1/2 tcyc + 35	ns	16.10,
Bus buffer on time 2 (PLL on)	t _{BON2}	1/2 tcyc	1/2 tcyc + 33	ns	16.12
Bus tri-state delay time 2 (PLL on, 1/4 cycle delay)	t _{BOFF2}	3/4 tcyc	3/4 tcyc + 35	ns	16.10, Da
Bus buffer on time 2 (PLL on, 1/4 cycle delay)	t _{BON2}	3/4 tcyc	3/4 tcyc + 33	ns	16.12
Bus tri-state delay time 3 (PLL off)	t _{BOFF3}	0	45	ns	16.11,
Bus buffer on time 3 (PLL off)	t _{BON3}	0	40	ns	16.13

DataSheet4U.com

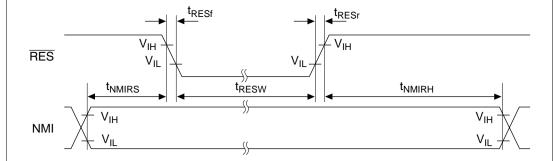
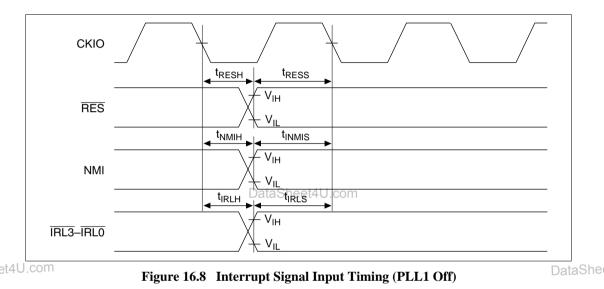



Figure 16.7 Reset Input Timing

www.DataSheet4U.com

488 DataSheet4U.com

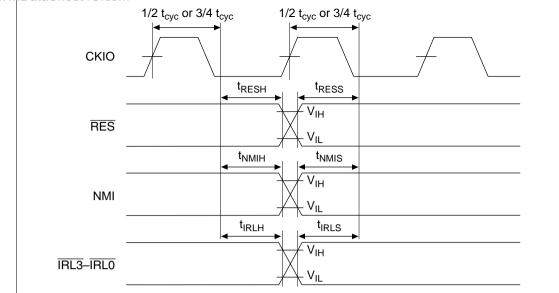


Figure 16.9 Interrupt Signal Input Timing (PLL1 On)

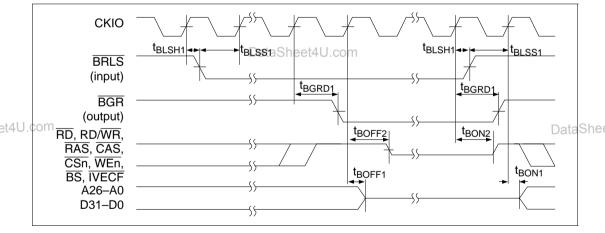


Figure 16.10 Bus Release Timing (Master Mode, PLL1 On)

DataSheet4U.com

www.DataSheet4U.com

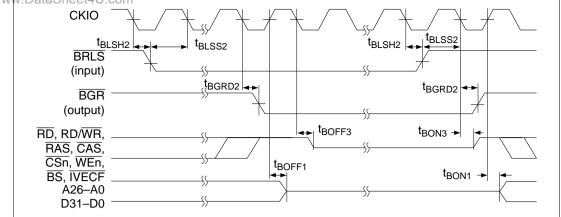


Figure 16.11 Bus Release Timing (Master Mode, PLL1 Off)

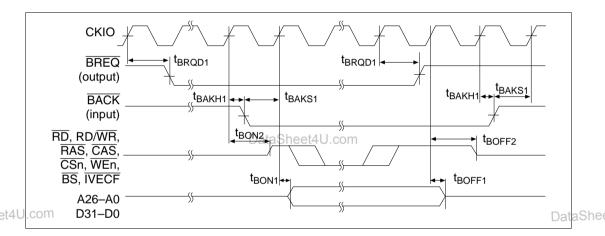


Figure 16.12 Bus Release Timing (Slave Mode, PLL1 On)

www.DataSheet4U.com

DataSheet4U.com

490

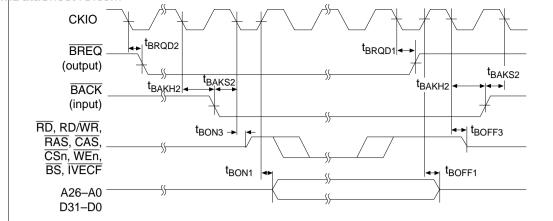


Figure 16.13 Bus Release Timing (Slave Mode, PLL1 Off)

et4U.com

DataShe

DataSheet4U.com

Table 16.6 Bus Timing With PLL On [Mode 0, 4] (Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
Address delay time	t _{AD}		28	ns	16.14, 16.20, 16.40, 16.52, 16.66, 16.68
BS delay time	t _{BSD}		25	ns	16.14, 16.20, 16.40, 16.52, 16.66
CS delay time 1	t _{CSD1}	_	25	ns	16.14, 16.20, 16.40, 16.52, 16.66
CS delay time 2	t _{CSD2}	_	1/2 tcyc + 25	ns	16.14, 16.66
Read/write delay tim	ne t _{RWD}		25	ns	16.14, 16.20, 16.40, 16.52, 16.66
Read strobe delay ti	ime 1 t _{RSD1}		1/2 tcyc + 25	ns	16.14, 16.40, 16.52, 16.66, 16.68
Read data setup tim	ne 1 t _{RDS1}	1/2 tcyc + 10	_	ns	16.14, 16.40, 16.52, 16.66, 16.68
Read data setup tim (SDRAM)	ne 3 t _{RDS3}	1/2 tcyc + 10	_	ns	16.20
Read data hold time	2 t _{RDH2}	DataSheet4L	J. co m	ns	16.14, 16.66
Read data hold time (SDRAM)	e 4 t _{RDH4}	0	_	ns	16.20
Read data hold time (DRAM)	95 t _{RDH5}	0	_	ns	16.40 D
Read data hold time (PSRAM)	e 6 t _{RDH6}	0	_	ns	16.52
Read data hold time (interrupt vector)	e7 t _{RDH7}	0	_	ns	16.68
Write enable delay t	ime t _{WED1}	1/2 tcyc + 3	1/2 tcyc + 25	ns	16.14, 16.15, 16.52, 16.53
Write data delay tim	e 1 t _{WDD}	_	25	ns	16.15, 16.27, 16.41, 16.53
Write data hold time	e1 t _{WDH1}	3	_	ns	16.15, 16.27, 16.41, 16.53
Data buffer on time	t _{DON}	_	25	ns	16.15, 16.27, 16.41, 16.53
Data buffer off time Sheet4U.com	t _{DOF}	_	25	ns	16.15, 16.27, 16.41, 16.53 ^{WWW.DataSheet4}

492 DataSheet4U.com

www.DataSheet4U.com Table 16.6 Bus Timing With PLL On [Mode 0, 4] (cont)

(Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
DACK delay time 1	t _{DACD1}	_	25	ns	16.14, 16.20, 16.40, 16.52, 16.66
DACK delay time 2	t _{DACD2}	_	1/2 tcyc + 25	ns	16.14, 16.20, 16.40, 16.52, 16.66
WAIT setup time	t _{WTS}	20	_	ns	16.19, 16.43, 16.55, 16.66, 16.70
WAIT hold time	t _{WTH}	10	_	ns	16.19, 16.43, 16.55, 16.66, 16.70
RAS delay time 1 (SDRAM)	t _{RASD1}	—	25	ns	16.20
RAS delay time 2 (DRAM)	t _{RASD2}	1/2 tcyc + 3	1/2 tcyc + 25	ns	16.40
CAS delay time 1 (SDRAM)	t _{CASD1}	_	25	ns	16.20
CAS delay time 2 (DRAM)	t _{CASD2}	1/2 tcyc + 3	1/2 tcyc + 25	ns	16.40
DQM delay time	t _{DQMD}	_	25	ns	16.20
CKE delay time	t _{CKED}	_	33	ns	16.37
CE delay time 1	t _{CED1}	1/2 tcyc + 3	1/2 tcyc + 25	ns	16.52
OE delay time 1	t _{OED1}	—	1/2 tcyc + 25	ns	16.52
IVECF delay time	t _{IVD}	DataSheet4U.	251	ns	16.68
Address input setup time	t _{ASIN}	25	_	ns	16.71
Address input hold time	t _{AHIN}	10	_	ns	16.71
BS input setup time	t _{BSS}	25	_	ns	16.71
BS input hold time	t _{BSH}	10	_	ns	16.71
Read/write input setup time	t _{RWS}	25	_	ns	16.71
Read/write input hold time	t _{RWH}	10	_	ns	16.71

DataSheet4U.com

www.DataSheet4U.com Table 16.7 Bus Timing With PLL On and 1/4 Cycle Delay [Mode 1, 5]

(Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures	
Address delay time	t _{AD}	_	1/4 tcyc + 28	ns	16.14, 16.20, 16.40, 16.52, 16.66, 16.68	
BS delay time	t _{BSD}	_	1/4 tcyc + 25	ns	16.14, 16.20, 16.40, 16.52, 16.66	
CS delay time 1	t _{CSD1}	_	1/4 tcyc + 25	ns	16.14, 16.20, 16.40, 16.52, 16.66	
CS delay time 2	t _{CSD2}	_	3/4 tcyc + 25	ns	16.14, 16.66	
Read/write delay time	t _{RWD}	_	1/4 tcyc + 25	ns	16.14, 16.20, 16.40, 16.52, 16.66	
Read strobe delay time 1	t _{RSD1}	—	3/4 tcyc + 25	ns	16.14, 16.40, 16.52, 16.66, 16.68	
Read data setup time 1	t _{RDS1}	1/4 tcyc + 10	—	ns	16.14, 16.40, 16.52, 16.66, 16.68	
Read data setup time 3 (SDRAM)	t _{RDS3}	1/4 tcyc + 10	—	ns	16.20	
Read data hold time 2	t _{RDH2}	0	_	ns	16.14, 16.66	
Read data hold time 4 (SDRAM)	t _{RDH4}	0 DataSheet4L	J.com	ns	16.20	
Read data hold time 5 (DRAM)	t _{RDH5}	0	—	ns	16.40	
Read data hold time 6 (PSRAM)	t _{RDH6}	0	—	ns	16.52 DataS	She
Read data hold time 7 (interrupt vector)	t _{RDH7}	0	_	ns	16.68	2113
Write enable delay time	t _{WED1}	3/4 tcyc + 3	3/4 tcyc + 25	ns	16.14, 16.15, 16.52, 16.53	
Write data delay time 1	t _{WDD}	_	1/4 tcyc + 25	ns	16.15, 16.27, 16.41, 16.53	
Write data hold time 1	t _{WDH1}	1/4 tcyc + 3	_	ns	16.15, 16.27, 16.41, 16.53	
Data buffer on time	t _{DON}	—	1/4 tcyc + 25	ns	16.15, 16.27, 16.41, 16.53	
Data buffer off time	t _{DOF}	_	1/4 tcyc + 25	ns	16.15, 16.27, 16.41, 16.53	

DataSheet4U.com

et4U

www.DataSheet4U.com

www.DataSheet4U.com Table 16.7 Bus Timing With PLL On and 1/4 Cycle Delay [Mode 1, 5] (cont) (Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
DACK delay time 1	t _{DACD1}	_	1/4 tcyc + 25	ns	16.14, 16.20, 16.40, 16.52, 16.66
DACK delay time 2	t _{DACD2}	_	3/4 tcyc + 25	ns	16.14, 16.20, 16.40, 16.52, 16.66
WAIT setup time	t _{WTS}	20 –1/4 tcyc	_	ns	16.19, 16.43, 16.55, 16.66, 16.70
WAIT hold time	t _{WTH}	1/4 tcyc+10	_	ns	16.19, 16.43, 16.55, 16.66, 16.70
RAS delay time 1 (SDRAM)	t _{RASD1}	—	1/4 tcyc + 25	ns	16.20
RAS delay time 2 (DRAM)	t _{RASD2}	3/4 tcyc + 3	3/4 tcyc + 25	ns	16.40
CAS delay time 1 (SDRAM)	t _{CASD1}	—	1/4 tcyc + 25	ns	16.20
CAS delay time 2 (DRAM)	t _{CASD2}	3/4 tcyc + 3	3/4 tcyc + 25	ns	16.40
DQM delay time	t _{DQMD}	—	1/4 tcyc + 25	ns	16.20
CKE delay time	t _{CKED}	—	1/4 tcyc + 33	ns	16.37
CE delay time 1	t _{CED1}	3/4 tcyc + 3	3/4 tcyc + 25	ns	16.52
OE delay time 1	t _{OED1}	—	3/4 tcyc + 25	ns	16.52
IVECF delay time	t _{IVD}	DataSheet4U.	1/4 tcyc + 25	ns	16.68
Address input setup time	t _{ASIN}	25 – 1/4 tcyc	_	ns	16.71
Address input hold time	t _{AHIN}	1/4 tcyc+10	_	ns	16.71
BS input setup time	t _{BSS}	25 – 1/4 tcyc	_	ns	16.71
BS input hold time	t _{BSH}	1/4 tcyc +10	_	ns	16.71
Read/write input setup time	t _{RWS}	25 – 1/4 tcyc	_	ns	16.71
Read/write input hold time	t _{RWH}	1/4 tcyc +10	_	ns	16.71

DataSheet4U.com

www.DataSheet4U.com Table 16.8 Bus Timing With PLL Off (CKIO Input) [Mode 6]

(Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures	
Address delay time	t _{AD}	_	43	ns	16.16, 16.38, 16.47, 16.60, 16.67, 16.69	
BS delay time	t _{BSD}		40	ns	16.16, 16.38, 16.47, 16.60, 16.67	
CS delay time 1	t _{CSD1}		40	ns	16.16, 16.38, 16.47, 16.60, 16.67	
CS delay time 3	t _{CSD3}		40	ns	16.16, 16.67	
Read write delay time	t _{RWD}		40	ns	16.16, 16.38, 16.47, 16.60, 16.67	
Read strobe delay time 2	t _{RSD2}		40	ns	16.16, 16.47, 16.60, 16.67, 16.69	
Read data setup time 2	t _{RDS2}	10		ns	16.16, 16.38, 16.47, 16.60, 16.67, 16.69	
Read data hold time 2	t _{RDH2}	0		ns	16.16, 16.67	
Read data hold time 3	t _{RDH3}	30		ns	16.38	
Read data hold time 5 (DRAM)	t _{RDH5}	0	_	ns	16.47	
Read data hold time 6 (PSRAM)	t _{RDH6}	D <mark>a</mark> taShe	eet4U <u>.co</u> m	ns	16.60	
Read data hold time 7 (interrupt vector)	t _{RDH7}	0	_	ns	16.69	
Write enable delay time 2	t _{WED2}		40	ns	16.17, 16.61 Data	aShe
Write data delay time	t _{WDD}		40	ns	16.17, 16.39, 16.48, 16.61	
Write data hold time 1	t _{WDH1}	3		ns	16.17, 16.39, 16.48, 16.61	
Write data hold time 2	t _{WDH2}	5		ns	16.17	
Write data hold time 3	t _{WDH3}	3		ns	16.61	
DACK delay time 1	t _{DACD1}		40	ns	16.16, 16.38, 16.47, 16.60, 16.67	
DACK delay time 3	t _{DACD3}	_	40	ns	16.16, 16.38, 16.47, 16.60, 16.67	

DataSheet4U.com

et4U

www.DataSheet4U.com

www.DataSheet4U.com Table 16.8 Bus Timing With PLL Off (CKIO Input) [Mode 6] (cont)

(Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
WAIT setup time	t _{WTS}	20		ns	16.19, 16.43, 16.55, 16.67, 16.70
WAIT hold time	t _{WTH}	25	—	ns	16.19, 16.43, 16.55, 16.67, 16.70
RAS delay time 1 (SDRAM)	t _{RASD1}	_	40	ns	16.38
RAS delay time 3 (DRAM)	t _{RASD3}	_	40	ns	16.47
CAS delay time 1 (SDRAM)	t _{CASD1}	_	40	ns	16.38
CAS delay time 3 (DRAM)	t _{CASD3}	_	40	ns	16.47
DQM delay time	t _{DQMD}	_	40	ns	16.38
CKE delay time	t _{CKED}	_	48	ns	16.37
CE delay time 2	t _{CED2}	_	40	ns	16.60
OE delay time 2	t _{OED2}	_	40	ns	16.60
IVECF delay time	t _{IVD}	_	40	ns	16.69
WE setup time	t _{WES1}	0	_	ns	16.16
Address setup time 1	t _{AS1}	0	_	ns	16.17
Address setup time 2	t _{AS2}	DataSheet4	1U.com	ns	16.60
Address hold time 2	t _{AH2}	0	_	ns	16.17
Row address setup time	t _{ASR}	3	_	ns	16.47
Column address setup time	t _{ASC}	3	_	ns	16.47
Write command setup time	t _{WCS}	3	_	ns	16.48 Dat
Write data setup time	t _{WDS}	3	_	ns	16.48
Address input setup time*	t _{ASIN}	20	_	ns	16.71
Address input hold time*	t _{AHIN}	25	_	ns	16.71
BS input setup time*	t _{BSS}	20	_	ns	16.71
BS input hold time*	t _{BSH}	25	_	ns	16.71
Read/write input setup time*	t _{RWS}	20	_	ns	16.71
Read/write input hold time*	t _{RWH}	25	_	ns	16.71
Data buffer on time	t _{DON}	_	40	ns	16.17, 16.39, 16.48, 16.61
Data buffer off time	t _{DOF}		40	ns	16.17, 16.39, 16.48, 16.61

DataSi Note: When the external addresses monitor function is used, the PLL must be on.

www.DataSheet4U.com Table 16.9 Bus Timing With PLL Off (CKIO Output) [Mode 2]

(Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figures
Address delay time	t _{AD}	_	28	ns	16.16, 16.38, 16.47, 16.60, 16.67, 16.69
BS delay time	t _{BSD}	—	25	ns	16.16, 16.38, 16.47, 16.60, 16.67
CS delay time 1	t _{CSD1}	—	25	ns	16.16, 16.38, 16.47, 16.60, 16.67
CS delay time 3	t _{CSD3}	_	25	ns	16.16, 16.67
Read write delay time	t _{RWD}	—	25	ns	16.16, 16.38, 16.47, 16.60, 16.67
Read strobe delay time 2	t _{RSD2}	—	25	ns	16.16, 16.47, 16.60, 16.67, 16.69
Read data setup time 2	t _{RDS2}	10	_	ns	16.16, 16.38, 16.47, 16.60, 16.67, 16.69
Read data hold time 2	t _{RDH2}	0	_	ns	16.16, 16.67
Read data hold time 3 (SDRAM)	t _{RDH3}	1/2 tcyc	—	ns	16.38
Read data hold time 5 (DRAM)	t _{RDH5}	0 DataShee	t4U.com	ns	16.47
Read data hold time 6 (PSRAM)	t _{RDH6}	0	—	ns	16.60
Read data hold time 7 (interrupt vector)	t _{RDH7}	0	—	ns	16.69 Da
Write enable delay time 2	t _{WED2}	3	25	ns	16.17, 16.61
Write data delay time	t _{WDD}	_	25	ns	16.17, 16.39, 16.48, 16.61
Write data hold time 1	t _{WDH1}	3	—	ns	16.17, 16.39, 16.48, 16.61
Write data hold time 2	t _{WDH2}	5	_	ns	16.17
Write data hold time 3	t _{WDH3}	3	_	ns	16.61
DACK delay time 1	t _{DACD1}	_	25	ns	16.16, 16.38, 16.47, 16.60, 16.67
DACK delay time 3	t _{DACD3}	_	25	ns	16.16, 16.38, 16.47, 16.60, 16.67

DataSheet4U.com

et4U

www.DataSheet4U.com

www.DataSheet4U.com Table 16.9 Bus Timing With PLL Off (CKIO Output) [Mode 2] (cont) ((

Conditions:	$V_{CC} = 3.0$ to 5.5	V, Ta = -	–20 to +75°C)
-------------	-----------------------	------------------	--------------	---

Item	Symbol	Min	Max	Unit	Figures
WAIT setup time	t _{WTS}	20	_	ns	16.19, 16.43, 16.55, 16.67, 16.70
WAIT hold time	t _{WTH}	10	_	ns	16.19, 16.43, 16.55, 16.67, 16.70
RAS delay time 1 (SDRAM)	t _{RASD1}	_	25	ns	16.38
RAS delay time 3 (DRAM)	t _{RASD3}	3	25	ns	16.47
CAS delay time 1 (SDRAM)	t _{CASD1}	_	25	ns	16.38
CAS delay time 3 (DRAM)	t _{CASD3}	3	25	ns	16.47
DQM delay time	t _{DQMD}	_	25	ns	16.38
CKE delay time	t _{CKED}	_	33	ns	16.37
CE delay time 2	t _{CED2}	3	25	ns	16.60
OE delay time 2	t _{OED2}	_	25	ns	16.60
IVECF delay time	t _{IVD}	_	25	ns	16.69
Address input setup time*	t _{ASIN}	25		ns	16.71
Address input hold time*	t _{AHIN}	10		ns	16.71
BS input setup time*	t _{BSS}	DataSheet	4U.com	ns	16.71
BS input hold time*	t _{BSH}	10		ns	16.71
Read/write input setup time*	t _{RWS}	25	_	ns	16.71
Read/write input hold time*	t _{RWH}	10	_	ns	16.71
Data buffer on time	t _{DON}		25	ns	16.17, 16.39, 16.48, ataS 16.61
Data buffer off time	t _{DOF}		25	ns	16.17, 16.39, 16.48, 16.61

Note: When the external addresses monitor function is used, the PLL must be on.

DataSheet4U.com

www.DataSheet4U.com

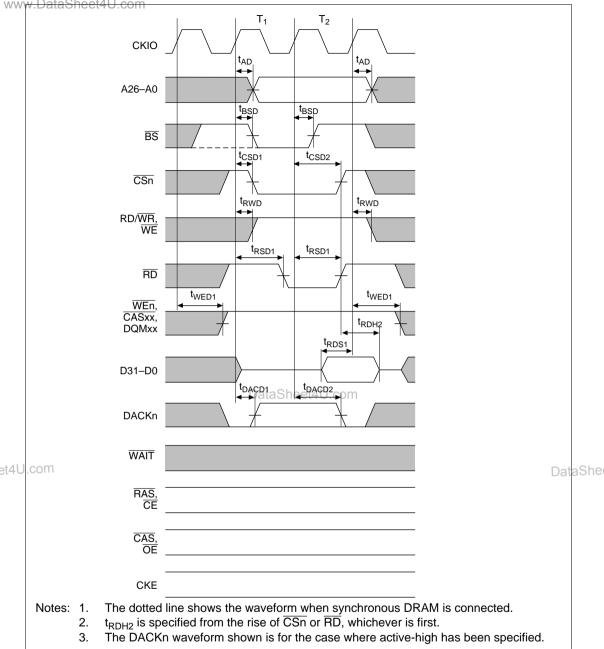


Figure 16.14 Basic Read Cycle (No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

500

DataSheet4U.com

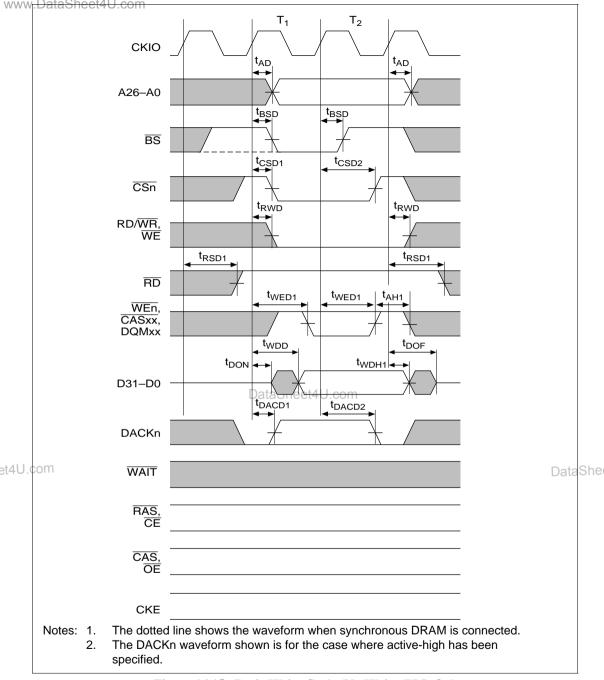


Figure 16.15 Basic Write Cycle (No Waits, PLL On)

www.DataSheet4U.com

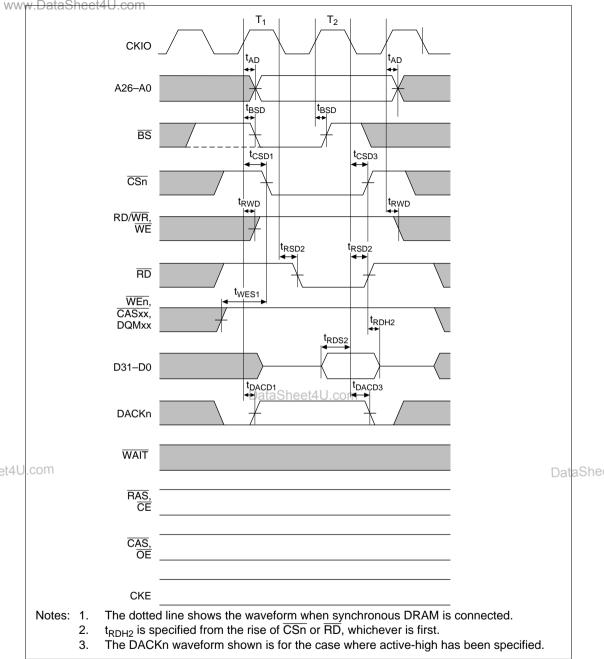
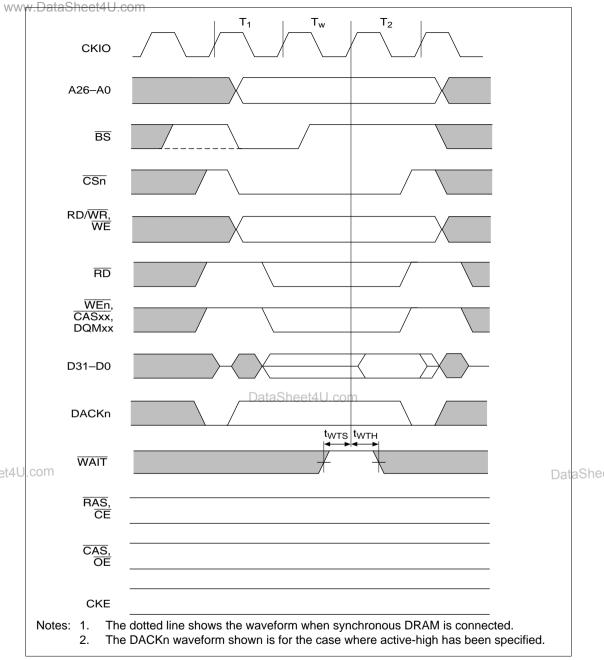
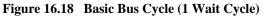
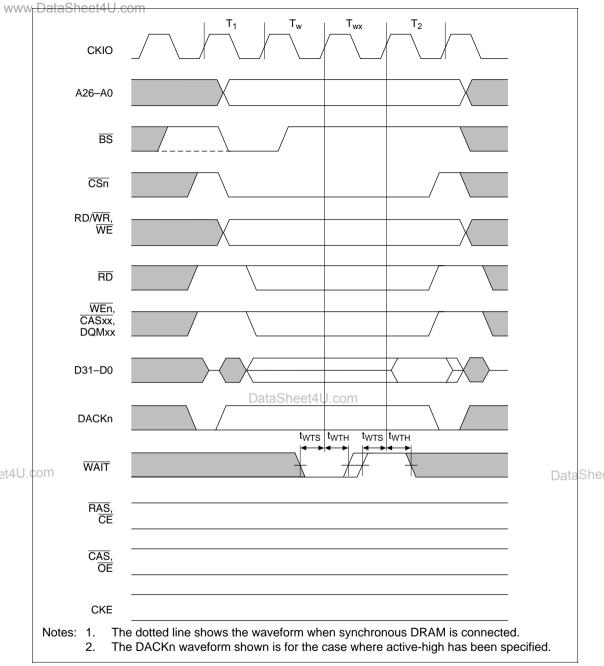
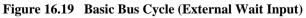


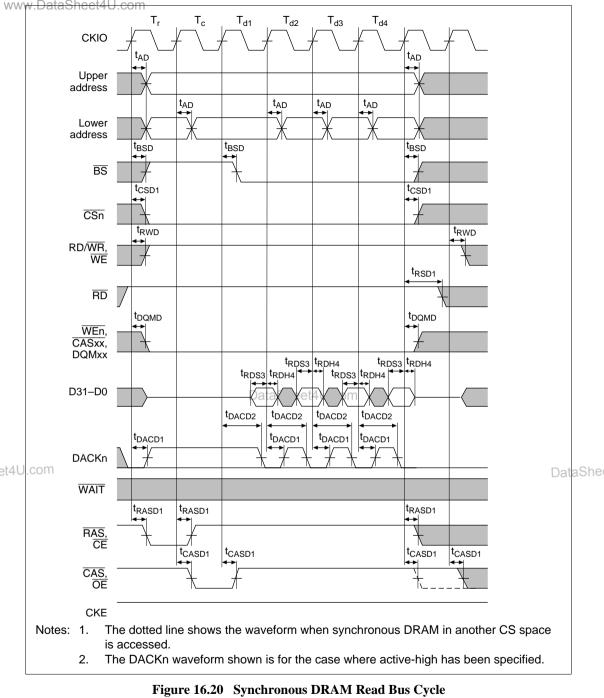
Figure 16.16 Basic Read Cycle (No Waits, PLL Off)


DataSheet4U.com

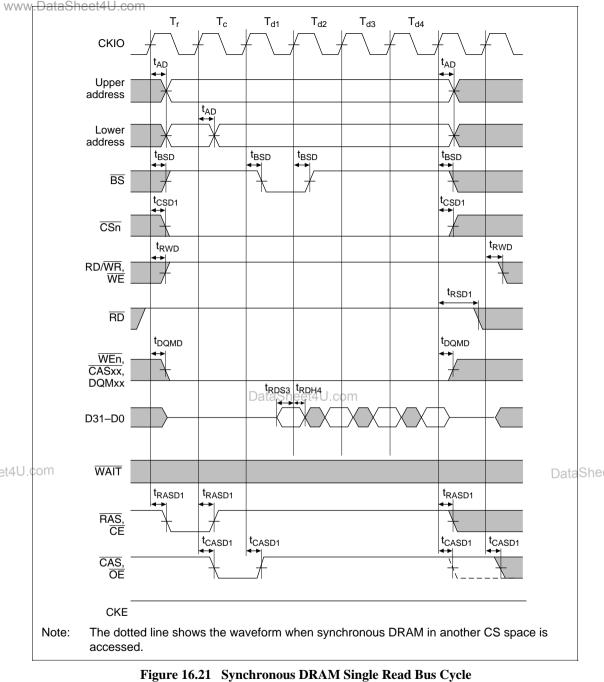

www.DataSheet4U.com

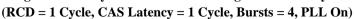

Figure 16.17 Basic Write Cycle (No Waits, PLL Off)

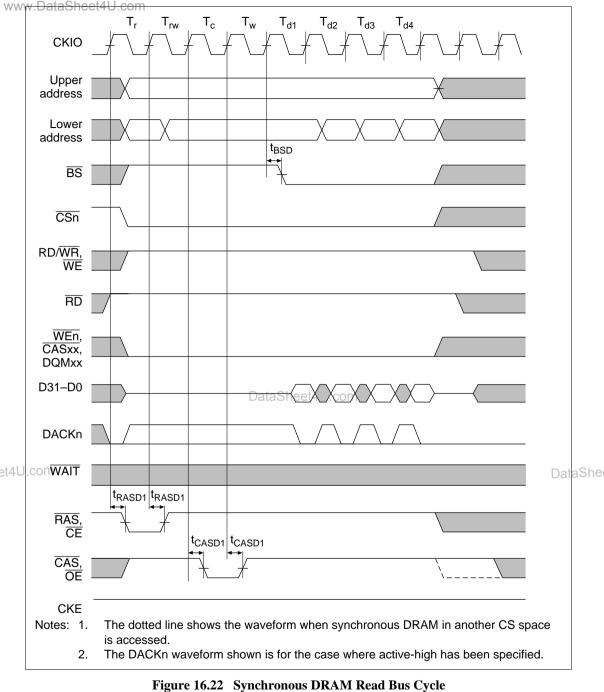

www.DataSheet4U.com



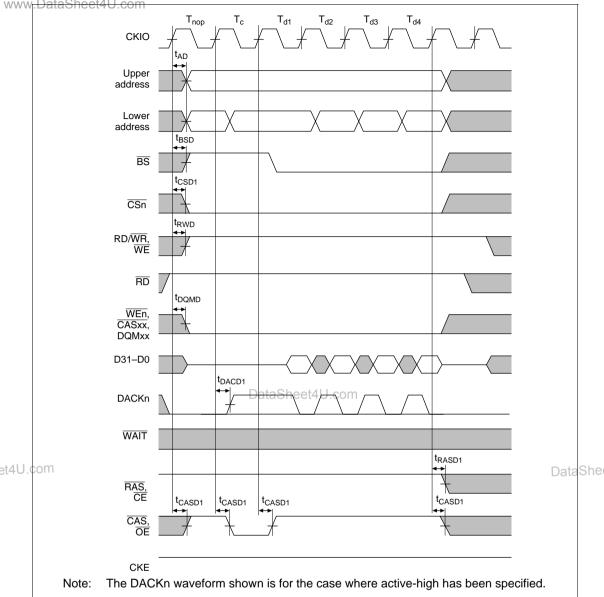
www.DataSheet4U.com




www.DataSheet4U.com


(RCD = 1 Cycle, CAS Latency = 1 Cycle, Bursts = 4, PLL On WW.DataSheet4U.com

506


www.DataSheet4U.com

(RCD = 2 Cycles, CAS Latency = 2 Cycles, Bursts = 4)

DataSheet4U.com

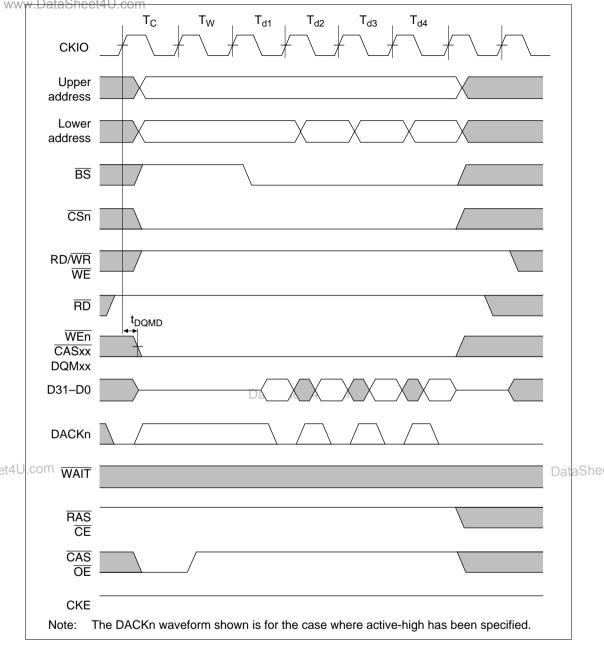

www.DataSheet4U.com

Figure 16.23 Synchronous DRAM Read Bus Cycle (Bank Active, Same Row Access, CAS Latency = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

Figure 16.24 Synchronous DRAM Read Bus Cycle (Bank Active, Same Row Access, CAS Latency = 2 Cycles)

DataSheet4U.com

www.DataSheet4U.com

510 DataSheet4U.com

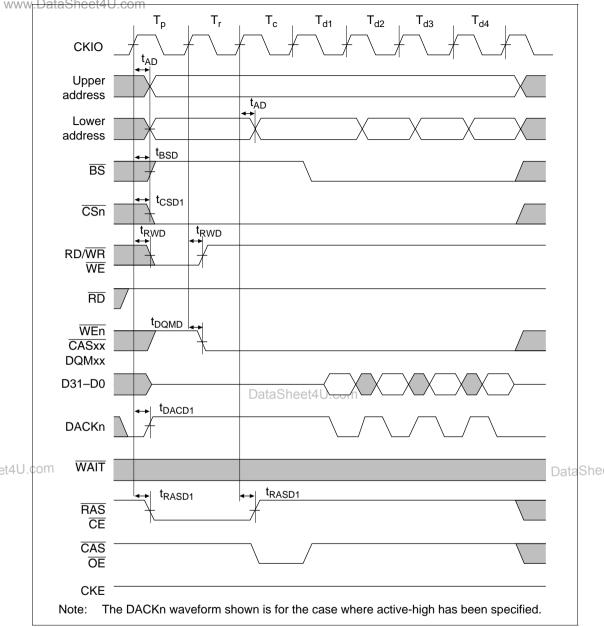


Figure 16.25 Synchronous DRAM Read Bus Cycle (Bank Active, Different Row Access, TRP = 1 Cycle, RCD = 1 Cycle, CAS Latency = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

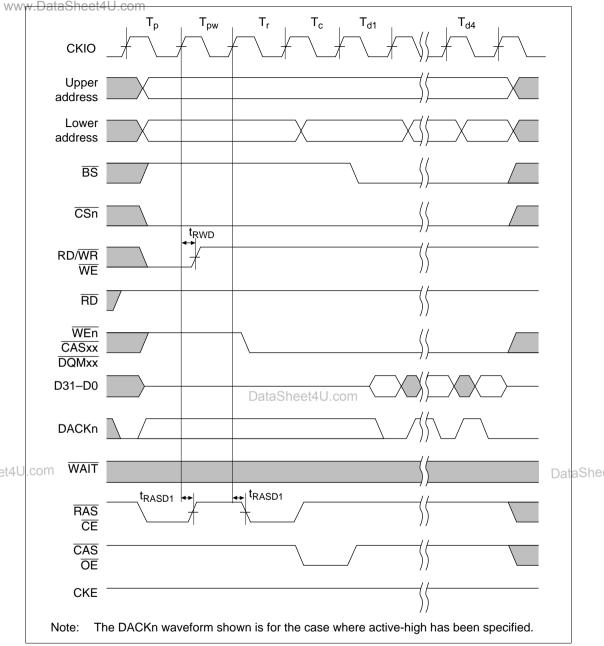


Figure 16.26 Synchronous DRAM Read Bus Cycle (Bank Active, Different Row Access, TRP = 2 Cycles, RCD = 1 Cycle, CAS Latency = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

512 DataSheet4U.com

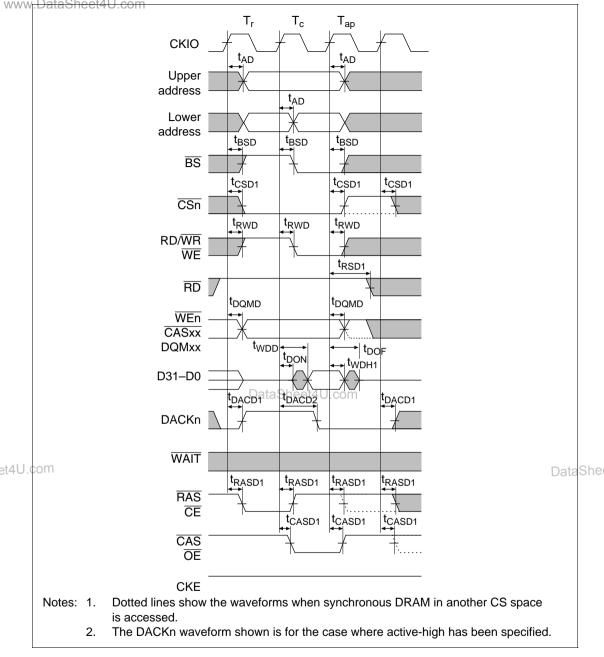
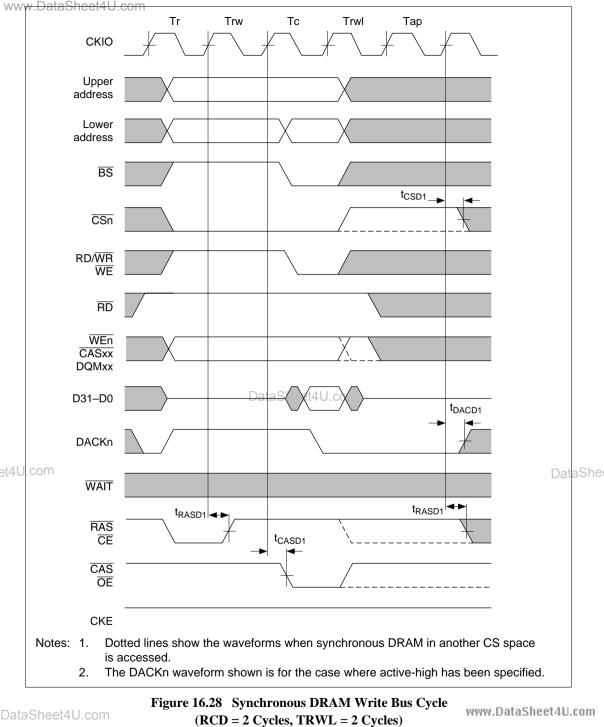



Figure 16.27 Synchronous DRAM Write Bus Cycle (RCD = 1 Cycle, TRWL = 1 Cycle, PLL On)

DataSheet4U.com

www.DataSheet4U.com

514 DataSheet4U.com

www.DataSheet4U.com

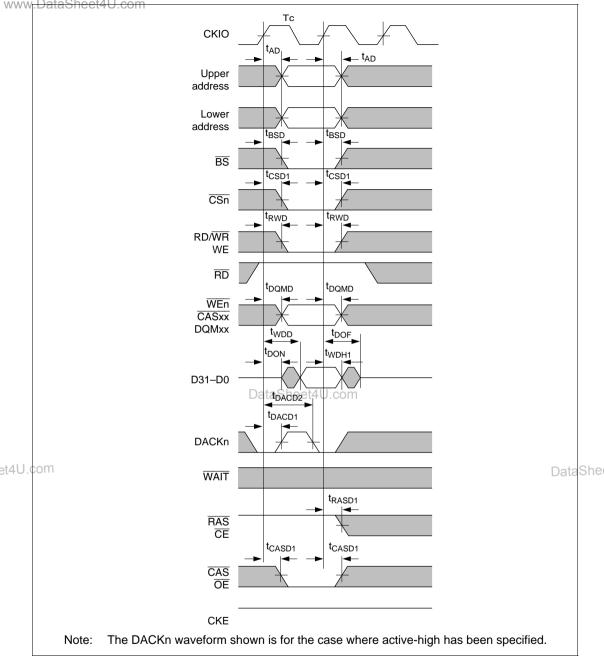
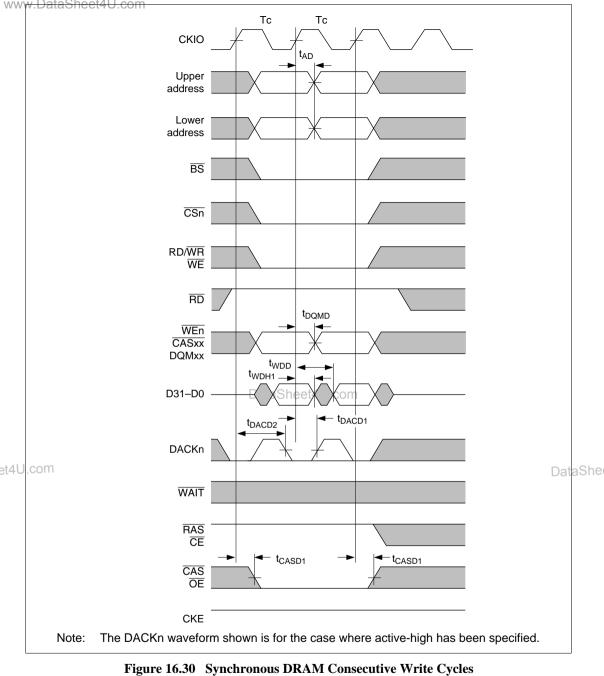



Figure 16.29 Synchronous DRAM Write Bus Cycle (Bank Active, Same Row Access)

www.DataSheet4U.com

(Bank Active, Same Row Access)

DataSheet4U.com

www.DataSheet4U.com

516

DataSheet4U.com

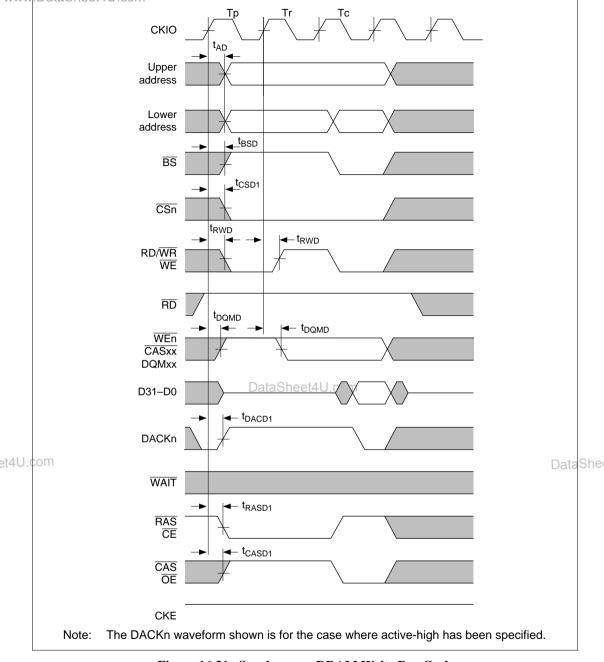
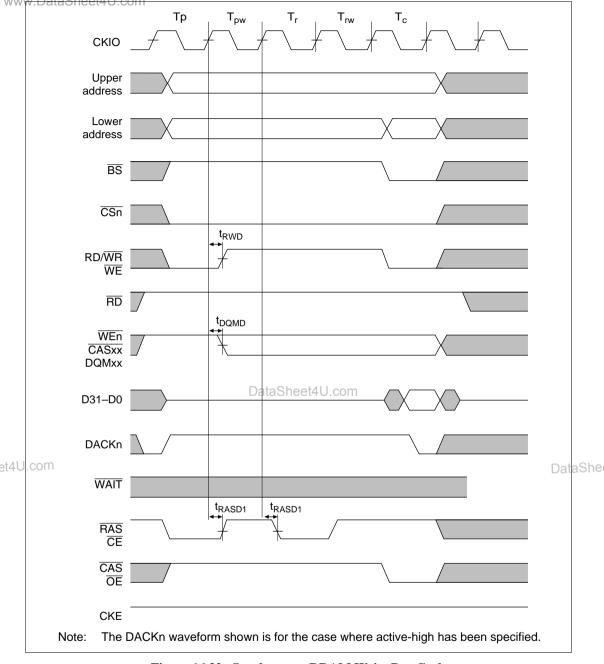



Figure 16.31 Synchronous DRAM Write Bus Cycle (Bank Active, Different Row Access, TRP = 1 Cycle, RCD = 1 Cycle)

www.DataSheet4U.com

Figure 16.32 Synchronous DRAM Write Bus Cycle (Bank Active, Different Row Access, TRP = 2 Cycles, RCD = 2 Cycles)

DataSheet4U.com

www.DataSheet4U.com

518 DataSheet4U.com

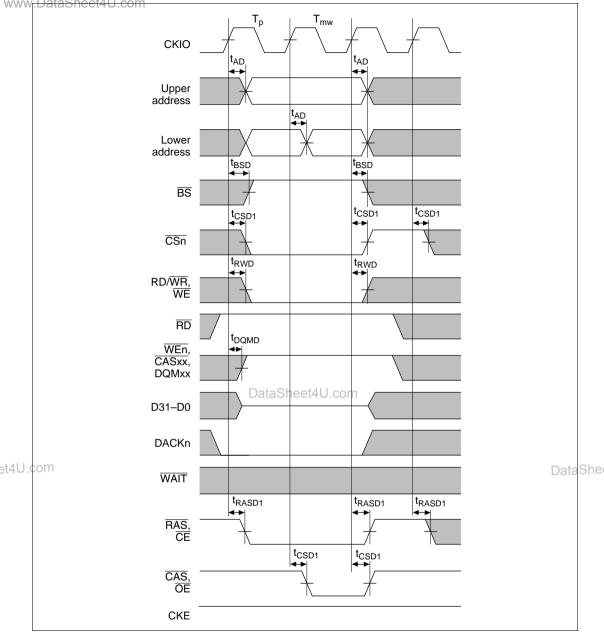


Figure 16.33 Synchronous DRAM Mode Register Write Cycle (TRP = 1 Cycle)

DataSheet4U.com

www.DataSheet4U.com

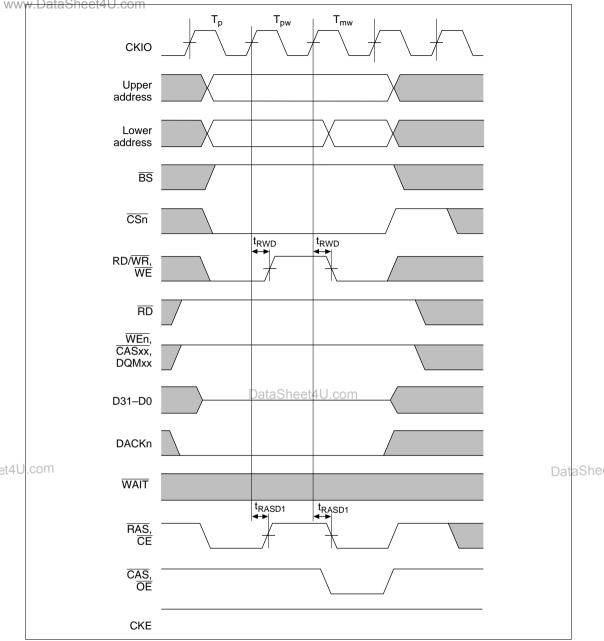


Figure 16.34 Synchronous DRAM Mode Register Write Cycle (TRP = 2 Cycles)

DataSheet4U.com

www.DataSheet4U.com

520 DataSheet4U.com

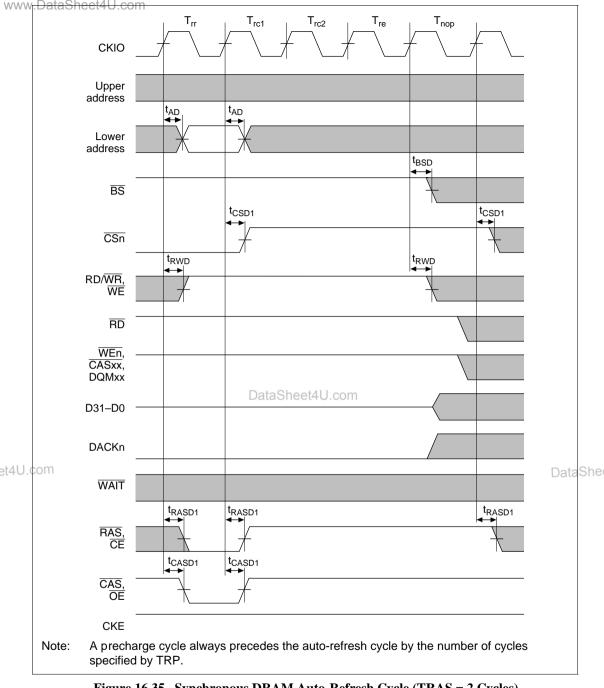


Figure 16.35 Synchronous DRAM Auto-Refresh Cycle (TRAS = 2 Cycles)

Figure 16.36 Synchronous DRAM Auto-Refresh Cycle (Shown From Precharge Cycle, TRP = 1 Cycle, TRAS = 2 Cycles)

www.DataSheet4U.com

522 DataSheet4U.com

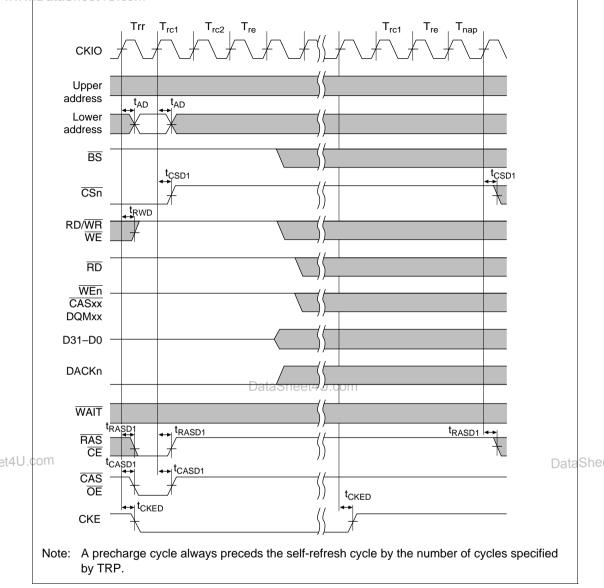
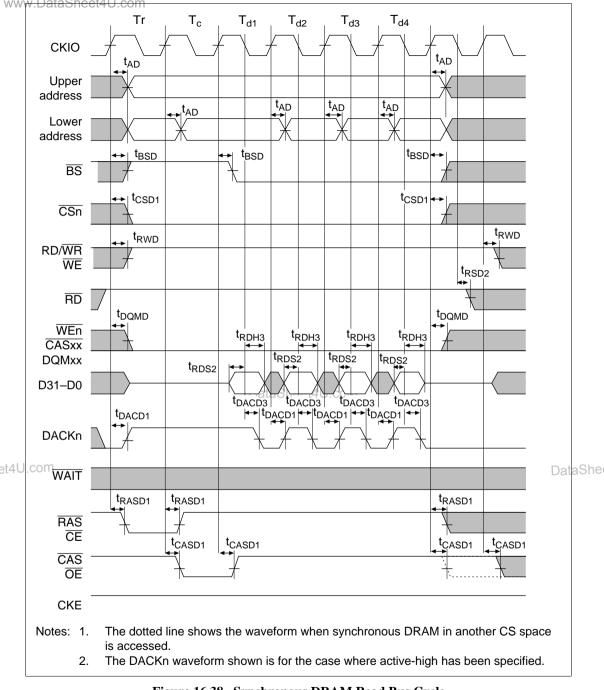
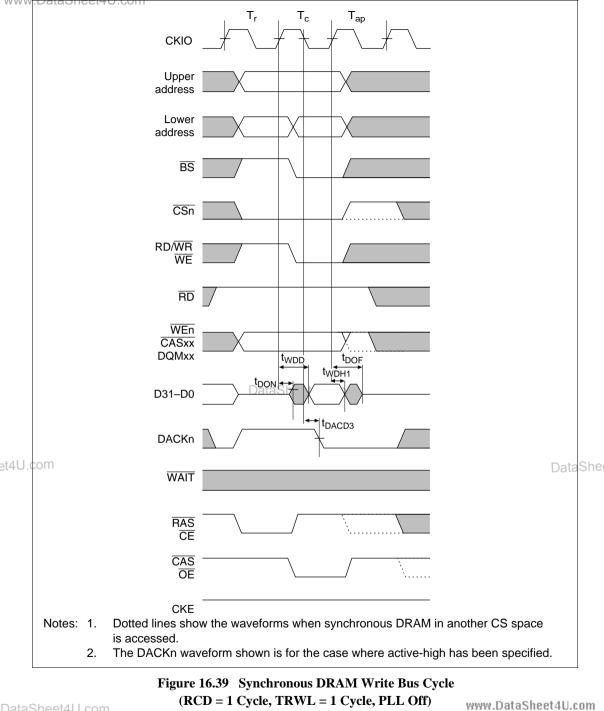



Figure 16.37 Synchronous DRAM Self-Refresh Cycle (TRAS = 2)


DataSheet4U.com

www.DataSheet4U.com

Figure 16.38 Synchronous DRAM Read Bus Cycle

DataSheet4URCP = 1 Cycle, CAS Latency = 1 Cycle, TRP = 1 Cycle, Bursts = 4, Phil. Off Sheet4U.com

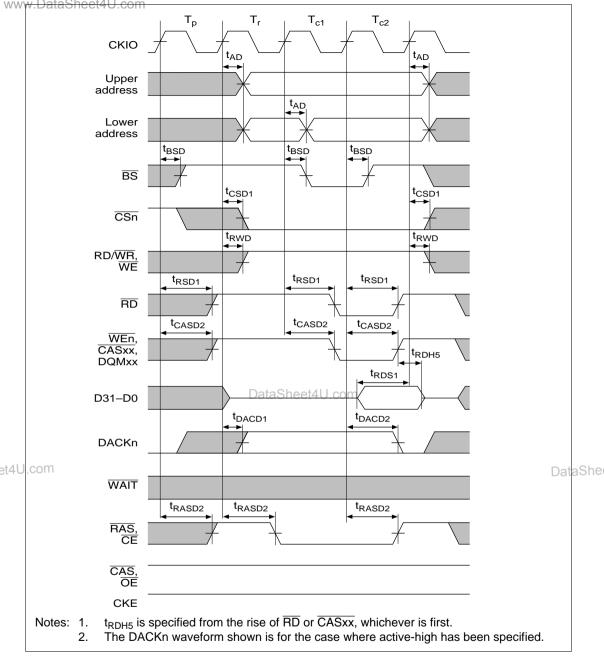
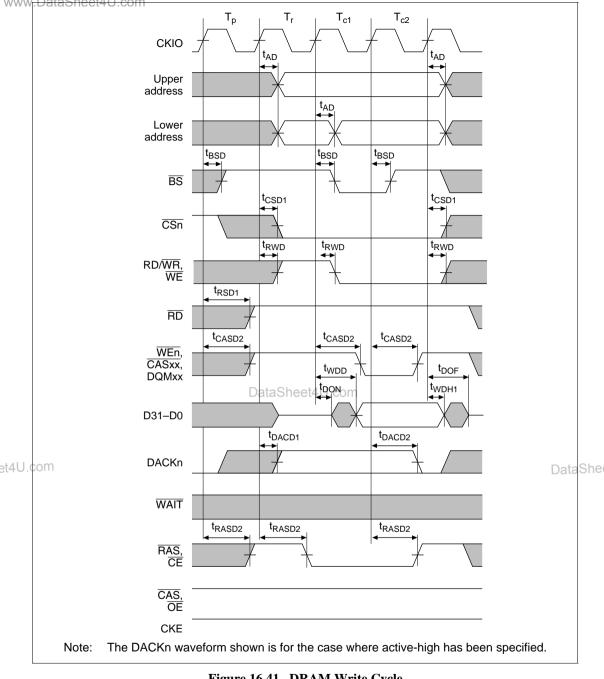



Figure 16.40 DRAM Read Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL On)

www.DataSheet4U.com

526 DataSheet4U.com

Figure 16.41 DRAM Write Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

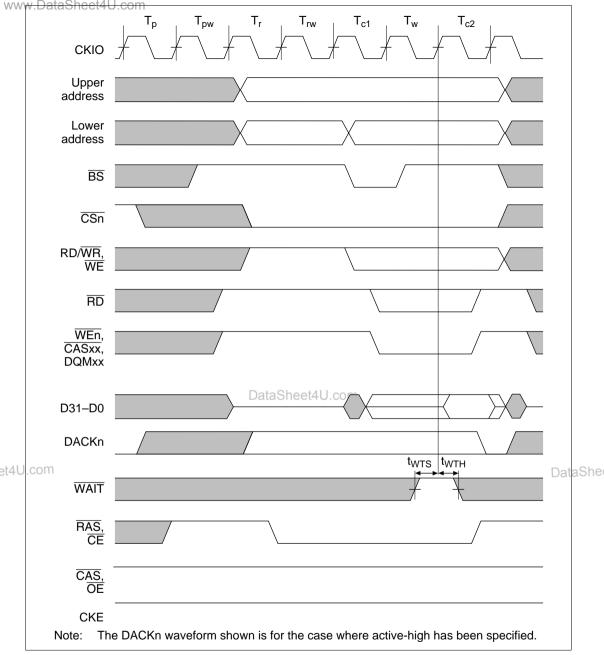


Figure 16.42 DRAM Bus Cycle (TRP = 2 Cycles, RCD = 2 Cycles, 1 Wait)

DataSheet4U.com

www.DataSheet4U.com

528 DataSheet4U.com

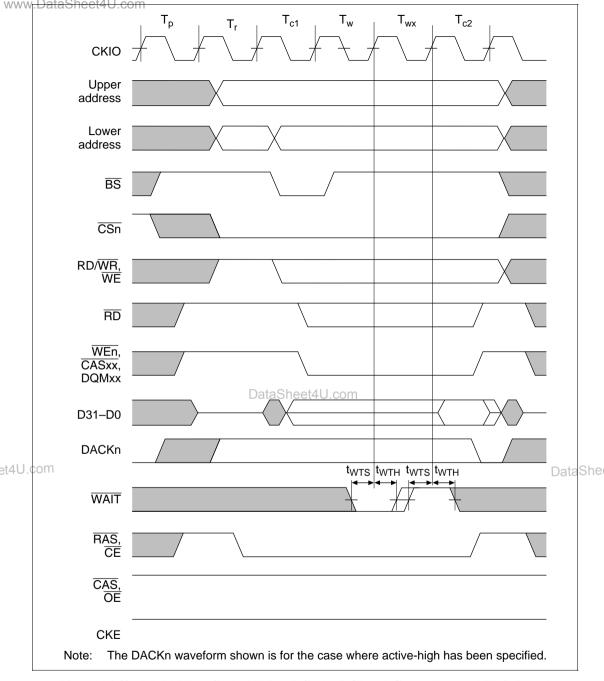
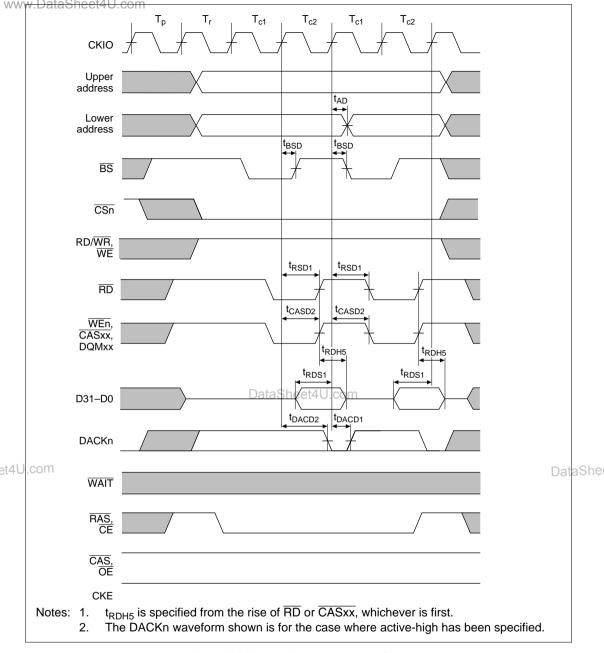



Figure 16.43 DRAM Bus Cycle (TRP = 1 Cycle, RCD = 1 Cycle, External Wait Input)

DataSheet4U.com

www.DataSheet4U.com

Figure 16.44 DRAM Burst Read Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

530 DataSheet4U.com

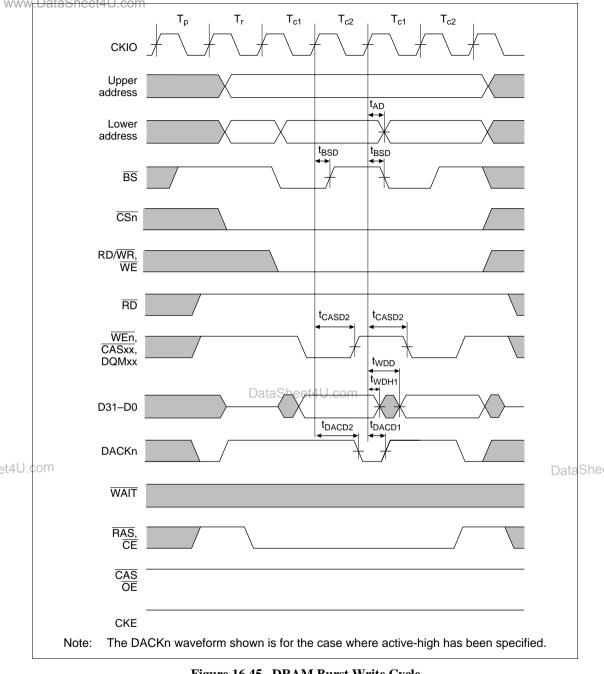
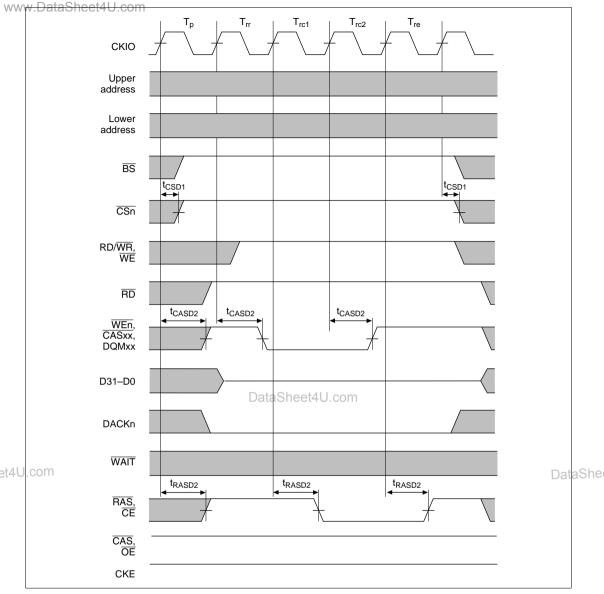




Figure 16.45 DRAM Burst Write Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL On)

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com

532 DataSheet4U.com

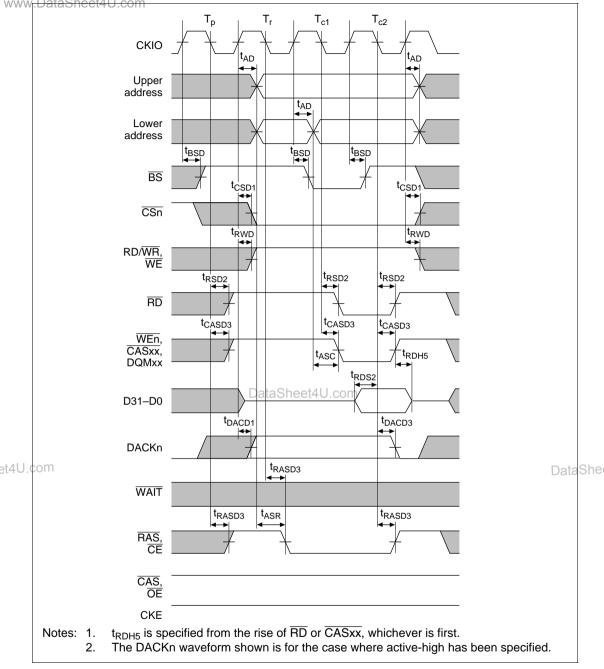


Figure 16.47 DRAM Read Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL Off)

www.DataSheet4U.com

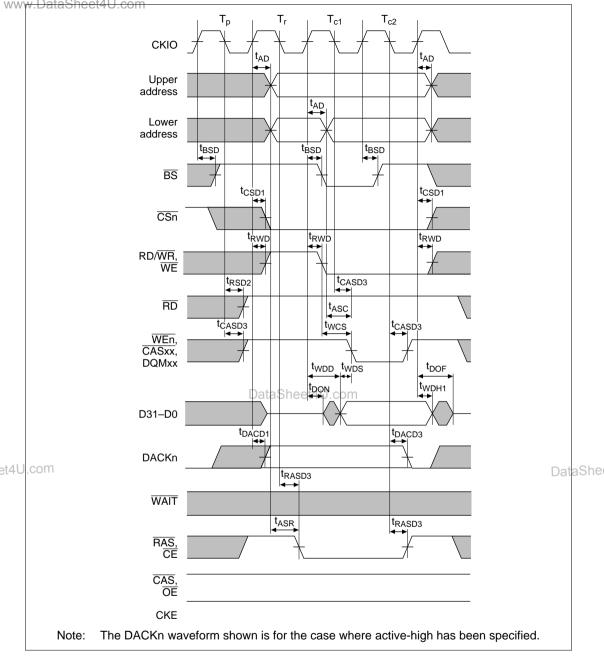
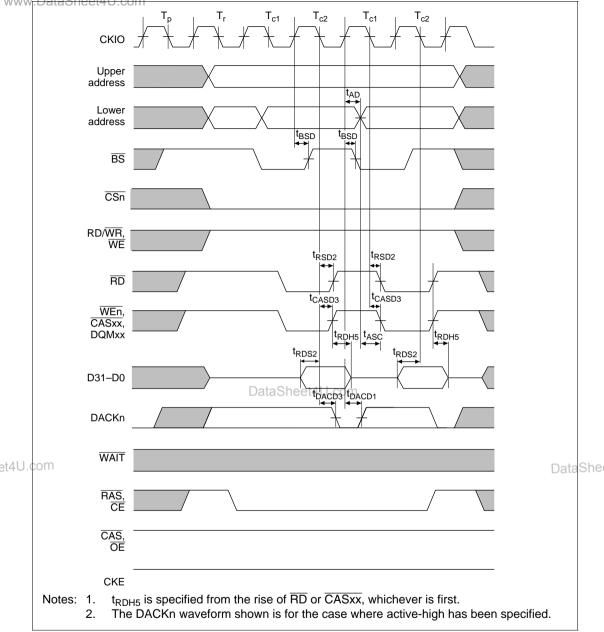



Figure 16.48 DRAM Write Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL Off)

DataSheet4U.com

www.DataSheet4U.com

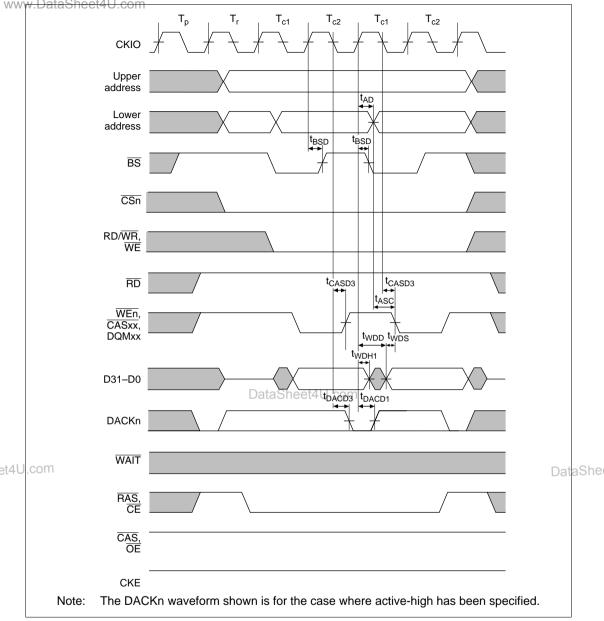

534 DataSheet4U.com

Figure 16.49 DRAM Burst Read Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL Off)

DataSheet4U.com

www.DataSheet4U.com

Figure 16.50 DRAM Burst Write Cycle (TRP = 1 Cycle, RCD = 1 Cycle, No Waits, PLL Off)

DataSheet4U.com

www.DataSheet4U.com

536 DataSheet4U.com

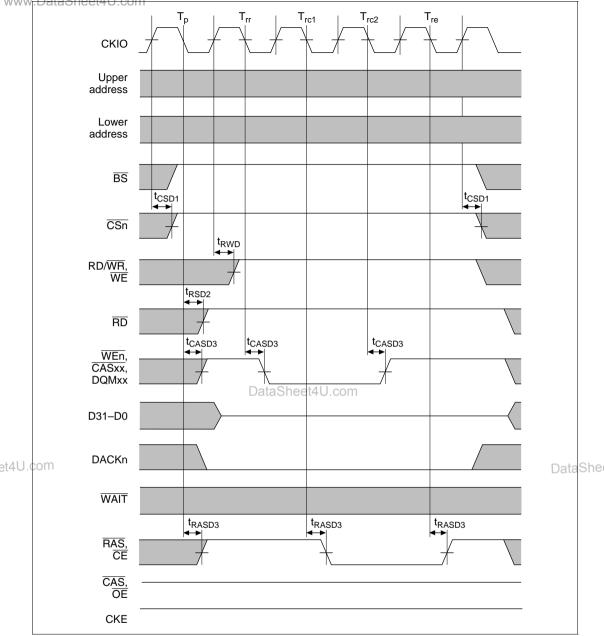
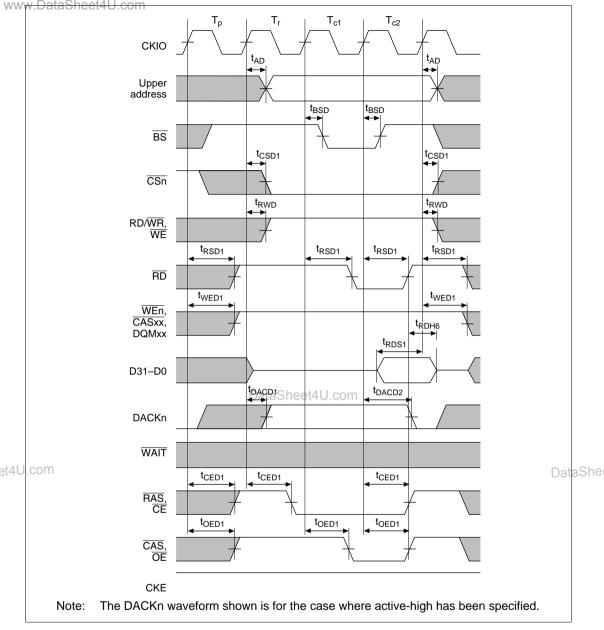



Figure 16.51 DRAM CAS-Before-RAS Refresh Cycle (TRP = 1 Cycle, TRAS = 2 Cycles, PLL Off)

DataSheet4U.com

www.DataSheet4U.com

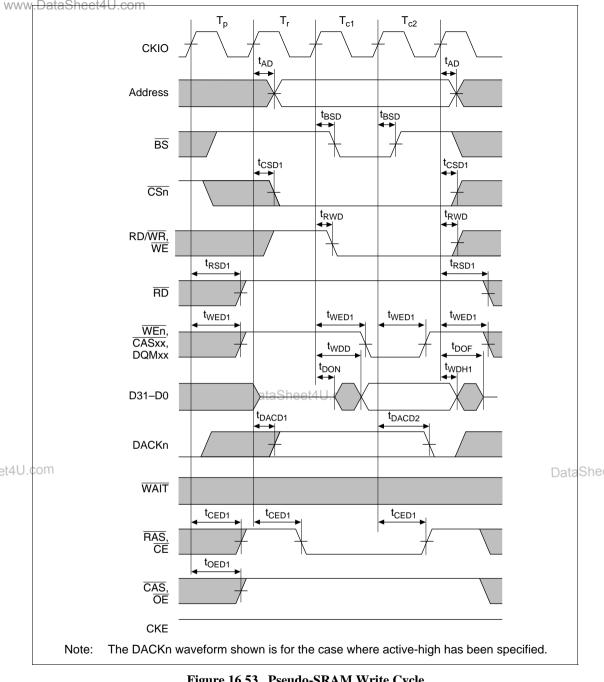


Figure 16.52 Pseudo-SRAM Read Cycle (PLL On, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com

www.DataSheet4U.com

538 DataSheet4U.com

Figure 16.53 Pseudo-SRAM Write Cycle (PLL On, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com

www.DataSheet4U.com

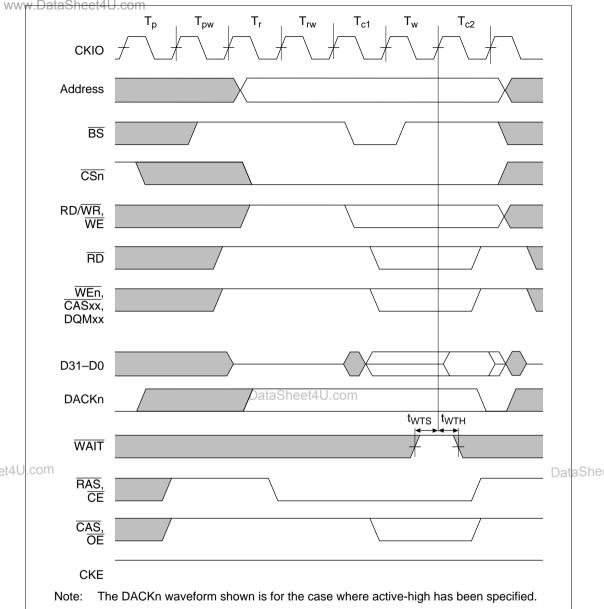
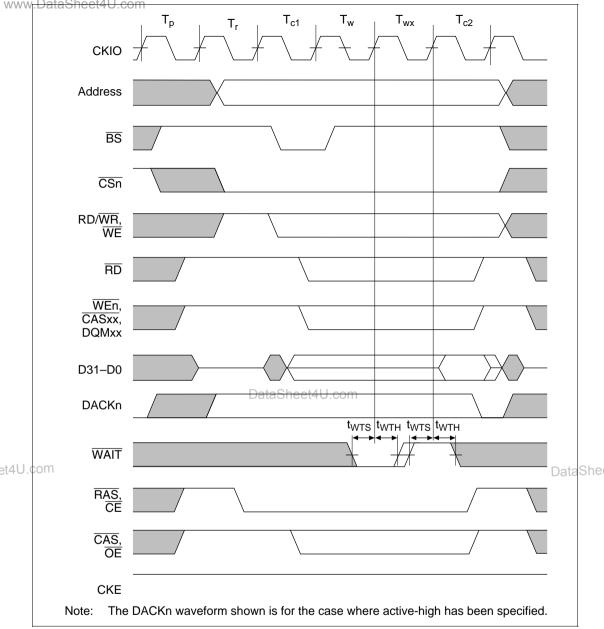



Figure 16.54 Pseudo-SRAM Bus Cycle (TRP = 2 Cycles, RCD = 2 Cycles, 1 Wait)

DataSheet4U.com

www.DataSheet4U.com

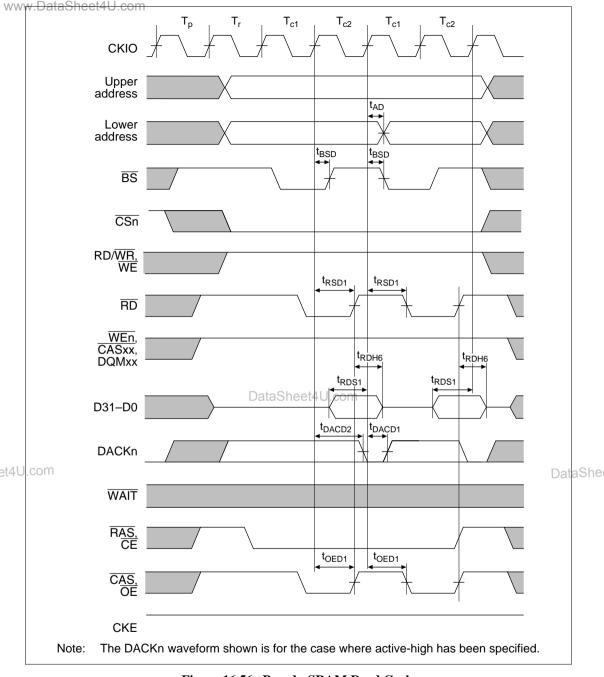

540 DataSheet4U.com

Figure 16.55 Pseudo-SRAM Bus Cycle (TRP = 1 Cycle, RCD = 1 Cycle, External Wait Input)

DataSheet4U.com

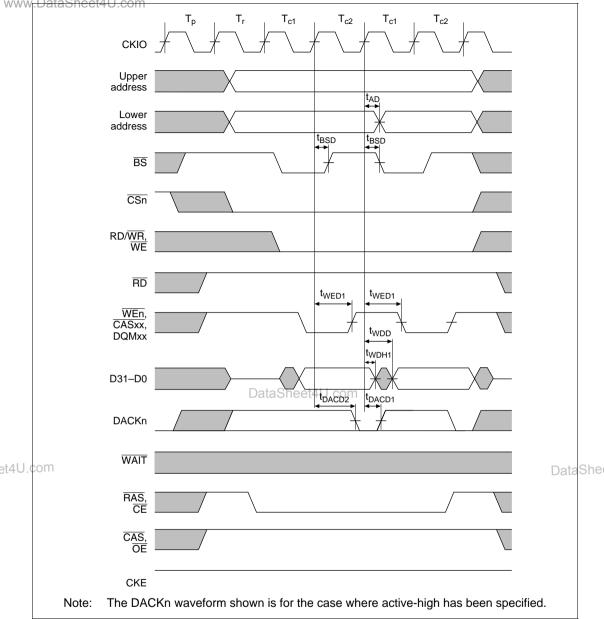
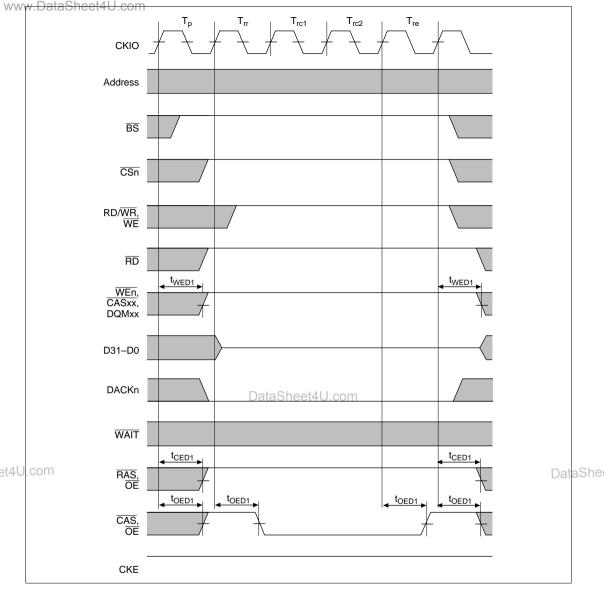

www.DataSheet4U.com

Figure 16.56 Pseudo-SRAM Read Cycle (Static Column Mode, PLL On, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

www.DataSheet4U.com


542 DataSheet4U.com

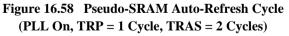
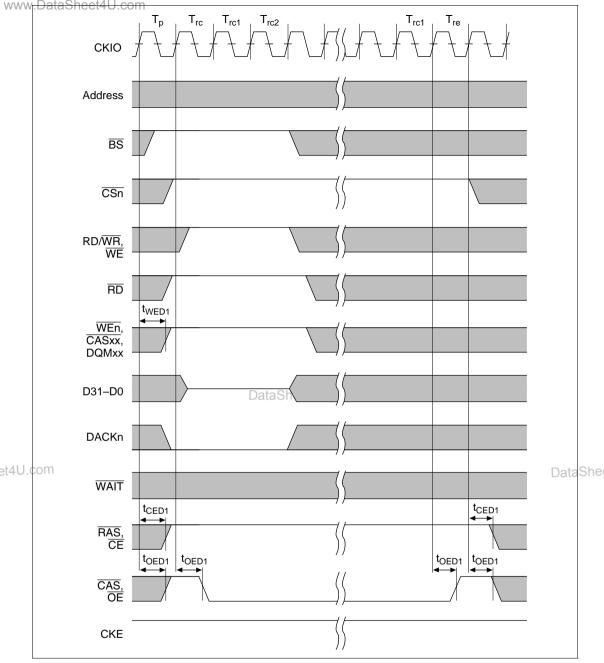
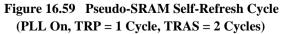


Figure 16.57 Pseudo-SRAM Write Cycle (Static Column Mode, PLL On, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com

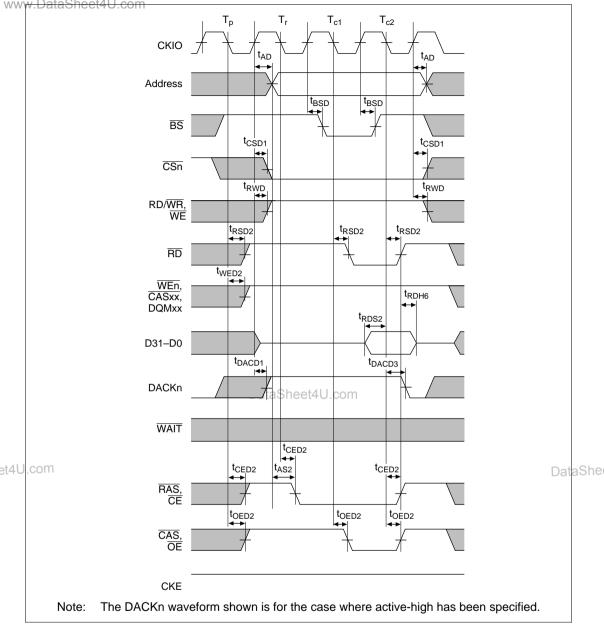
www.DataSheet4U.com





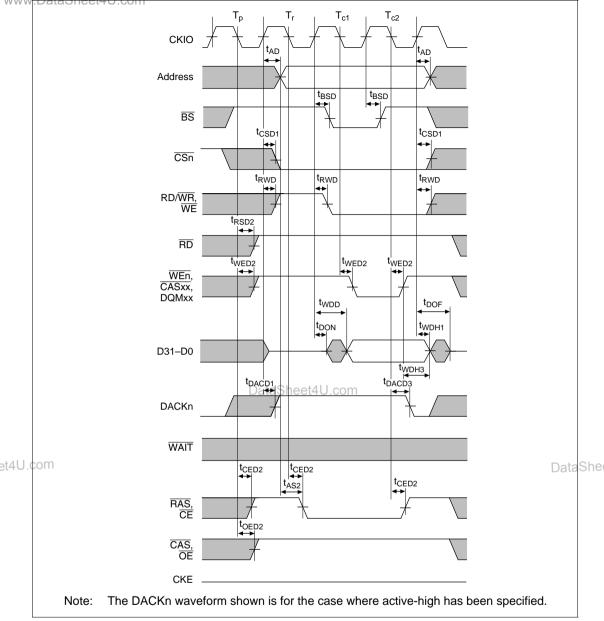
DataSheet4U.com

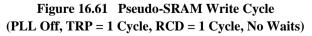
www.DataSheet4U.com


544 DataSheet4U.com

DataSheet4U.com

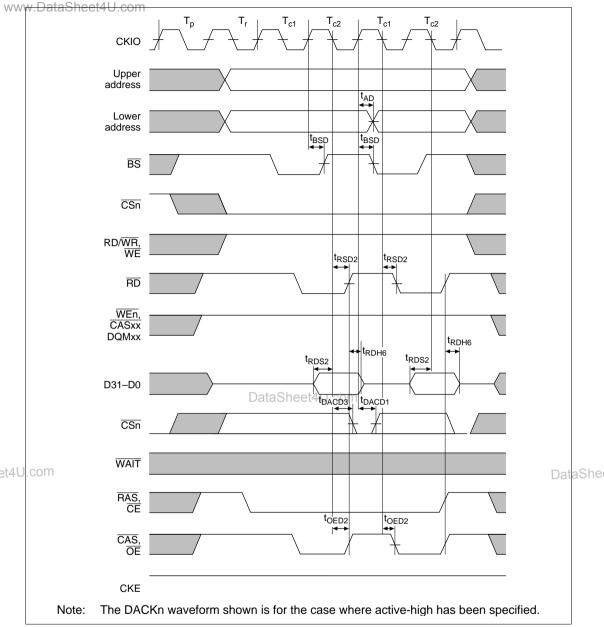
www.DataSheet4U.com




Figure 16.60 Pseudo-SRAM Read Cycle (PLL Off, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com

www.DataSheet4U.com


546 DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

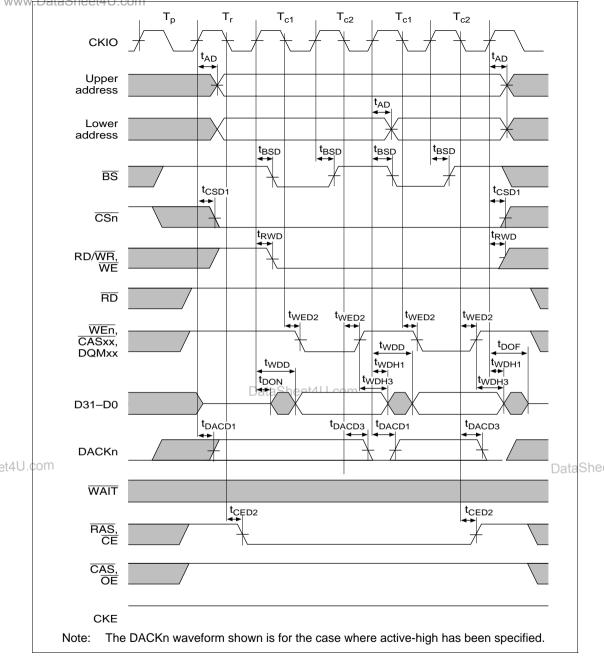
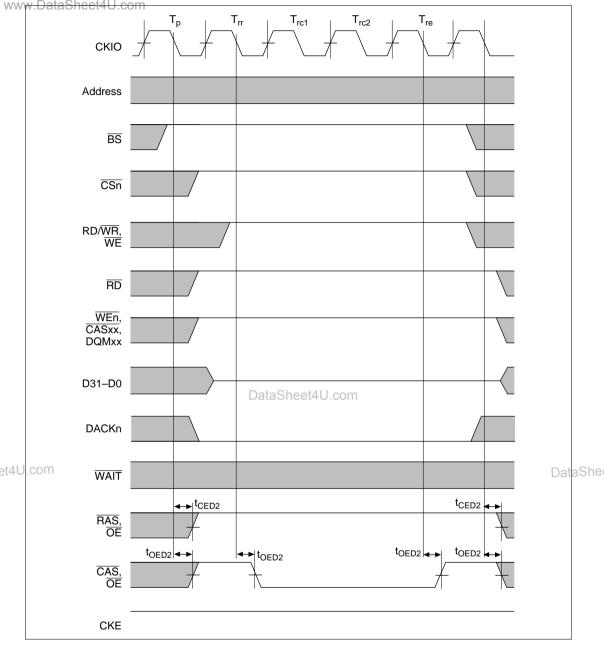


Figure 16.62 Pseudo-SRAM Read Cycle (Static Column Mode, PLL Off, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

DataSheet4U.com


www.DataSheet4U.com

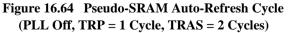
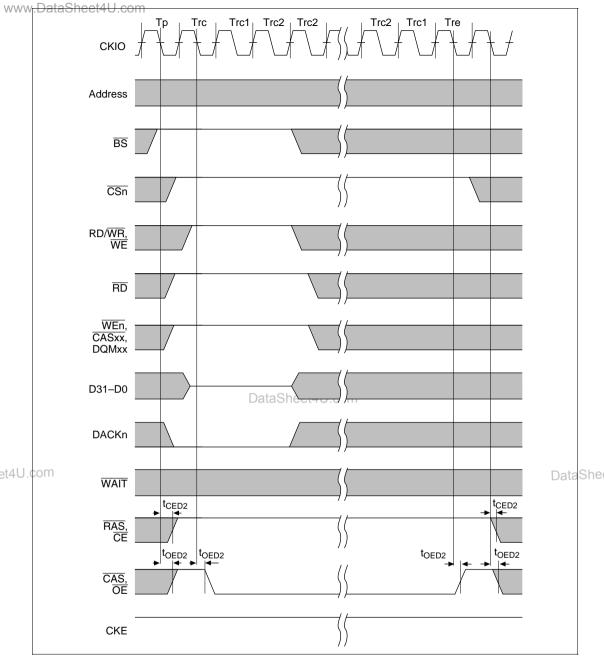
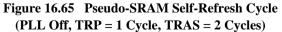

548 DataSheet4U.com

Figure 16.63 Pseudo-SRAM Write Cycle (Static Column Mode, PLL Off, TRP = 1 Cycle, RCD = 1 Cycle, No Waits)

www.DataSheet4U.com





DataSheet4U.com

www.DataSheet4U.com

550 DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

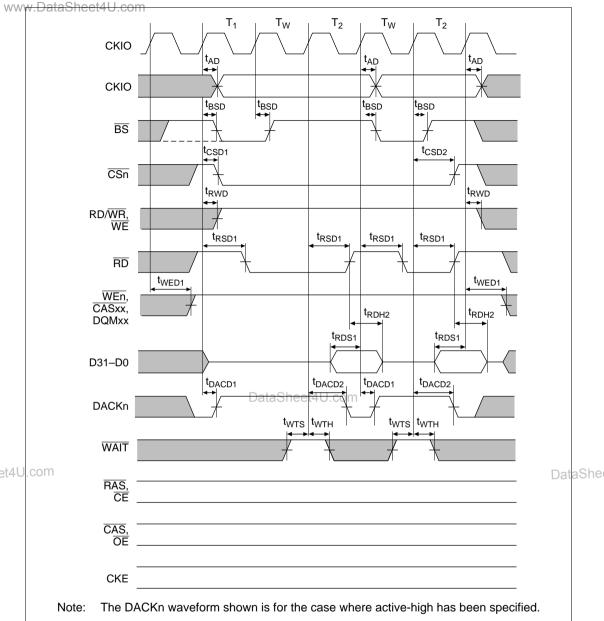


Figure 16.66 Burst ROM Read Cycle (PLL On, 1 Wait)

DataSheet4U.com

www.DataSheet4U.com

552 DataSheet4U.com

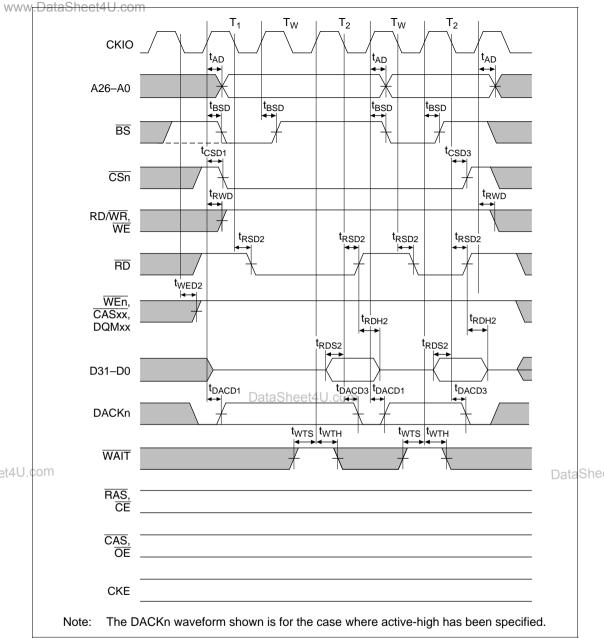


Figure 16.67 Burst ROM Read Cycle (PLL Off, 1 Wait)

www.DataSheet4U.com

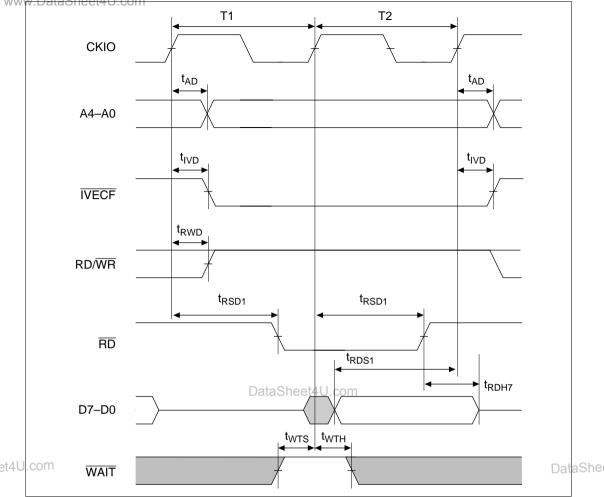


Figure 16.68 Interrupt Vector Fetch Cycle (PLL On, No Waits)

DataSheet4U.com

www.DataSheet4U.com

554 DataSheet4U.com

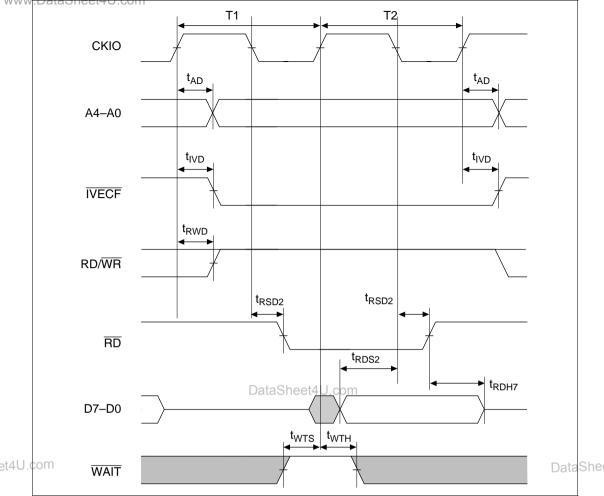


Figure 16.69 Interrupt Vector Fetch Cycle (PLL Off, No Waits)

DataSheet4U.com

www.DataSheet4U.com

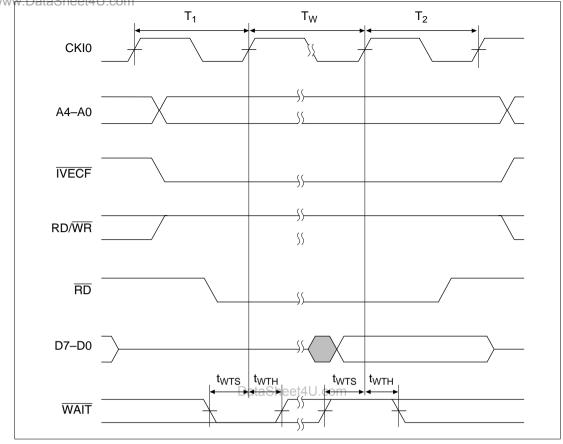


Figure 16.70 Interrupt Vector Fetch Cycle (1 External Wait Cycle)

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

556 DataSheet4U.com

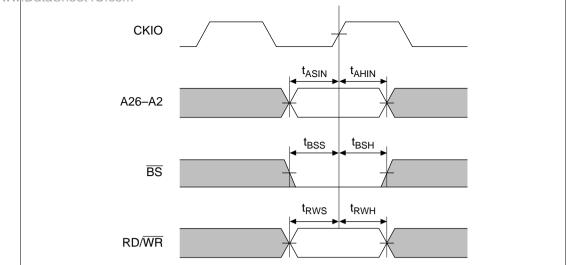


Figure 16.71 Address Monitor Cycle

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

Table 16.10DMAC Timing (Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to $+75^{\circ}C$)

Item	Symbol	Min	Max	Unit	Figure
DREQ0, DREQ1 setup time (PLL Off, On)	t _{DRQS}	50	_	ns	16.72
DREQ0, DREQ1 setup time (PLL On, 1/4 cycle delay)	t _{DRQS}	50 – 1/4 tcyc	—	ns	
DREQ0, DREQ1 hold time (PLL Off, On)	t _{DRQH}	50	_	ns	-
DREQ0, DREQ1 hold time (PLL On, 1/4 cycle delay)	t _{DRQH}	1/4 tcyc + 50	—	ns	_
DREQ0, DREQ1 low level width	t _{DRQW}	1.5		t _{cyc}	_

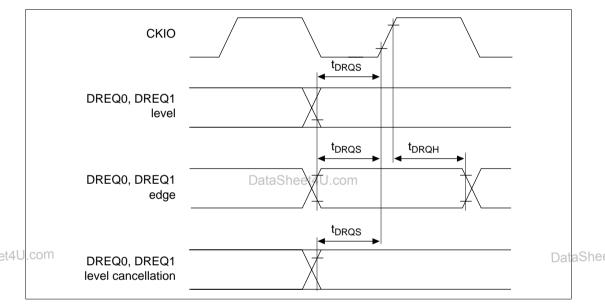
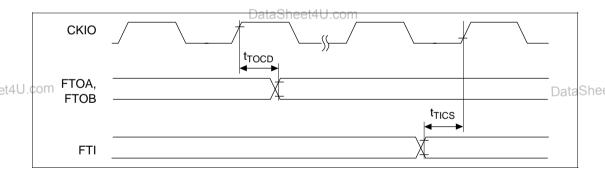


Figure 16.72 DREQ0, DREQ1 Input Timing

DataSheet4U.com


www.DataSheet4U.com

558 DataSheet4U.com

16.3.5 Free-Running Timer Timing

Table 16.11Free-Running Timer Timing (Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to
+75°C)

Item	Symbol	Min	Мах	Unit	Figure
Output compare output delay time (PLL Off, On)	t _{TOCD}	—	320	ns	16.73
Output compare output delay time (PLL On, 1/4 cycle delay)	t _{TOCD}	_	1/4 tcyc + 320	ns	
Input capture input setup time (PLL Off, On)	t _{TICS}	80	_	ns	
Input capture input setup time (PLL On, 1/4 cycle delay)	t _{TICS}	80 – 1/4 tcyc	_	ns	
Timer clock input setup time (PLL Off, On)	t _{TCKS}	80	_	ns	16.74
Timer clock input setup time (PLL On, 1/4 cycle delay)	t _{TCKS}	80 –1/4 tcyc	_	ns	
Timer clock pulse width (single edge)	t _{TCKWH}	4.5	_	t _{cyc}	
Timer clock pulse width (both edges)	t _{TCKWL}	8.5	_	t _{cyc}	

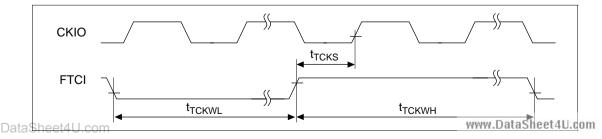


Figure 16.74 FRT Clock Input Timing

Table 16.12	Watchdog Timer Timing (Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)
-------------	--

Item	Symbol	Min	Max	Unit	Figure
WDTOVF delay time (PLL Off, On)	t _{WOVD}	_	70	ns	16.75
WDTOVF delay time (PLL On, 1/4 cycle delay)	t _{WOVD}	_	1/4 tcyc + 70	ns	

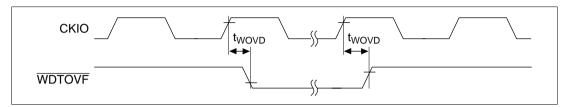


Figure 16.75 Watchdog Timer Output Timing

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

560 DataSheet4U.com

16.3.7 Serial Communication Interface Timing

Table 16.13Serial Communication Interface Timing
(Conditions: $V_{CC} = 3.0$ to 5.5 V, Ta = -20 to +75°C)

Item	Symbol	Min	Max	Unit	Figure
Input clock cycle	t _{scyc}	16		t _{cyc}	16.76
Input clock cycle (clocked synchronous mode)	t _{scyc}	24		t _{cyc}	
Input clock pulse width	t _{sckw}	0.4	0.6	t _{scyc}	
Transmission data delay time (clocked synchronous mode)	t _{TXD}	_	70	ns	16.77
Receive data setup time (clocked synchronous mode)	t _{RXS}	70	_	ns	
Receive data hold time (clocked synchronous mode)	t _{RXH}	70	_	ns	

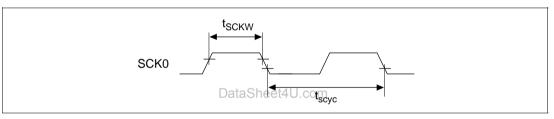
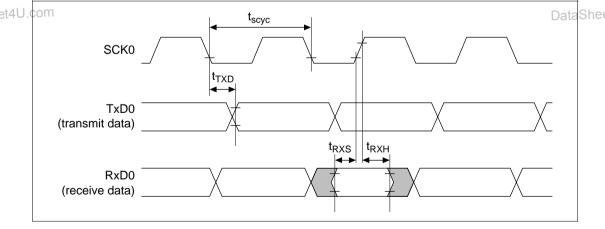
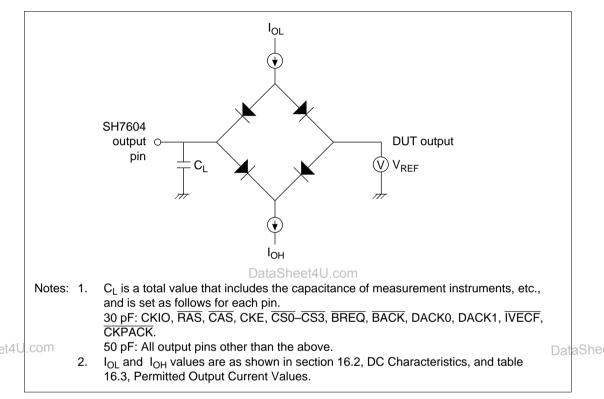


Figure 16.76 Input Clock Input/Output Timing




Figure 16.77 SCI Input/Output Timing (Clocked Synchronous Mode)

DataSheet4U.com

www.DataSheet4U.com

16.3.8 AC Characteristics Measurement Conditions

- I/O signal reference level: 1.5 V
- Input pulse level: V_{SS} to 3.0 V (where RES, NMI, CKIO and MD5-MD0 are within the range V_{SS} to V_{CC})
- Input rise and fall times: 1 ns

Figure 16.78 Output Load Circuit

DataSheet4U.com

www.DataSheet4U.com

Appendix A Pin States

		Pin States								
			eset er-On		eset nual	Power- Mod		Bus-		
Category	Pin	Master	Slave	Bus Acquired	Bus Released	Standby	Sleep	Released		
Clock	CKIO	IO ^{*1}	10 ^{*1}	IO ^{*1}						
	EXTAL	I ^{*1}	I ^{*1}	I ^{*1}	I*1	I ^{*1}	I ^{*1}	I ^{*1}		
	XTAL	O ^{*1}								
	CKPREQ	Z	Z	I	I	I	I	I		
	CKPACK	Н	Н	Н	Н	H ^{*2}	Н	Н		
System control	RESET	I	I	I	I	I	I	I		
	WDTOVF	Н	Н	Н	Н	0	0	0		
	BACK, BRLS	Z	Z	I	I	Z	I	I		
	BREQ, BGR	Н	Н	0	0	Н	0	0		
	MD5-MD0	I	I	I	I	I	I	I		
Interrupt	NMI	I D	DataShe	eeţ4U.com	1	I	I	I		
	IRL3-IRL0	Z	Z	Z	Z	I	I	I		
	IVECF	Н	Н	Н	Н	H ^{*3}	Н	Н		
Address bus	A26–A0	0	Z	0	Z	Z	0	Z ^{*4}	4 C	
Data bus	D31–D0	Z	Z	IO	Z	Z	Z	z Dat	taS	
Bus control	CS3-CS0	Н	Z	0	Z	Н	Н	Z ^{*4}		
	BS	Н	Z	0	Z	Н	Н	Z		
	RD/WR	Н	Z	0	Z	Н	Н	Z ^{*4}		
	RAS, CE	Н	Z	0	Z	Н	Н	Z		
	CAS, OE	Н	Z	0	Z	Н	Н	Z		
	CASHH, DQMUU	Н	Z	0	Z	Н	Н	Z		
	CASHL, DQMUL	Н	Z	0	Z	Н	Н	Z		
	CASLH, DQMLU	Н	Z	0	Z	Н	Н	Z		
	CASLL, DQMLL	Н	Z	0	Z	Н	Н	Z		
	RD	Н	Z	0	Z	Н	н	Z		
Sheet4U.com	CKE	Н	Н	0	Н	0	ww.Da	ntaSheet4U. H	.00	
	WAIT	Z	Z	I	Z	Z	I	Ignored		

Table A.1 Pin States During Resets, Power-Down State, and Bus-Released State

www.DataSheet4U.com Table A.1 Pin States During Resets, Power-Down State, and Bus-Released State (cont)

			Pin States								
		Re: Powe			eset nual	Power- Mod	Bus-				
Category	Pin	Master	Slave	Bus Acquired	Bus Released	Standby	Sleep	Released Mode			
Direct memory	DACK0, DACK1	Н	Н	Н	Н	K ^{*3}	0	0			
access controller (DMAC)	DREQ0, DREQ1	Z	Z	Z	Z	Z	I	I			
16-bit free-	FTOA	L	L	L	L	K ^{*3}	0	0			
running timer	FTOB	L	L	L	L	K ^{*3}	0	0			
(FRT)	FTI	Z	Z	Z	Z	K ^{*3}	I	I			
	FTCI	Z	Z	Z	Z	K ^{*3}	I	I			
Serial	RXD	Z	Z	Z	Z	K ^{*3}	I	I			
communication	TXD	Н	Н	Н	Н	K ^{*3}	0	0			
interface (SCI)	SCK	Z	Z	Z	Z	K ^{*3}	ю	I			

I: Input

O: Output

H: High-level output

DataSheet4U.com

L: Low-level output

Z: High impedance

K: Input pins are high impedance, output pins retain their state

Notes: 1. Depends on the clock mode (MD2–MD0 setting).

2. Low-level output in standby mode when the clock is paused.

- DataShe
- 3. When the high impedance bit (HIZ) in the standby control register (SBYCR) is set to 1, output pins become high impedance.
- 4. Input when the external bus cycle address monitor function is used.
- Other: In sleep mode, if the DMAC is running, the address/data bus and bus control signals change according to the DMAC operation (the same applies during refreshing).

DataSheet4U.com

www.DataSheet4U.com

Appendix B List of Registers

B.1 List of I/O Registers

		Abbrevia- tion of				Bit	Name					
	Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Modu	le
	H'FFFFFE00	SMR	C/Ā	CHR	PE	O/Ē	STOP	MP	CKS1	CKS0	SCI	
-	H'FFFFFE01	BRR									-	
-	H'FFFFFE02	SCR	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-	
-	H'FFFFFE03	TDR									-	
-	H'FFFFFE04	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	-	
-	H'FFFFFE05	RDR									-	
-	H'FFFFFE06 to H'FFFFFE09	_	_	_	_	_	_	_	_	_	_	
-	H'FFFFFE10	TIER	ICIE	_	_	_	OCIAE	OCIBE	OVIE	_	FRT	
-	H'FFFFFE11	FTCSR	ICF	_	_	_	OCFA	OCFB	OVF	CCLRA	-	
-	H'FFFFFE12	FRC									-	
-	H'FFFFFE13	OCRA/B			DataShe	eet4U.c	om				-	
-	H'FFFFFE14	_									-	
-	H'FFFFFE15	TCR									_	
-	H'FFFFFE16	-	IEDGA	_	_	_	_	_	CKS1	CKS0	-	
CC	H'FFFFFE17	TOCR	_	_	_	OCRS	_		OLVLA	OLVLB	-	DataShe
-	H'FFFFFE18	FICR									-	
-	H'FFFFFE19	_									-	
-	H'FFFFFE20 to H'FFFFFE59	_	_	_	_	_	_	_	_	_	_	
-	H'FFFFFE60	IPRB	SCIIP3	SCIIP2	SCIIP1	SCIIP0	FRTIP3	FRTIP2	FRTIP1	FRTIP0	INTC	
-	H'FFFFFE61	-	_	_	_	_	_	_	_	_	-	
-	H'FFFFFE62	VCRA	—	SERV6	SERV5	SERV4	SERV3	SERV2	SERV1	SERV0	-	
-	H'FFFFFE63	_	_	SRXV6	SRXV5	SRXV4	SRXV3	SRXV2	SRXV1	SRXV0	-	
-	H'FFFFFE64	VCRB	_	STXV6	STXV5	STXV4	STXV3	STXV2	STXV1	STXV0	-	
-	H'FFFFFE65	_	_	STEV6	STEV5	STEV4	STEV3	STEV2	STEV1	STEV0	-	

	Abbrevia- tion of				Bit Name									
Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module				
H'FFFFFE66	VCRC	_	FICV6	FICV5	FICV4	FICV3	FICV2	FICV1	FICV0	INTC				
H'FFFFFE67	_	_	FOCV6	FOCV5	FOCV4	FOCV3	FOCV2	FOCV1	FOCV0	-				
H'FFFFFE68	VCRD		FOVV6	FOVV5	FOVV4	FOVV3	FOVV2	FOVV1	FOVV0	-				
H'FFFFFE69					_	_				-				
H'FFFFFE6A	· —	_	_	_	_	_	_	_	_					
to H'FFFFFE70														
H'FFFFFE71	DRCR0							RS1	RS0	DMAC (channel 0)				
H'FFFFFE72	DRCR1	_	_	_	_	_	_	RS1	RS0	DMAC (channel 1)				
H'FFFFFE73 to H'FFFFFE7F		_	_	_	_	_	_	_	_	_				
H'FFFFFE80	WTCSR*	OVF	WT/IT	TME			CKS2	CKS1	CKS0	WDT				
H'FFFFFE81	WTCNT*									-				
H'FFFFFE82	!	_	_	_	_	_	_	_	_	-				
H'FFFFFE83	RSTCSR*	WOVF	RSTE	RSTS	n ce t4U.	.c o m	_	_	_	-				
H'FFFFFE84 to H'FFFFFE90		_	_	_	_	_	_	_	_					
J.cHiffFFFFE91	SBYCR	SBY	HIZ		MSTP4	MSTP3	MSTP2	MSTP1	MSTP0	Power- Dat down	itaS			
H'FFFFFE92	CCR	W1	W0		СР	ΤW	OC	ID	CE	Cache				
H'FFFFFE93 to H'FFFFFE9F		_	_	_	_	_	_	_	_	_				

Note: Address for reading. When writing, the address is H'FFFFFE80 for WTCSR and WTCNT, and H'FFFFE82 for RSTCSR. See Section 12.2.4, Register Access, in Section 12, Watchdog Timer (WDT), for more information.

DataSheet4U.com

www.DataSheet4U.com

566 DataSheet4U.com

		Abbrevia- tion of				Bit	Name					
	Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Modu	le
	H'FFFFFEE0	ICR	NIMIL	_	_	_	_	_	_	NIMIE	INTC	
	H'FFFFFEE1	_	_	_	_	_	_	_	_	VECMD	-	
	H'FFFFFEE2	IPRA	DIVUIP3	DIVUIP2	DIVUIP1	DIVUIP0	DMACI3	DMACI2	DMACI1	DMACI0	-	
	H'FFFFFEE3	_	WDTIP3	WDTIP2	WDTIP1	WDTIP0	—	_		_	-	
	H'FFFFFEE4	VCRWDT	_	WITV6	WITV5	WITV4	WITV3	WITV2	WITV1	WITV0	_	
	H'FFFFFEE5	_	_	BCMV6	BCMV5	BCMV4	BCMV3	BCMV2	BCMV1	BCMV0	=	
	H'FFFFFEE6	_	_	_	_	_	_	_	_	_	_	
	to H'FFFFFEFF											
	H'FFFFFF00	DVSR									DIVU	
	H'FFFFFF01	_									_	
	H'FFFFFF02	_									_	
	H'FFFFFF03										_	
	H'FFFFFF04	DVDNT	_								_	
	H'FFFFFF05	_	_								_	
	H'FFFFF66				DataShe	et4U.c	om					
	H'FFFFFF07										_	
	H'FFFFF68	DVCR	_	_	—	_	—	_	_	_	_	
	H'FFFFFF09		_	—	—	_	—	_	_	—		
J.C	H'FFFFFF0A		_	—	—	—	—	_	_	—	_	DataS
	H'FFFFF0B	_	_	_	—	_	—	_	OVFIE	OVF	-	
	H'FFFFFF0C	VCRDIV	—	—	—	—	—	—	—	—		
	H'FFFFFF0D		_	_	_	_	—	_	_	_		
	H'FFFFF6E	_									-	
	H'FFFFFF0F	_									-	
	H'FFFFFF10	DVDNTH									=	
	H'FFFFFF11	_									-	
	H'FFFFFF12	_									-	
	H'FFFFFF13	_									-	

DataSheet4U.com

www.DataSheet4U.com

	Abbrevia- tion of				Bit /	Name					
Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module	
H'FFFFFF14	DVDNTL									DIVU	
H'FFFFFF15	_										
H'FFFFFF16	_										
H'FFFFFF17	_										
H'FFFFFF18 to H'FFFFFF3F	_	_	_	_	_	_	_	_	_	_	
H'FFFFFF40	BARAH	BAA31	BAA30	BAA29	BAA28	BAA27	BAA26	BAA25	BAA24	UBC	
H'FFFFFF41	_	BAA23	BAA22	BAA21	BAA20	BAA19	BAA18	BAA17	BAA16	(channel A)	
H'FFFFFF42	BARAL	BAA15	BAA14	BAA13	BAA12	BAA11	BAA10	BAA9	BAA8	-	
H'FFFFFF43	_	BAA7	BAA6	BAA5	BAA4	BAA3	BAA2	BAA1	BAA0		
H'FFFFFF44	BAMRAH	BAMA31	BAMA30	BAMA29	BAMA28	BAMA27	BAMA26	BAMA25	BAMA24		
H'FFFFFF45	_	BAMA23	BAMA22	BAMA21	BAMA20	BAMA19	BAMA18	BAMA17	BAMA16	-	
H'FFFFFF46	BAMRAL	BAMA15	BAMA14	BAMA13	BAMA12	BAMA11	BAMA10	BAMA9	BAMA8		
H'FFFFFF47	_	BAMA7	BAMA6	BAMA5	BAMA4	BAMA3	BAMA2	BAMA1	BAMA0		
H'FFFFFF48	BBRA	_	_	_	_	_	_	_	_		
H'FFFFFF49	_	CPA1	CPA0	DataSh	IDA0	RWA1	RWA0	SZA1	SZA0	-	
H'FFFFFF4A to H'FFFFFF5F	_	_	_		_		_	_	_	_	
	BARBH	BAB31	BAB30	BAB29	BAB28	BAB27	BAB26	BAB25	BAB24	UBC Data	ลร
H'FFFFF61	_			BAB21			BAB18		BAB16	(channel B)	1-
H'FFFFFF62	BARBL			BAB13				BAB9	BAB8	-	
H'FFFFF63	_	BAB7	BAB6	BAB5	BAB4	BAB3	BAB2	BAB1	BAB0	-	
H'FFFFF64	BAMRBH					BAMB27				-	
H'FFFFFF65	_	BAMB23	BAMB22	BAMB21	BAMB20	BAMB19	BAMB18	BAMB17	BAMB16	-	

DataSheet4U.com

www.DataSheet4U.com

568 DataSheet4U.com

	Abbrevia- tion of									
Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
H'FFFFFF66	BAMRBL	BAMB15	BAMB14	BAMB13	BAMB12	BAMB11	BAMB10	BAMB9	BAMB8	UBC
H'FFFFFF67	_	BAMB7	BAMB6	BAMB5	BAMB4	BAMB3	BAMB2	BAMB1	BAMB0	(channel B)
H'FFFFFF68	BBRB	_	_	_	_	_	_	_	_	_
H'FFFFFF69	_	CPB1	CPB0	IDB1	IDB0	RWB1	RWB0	SZB1	SZB0	_
H'FFFFF6A to H'FFFFFF6F	_	_	_	_	_	_	_	_	_	_
H'FFFFFF70	BDRBH	BDB31	BDB30	BDB29	BDB28	BDB27	BDB26	BDB25	BDB24	
H'FFFFFF71	_	BDB23	BDB22	BDB21	BDB20	BDB19	BDB18	BDB17	BDB16	_
H'FFFFFF72	BDRBL	BDB15	BDB14	BDB13	BDB12	BDB11	BDB10	BDB9	BDB8	_
H'FFFFFF73	_	BDB7	BDB6	BDB5	BDB4	BDB3	BDB2	BDB1	BDB0	_
H'FFFFFF74	BDMRBH	BDMB31	BDMB30	BDMB29	BDMB28	BDMB27	BDMB26	BDMB25	BDMB24	_
H'FFFFFF75	_	BDMB23	BDMB22	BDMB21	BDMB20	BDMB19	BDMB18	BDMB17	BDMB16	_
H'FFFFFF76	BDMRBL	BDMB15	BDMB14	BDMB13	BDMB12	BDMB11	BDMB10	BDMB9	BDMB8	_
H'FFFFFF77	_	BDMB7	BDMB6	BDMB5	BDMB4	BDMB3	BDMB2	BDMB1	BDMB0	_
H'FFFFFF78	BRCR	CMFCA	CMFPA	EBBE	UMD	_	PCBA	_	_	_
H'FFFFFF79	_	CMFCB	CMFPB) <u>at</u> aShe	SEQ	DBEB	PCBB	_	_	_
H'FFFFFF7A to H'FFFFFF7F	_	_	_	_	_	_	_	_	_	_

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

Address	Abbrevia- tion of Register	Bit Name								
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
H'FFFFFF80	SAR0									DMAC
H'FFFFFF81										(channel 0)
H'FFFFFF82										
H'FFFFF83										
H'FFFFFF84	DAR0									
H'FFFFFF85										
H'FFFFF86										
H'FFFFFF87										
H'FFFFF88	TCR0	_	_	_	_	_	_	_	_	
H'FFFFFF89										
H'FFFFFF8A	_									
H'FFFFF8B	_									
H'FFFFFF8C	CHCR0	_	_	_	_	_	_	_	_	
H'FFFFFF8D	_	_	_	_	_		_	_	_	
H'FFFFFF8E	_	DM1	DM0	SM1	SM0	TS1	TS0	AR	AM	
H'FFFFFF8F	_	AL	DS	D ataS	h ee t4L	.c 6 n	IE	TE	DE	
H'FFFFFF90	SAR1									DMAC
H'FFFFFF91	_									(channel 1)
H'FFFFF92	_									
H'FFFFF93	_									DataSh
H'FFFFF94	DAR1									
H'FFFFF95	_									
H'FFFFF96	_									
H'FFFFFF97										
H'FFFFF98	TCR1	_	_	_	_	_	_	_	_	
H'FFFFF99										
H'FFFFF9A										
H'FFFFFF9B										

DataSheet4U.com

www.DataSheet4U.com

570 DataSheet4U.com

www.DataSheet4U.com

	Abbrevia- tion of	a- Bit Name									
Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module	
H'FFFFFF9C	CHCR1	_	_	_	_	_	_	_	_	DMAC	
H'FFFFFF9D		_	_	_	_	_	_	_	_	(channel 1)	
H'FFFFFF9E		DM1	MD0	SM1	SM0	TS1	TS0	AR	AM		
H'FFFFF9F		AL	DS	DL	ТВ	ТА	IE	TE	DE		
H'FFFFFFA0	VCRMA0	_	_	_	_	_	_	_	_	DMAC	
H'FFFFFFA1	_	_	_	_	_	_	_	_	_	(channel 0)	
H'FFFFFFA2		_	_	_	_	_	_	_	_		
H'FFFFFFA3		VC7	VC6	VC5	VC4	VC3	VC2	VC1	VC0		
H'FFFFFFA4 to H'FFFFFFA7	_	_	_	_	_	_	_	_	_		
H'FFFFFFA8	VCRDMA1	_	_	_	_	_	_	_		DMAC	
H'FFFFFFA9	_	_	_			_		_		(channel 1)	
H'FFFFFFAA	_	_	_	_	_	_	_	_	_	_	
H'FFFFFFAB	_	VC7	VC6	VC5	VC4	VC3	VC2	VC1	VC0		
H'FFFFFFAC to H'FFFFFFAF	_	_	_	DataSh	neet4U.	com	_	_	_		
H'FFFFFB0	DMAOR	_	_	_	_	_	_	_	_	DMAC	
H'FFFFFB1	_	_	_	_	_	_	_	_	_	(channels	
COH FFFFFB2	_	_	_	_	_	_	_	_	_	— 0 and 1) Dai	
H'FFFFFB3		_	_	_	_	PR	AE	NMIF	DME	_	
H'FFFFFB4 to H'FFFFFFDF	_	_	_	_	_	_	_	_	_		

DataSheet4U.com

www.DataSheet4U.com

	Abbrevia- tion of				Bit	Name				_
Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
H'FFFFFFE0						_		_	_	BSC
H'FFFFFFE1	-	_	_	_	_	_	_	_	_	-
H'FFFFFFE2	BCR1	MASTR	_	_	ENDIAN	BSTROM	PSHR	AHLW1	AHLW0	-
H'FFFFFE3	-	A1LW1	A1LW0	A0LW1	A0LW0	_	DRAM2	DRAM1	DRAM0	-
H'FFFFFFE4	BCR2	_	_	_	_	_	_	_	_	-
H'FFFFFE5	-	_	_	_	_	_	_	_	_	-
H'FFFFFE6	-	_	_	_	_	_	_	_	_	-
H'FFFFFFE7	-	A3SZ1	A3SZ0	A2SZ1	A2SZ0	A1SZ1	A1SZ0	_	_	-
H'FFFFFE8	WCR	_	_	_	_	_	_	_	_	-
H'FFFFFFE9	-	_	_	_	_	_	_	_	_	-
H'FFFFFFEA	-	IW31	IW30	IW20	IW21	IW10	IW11	IW01	IW00	-
H'FFFFFFEB	-	W31	W30	W20	W21	W10	W11	W01	W00	-
H'FFFFFFEC	MCR	_	_	_	_	_	_	_	_	-
H'FFFFFFED	-	_	_	_	_	_	_	_	_	-
H'FFFFFEE	-	TRP	RCD	TRWL	TRAS1	TRS0	BE	RASD	_	-
H'FFFFFFFF	-	AMX2	SZ	AMX15	AMX0	RFSH	RMD	_	_	-
H'FFFFFF60	RTCSR	_	_	_	_	_	_	_	_	-
H'FFFFFFF1	-	_	_	_	_	_	_	_	_	-
H'FFFFFF2	-	_	_	_	_	_	_	_	_	-
H'FFFFFF3	-	CMF	CMIE	CKS2	CKS1	CKS0	_	_	_	Data
H'FFFFFFF4	RTCNT	_	_	_	_	_	_	_	_	-
H'FFFFFF5	-									-
H'FFFFFF6	-									-
H'FFFFFF7	-									-
H'FFFFFF8	RTCOR	_	_	_	_	_	_	_	_	-
H'FFFFFF9	-									-
H'FFFFFFA	-									-
H'FFFFFFB	-									-
H'FFFFFFC to	_	_	_	_	_	_	_	_	_	_
H'FFFFFFFF										

572

DataSh4eU.com

www.DataSheet4U.com B.2 Register Chart

	Reç	Register name (abbrevi				Access s	size		Module	
			/	Star	Start address			5	SCI	
	r				/	<u> </u>	<u> </u>			
	Seria	al mode regi	ster (SMR)	H'FFFF	FE00	1	8			
1	Item				E	Bit				
Register		7	6	5	4	3	2	1	0	
•	Bit Nar	ame C/Ā	Ā CHR	PE	O/Ē	STOP	MP	CKS1	CKS0	
overview	Initial Va		0	0	0	0	0	0	0	
J	R/W	N R/W	V R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ſ		Bit Name Communicat	tion mode	Value 0	Descrip Asynchi	ption pronous mo	de (Initial	value)		
1	(0	(C/Ā)	-	1		Clocked synchronous mode				
1		Character le	ngth	0		it data (Initi				
1		(CHR)	·	1	Seven-t	bit data	,			
1		Parity enable	e	0	Parity b	oit not adde	d or chec	ked (Initial	value)	
		(PE)		1	Parity b	oit added ar	nd checke			
Bit		Parity mode		0		arity (Initial	value)			
function		(OE)		1	Odd pa					
1		Stop bit leng	jth	0		op bit (Initia	I value)			
1		(STOP)			Two sto			· · · · · · · · · · · · · · · · · · ·	· · · ·	
1		Multiprocess	D - 1	0 taShøot/II		ocessor fun			I value)	
1		(MP) Clock select	Dat.	taSh€et4l 0 0		ocessor fori tial value)	mat seleci	tea		
1	-	CIOCK SEIECT (CKS1, CKS		$\frac{0}{0}$ $\frac{1}{1}$	φ/4 (Init φ/16	lai vaiue)				
ļ		0001,000	0)	$\frac{0}{1}$	φ/10 φ/64					
1				$\frac{1}{1}$ 1	φ/04 φ/256					
L	-			<u> </u>	ψ/ = υ -			$\overline{\}$		
4U.com	\	\backslash			-			\backslash	Da	ata
1	Bit numb	ber Bit	name	Bit v			· · · · -	Bit de	escription	
		(at	obreviation			is a set o				
		V = 1	0.0	í the u	••	t is on the				
				and	the lowe	er bit on t	he right	.)		

DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.con SCI

Serial mode register (SMR) H'FFFFFE00 8

		Bit							
Item	7	6	5	4	3	2	1	0	
Bit Name	C/Ā	CHR	PE	O/E	STOP	MP	CKS1	CKS0	
Initial Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Bit Name	Value	Description
7	Communication mode	0	Asynchronous mode (Initial value)
	(C/A)	1	Clocked synchronous mode
6	Character length	0	Eight-bit data (Initial value)
	(CHR)	1	Seven-bit data
5	Parity enable	0	Parity bit not added or checked (Initial value)
	(PE)	1	Parity bit added and checked
4	Parity mode	0	Even parity (Initial value)
	(OE)	1	Odd parity
3	Stop bit length	0	One stop bit (Initial value)
	(STOP)	1	Two stop bits
2	Multiprocessor mode	0	Multiprocessor function disabled (Initial value)
	(MP)	1	Multiprocessor format selected
1	Clock select 1 and 0	0 0	φ/4 (Initial value)
	(CKS1, CKS0)	0 1	φ/16
0		1 0	φ/64
		1 1	φ/256

	4.	Λ	11	\sim	\sim	r	Y	'n	
2	Ľ	÷	U	U	U	ł	1	1	

DataShe

Bit rate register (BRR)	H'FFFFFE01	8

				В	it			
Item	7	6	5	4	3	2	1	0
Bit Name								
Initial Value	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Description
7 to 0	(Bit rate setting)	Sets serial transmit/receive bit rate

DataSheet4U.com

www.DataSheet4U.com

Г

SCI

٦

Serial c	<u>ontrol re</u>	egister (SC	CR)	H'F	FFF	FFE02		8				
	_						Bit					
Iter		7	6		5			3	2		1	0
Bit Na		TIE	RIE		TE		Ν	I PIE	TEI	=	CKE1	CKE0
Initial \	√alue	0	0		0			0	0		0	0
R/\	W	R/W	R/W		R/\	W R/W		R/W	R/V	V	R/W	R/W
Bit		Bit Nan			lue				scripti			
7		smit interru le (TIE)	upt	(Transmit-data- (Initial value)				•		
				1	1	Transmit-data-						
6	Rece (RIE)		upt enable	(0	Receive-data-	requ	uests ar	è disal	bled (I	nitial val	ue)
				1	1	Receive-data- interrupt (ERI)	full ir requ	nterrupt uest <u>s ar</u>	(RXI) e e <u>nat</u>	and re	ceive-er	ror
5	Trans	smit enabl	e (TE)		0	Transmitter dis	sable	ed (Initia				
	Pooo	ine eneble				Transmitter en						
4	Rece	ive enable) (KE) _	-	0 1	Receiver disat		(Initiai v	aiue			
3	Multir	orocessor	interrunt			Multiprocesso		arrunte a	oro dis:	halde	(nomal r	ocoivo
5	3 Multiprocessor interrupt enable (MPIE)			Ľ	,	operation) (Init	ial v	alue).		abieu	(nomai i	eceive
	0110.2.	0 (MPE is cleared	d to	0 when	MPIE	is clea	red to 0.	or the
						multiprocessor	r bit	(MPB) i	s set to	5 1 in I	eceive c	lata.
2			atorrupt		Da	Multiprocesson interrupt reque (ERI), and sett flags in the set the multiproce Transmit-end i	ests (ting (rial s ssor	(RXI), re of the R tatus re bit is se	eceive- DRF, I gister et to 1.	error FER, a (SSR)	interrupt and ORE are disa	requests R status abled until
۷	enabl	smit-end ir le (TEIE)	llenupi	,	,	(Initial value)	nten	rupi (i E	I) iequ	16212 0	le usau	neu
				1	1	Transmit-end i	nter	rupt (TE	I) requ	uests a	are enab	led
1U.com 1, 0		c enable 1		0	0	Asynchronous mode		Inter input outp	nal clo pin (ir ut pin c	ck, SC nput si <u>output</u>	CK pin us gnal is ig level is u	sed for Da phored or undefined)
						Clocked					K pin us	
			-			synchronous n					k output	
				0		Asynchronous mode		clock	c outpu	it	CK pin us	
						Clocked		Inter	nal clo	ck, SC	CK pin us	sed for
			-	4		synchronous n					k output	
				1		Asynchronous mode			nai cio c input	ск, 50	CK pin us	sed for
						Clocked synchronous n	node				CK pin us k input	sed for
			-	1		Asynchronous					K pin us	sed for
				'		mode			(input		pin uc	.54 101
						Clocked		Inter	nal clo	ck, SC	CK pin us	sed for
						synchronous n	<u>node</u>	e sync	hronou	us cloc	k input	

DataSheet4U.com

Transmit da	ata register (T	DR)	H'FFFFFE(03	8			
-,					Bit			
Item Bit Name	7	6	5	4	3	2	1	0
Initial Valu	-	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
D:4	- Dit (
Bit 7 to 0	(Stores trans	Name	Stores d	lata for sei	Desc rial transmis	ription		
Serial statu	us register (SS	;R)	H'FFFFFE(04	8			
				B	Bit			
ltem	7	6	5	4	3	2	1	0
Bit Name		RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial Valu	ue 1	0	0	0	0	1	0	0
	י/\/\)	D/\/*		-		П	п	D () ()
R/W	R(W)*	R(W)*	R(W)*	R(W)*	R(W)*	R	R	R/W
R/W	R(W)* 0 can be writt			R(W)*	. ,	R	R	R/W
R/W Note: Only	0 can be writt	ten to clea	r flagsDataS	R(W)*	com		R	R/W
R/W Note: Only Bit 7 T	0 can be writt Bit Nar	ten to clea me register	r flags Value 0 TDR	R(W)* Sheet4U.c	Des valid transm	scription		
R/W Note: Only Bit 7 T	0 can be writt Bit Nar	ten to clea me register	r flags,DataS Value 0 TDR TDR	R(W)* Sheet4U.c	Des Des valid transmed to 0 when	scription nit data n software	reads TDF	RE after it
R/W Note: Only Bit 7 T	0 can be writt Bit Nar	ten to clea me register	vr flags Value 0 TDR TDR has l	R(W)* Sheet4U.c	Des valid transm d to 0 when o 1, then wr	scription nit data n software	reads TDF	RE after it
R/W Note: Only Bit 7 T	0 can be writt Bit Nar	ten to clea me register	Value 0 TDR 0 TDR TDR has I write 1 TDR	R(W)* Sheet4U.c contains v E is cleare been set to s data in T does not o	Des valid transm ed to 0 when o 1, then wr FDR. contain vali	scription hit data n software ites 0 in TI d transmit	reads TDF DRE, or the data (Initia	RE after it e DMAC D
R/W Note: Only Bit 7 T	0 can be writt Bit Nar	ten to clea me register	Value 0 TDR 0 TDR 1 TDR write 1 TDR TDR	R(W)* Sheet4U.c contains v E is cleare been set to s data in T does not E is set to	Des valid transm ed to 0 when o 1, then wr FDR. contain valie 1 when the	scription hit data n software ites 0 in TI d transmit e chip is res	reads TDF DRE, or the data (Initia set or ente	RE after it e DMAC D Il value) rs standby
R/W Note: Only Bit 7 T	0 can be writt Bit Nar	ten to clea me register	Value 0 TDR 0 TDR has I write 1 TDR TDR mod	R(W)* Sheet4U.c c contains v E is cleare been set to s data in T does not E is set to e, the TE b	Des valid transm ed to 0 when o 1, then wr FDR. contain valid 1 when the poit in the set	scription hit data n software ites 0 in TI d transmit e chip is res rial control	reads TDF DRE, or the data (Initia set or ente register (S	RE after it e DMAC D Il value) rs standby SCR) is
R/W Note: Only Bit 7 T	0 can be writt Bit Nar	ten to clea me register	Value 0 TDR 0 TDR has I write 1 TDR TDR mod clear	R(W)* Sheet4U.c c contains v E is cleare been set to s data in T does not d E is set to e, the TE b red to 0, or	Des valid transm ed to 0 when o 1, then wr FDR. contain valie 1 when the	scription hit data n software ites 0 in TI d transmit e chip is res rial control ents are loa	reads TDF DRE, or the data (Initia set or ente register (S	RE after it e DMAC D Il value) rs standby SCR) is
R/W Note: Only Bit 7 T eom	0 can be writt Bit Nau Fransmit data empty (TDRE) Receive data r	ten to clea me register	Value 0 TDR 1 TDR has I write 1 TDR 1 TDR TDR mod clear new 0 RDR	R(W)* Sheet4U.c E is cleare been set to es data in T does not d E is set to e, the TE b red to 0, or data can b R does not	Des valid transm ed to 0 when o 1, then wr FDR. contain valid 1 when the poit in the sen r TDR conte oe written in contain valid	scription hit data n software ites 0 in TI d transmit chip is res rial control ents are loa n TDR. id received	reads TDF DRE, or the data (Initia set or ente register (S aded into T	RE after it e DMAC I value) rs standby SCR) is SR, so al value)
R/W Note: Only Bit 7 T eom	0 can be writt Bit Nai Fransmit data empty (TDRE)	ten to clea me register	Value 0 TDR 1 TDR has I write 1 TDR TDR mod clear new 0 RDR RDR	R(W)* Sheet4U.c Contains v E is cleare been set to es data in T does not o E is set to e, the TE b red to 0, or data can b R does not R does not	Des valid transm ed to 0 when o 1, then wr FDR. contain valie i when the poit in the sel r TDR conte oe written in contain valie ed to 0 when	scription hit data n software ites 0 in TI d transmit chip is res rial control ents are loa t TDR. d received n the chip i	reads TDF DRE, or the data (Initia set or ente register (S aded into T data (Initia is reset or	RE after it e DMAC rs standby GCR) is SR, so al value) enters
R/W Note: Only Bit 7 T eom	0 can be writt Bit Nau Fransmit data empty (TDRE) Receive data r	ten to clea me register	Value 0 TDR 1 TDR has I write 1 TDR TDR mode clean new 0 RDR RDR stand	R(W)* Sheet4U.c Contains v E is cleare been set to es data in T does not E is set to e, the TE b red to 0, or data can b R does not R does not R is cleare dby mode,	Des valid transm ed to 0 when o 1, then wr FDR. contain valid 1 when the poit in the sen r TDR conte oe written in contain valid	scription hit data n software ites 0 in TI d transmit chip is res rial control ents are loa TDR. id received n the chip eads RDR	reads TDF DRE, or the data (Initia set or ente register (S aded into T data (Initia is reset or f after it ha	RE after it e DMAC rs standby GCR) is SR, so al value) enters as been se
R/W Note: Only Bit 7 T eom	0 can be writt Bit Nau Fransmit data empty (TDRE) Receive data r	ten to clea me register	Value 0 TDR 1 TDR has I write 1 TDR TDR mode clear new 0 RDR RDR stand to 1, from	R(W)* Sheet4U.c Contains v E is cleare been set to es data in T does not c E is set to e, the TE b red to 0, or data can b R does not R does not R is cleare dby mode, then write RDR.	Des valid transm ed to 0 when o 1, then wr FDR. contain valie 1 when the poit in the sel r TDR conte oe written in contain valie ed to 0 when software re so 0 in RDR	scription hit data n software ites 0 in TI d transmit chip is res rial control ents are loa TDR. id received n the chip eads RDRF F, or the D	reads TDF DRE, or the data (Initia set or ente register (S aded into T data (Initia is reset or f after it ha	RE after it e DMAC rs standby GCR) is SR, so al value) enters as been se
R/W Note: Only Bit 7 T eom	0 can be writt Bit Nau Fransmit data empty (TDRE) Receive data r	ten to clea me register	Value 0 TDR TDR has I write 1 TDR TDR TDR mode clean new 0 RDR RDR stand to 1, from 1 RDR	R(W)* Sheet4U.c Contains v E is cleare been set to es data in T does not c E is set to e, the TE b red to 0, or data can b R does not R is cleare dby mode, then write RDR. R contains v	Des valid transm ed to 0 when o 1, then wr FDR. contain valie i when the poit in the sel r TDR conte oe written in contain valie ed to 0 when software re	scription hit data n software ites 0 in TI d transmit chip is res rial control ents are loa TDR. id received n the chip i eads RDRF F, or the D ed data	reads TDF DRE, or the data (Initia set or ente register (S aded into T data (Initia is reset or after it ha MAC read	RE after it e DMAC D rs standby GCR) is SR, so al value) enters as been se s data

www.DataSheet4U.com

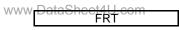
576 DataSheet4U.com

	Bit	Bit Name	Value	
	5	Overrun error (ORER)	0	Receiving is in progress or has ended normally (Initial value) ORER is cleared to 0 when the chip is reset or enters standby mode, or software reads ORER after it has been set to 1, then writes 0 in ORER. A receive overrun error occurred ORER is set to 1 if reception of the next serial data ends when RDRF is set to 1.
	4	Framing error (FER)	0	Receiving is in progress or has ended normally (Initial value) FER is cleared to 0 when the chip is reset or enters standby mode, or software reads FER after it has been set to 1, then writes 0 in FER.
			1	A receive framing error occurred FER is set to 1 if the stop bit at the end of receive data is checked and found to be 0.
	3	Parity error (PER)	0	Receiving is in progress or has ended nomally (Initial value) PER is cleared to 0 when the chip is reset or enters standby mode or software reads PER after it has been set to 1, then writes 0 in PER.
			1 Da	A receive parity error occurred PER is set to 1 if the number of Is in receive data, including the parity bit, does not match the even or odd parity setting of the parity mode bit (O/E) in the serial mode register (SMR).
	2	Transmit end (TEND)	0	Transmission is in progress TEND is cleared to 0 when software reads TDRD after it has been set to 1, then writes 0 in TDRE, or the DMAC writes data in TDR.
et4U.com			1	End of transmission (Initial value) DataSt TEND is set to 1 when the chip is reset or enters standby mode, TE is cleared to 0 in the serial control register (SCR), or TDRE is 1 when the last bit of a one-byte serial character is transmitted.
	1	Multiprocessor bit	0	Multiprocessor bit value in receive data is 0 (Initial value)
		(MPB)	1	Multiprocessor bit value in receive data is 1
	0	Multiprocessor bit transfer (MPBT)	0	Multiprocessor bit value in transmit data is 0 (Initial value)
l			1	Multiprocessor bit value in transmit data is 1

v DataShee	SCI							
Receive dat	a register (RI	DR)	H'FFFFFE	05	8	5		
				В	lit			
ltem	7	6	5	4	3	2	1	0
Bit Name								
Initial Valu	e 0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R
Bit	Bit N	lame			Des	cription		
7 to 0	(Stores seria data)	l receive	Stores t	he receive	d serial dat			

et4U.com

DataShe


DataSheet4U.com

www.DataSheet4U.com

578 DataSheet4U.com

imer int TIER)	terrupt	enable reg	gister	H'FF	FFFE1	n	8			
							Bit			
Iten	n —	7	6		5	4	3	2	1	0
Nam	e	ICIE		_	_	_	OCIAE	OCIBE	OVIE	_
Initial V	alue	0	0		0	0	0	0	0	1
R/V	R/W R/W R/W		R/W	R	/W	R/W	R/W	R/W	R/W	R/W
Bit Bit Name		ne	Value	e		De	scription			
7		capture ir e (ICIE)	nterrupt	0	Disab	les interr	upt request	s (ICI) fron	n ICF (Initia	al value)
		1			upt request					
3	Output compare interrupt A enable			0	(Initia	value)	upt request			
	(OCIA	1		1			upt request			
2	interr	ut compar upt B enal		0	(Initia	value)	upt request	. ,		
	(OCIE	1		1			upt request			
1		r overflow e (OVIE)	interrupt	0			upt request	. ,	,	tial value)
				1	Enabl	es interru	upt request	s (OVI) fror	n OVF	
ree-run egister (ner contro	ol/status	H'EE		1 ot / L L o				
egister	(1100)	v)			ataShi	26140.0				
					-		Bit		1	
lton		7	6							
Iten		7	6	:	5	4	3	2	-	
Bit Na	ime	ICF	_	-	_	—	OCFA	OCFB	OVF	CCLRA
Bit Na Initial V	ime ′alue	ICF 0	6 — 0	-	5 — 0	4 0	OCFA 0	OCFB 0	OVF 0	CCLRA 0
Bit Na Initial V R/V	ime 'alue V	ICF 0 R/(W)*	0		0	0	OCFA 0 R/(W)*	OCFB 0 R/(W)*	0VF 0 R/(W)*	-
Bit Na Initial V R/V	ime 'alue V	ICF 0 R/(W)*	0		0	0	OCFA 0	OCFB 0 R/(W)*	0VF 0 R/(W)*	CCLRA 0
Bit Na Initial V R/V lote: F Bit	ime /alue V For bits	ICF 0 R/(W)* 7, and 3 t Bit Nan	0 — o 1, the o		— 0 — lue that e	0 — can be v	OCFA 0 R/(W)* written is 0 De	OCFB 0 R/(W)* (to clear th scription	OVF 0 R/(W)* e flags)	CCLRA 0 R/W
Bit Na Initial V R/V lote: F	ime /alue V For bits	ICF 0 R/(W)* 7, and 3 t	0 — o 1, the o	- nly va Value 0	– 0 lue that e Clear writter	0 c can be v condition n to it (In	OCFA 0 R/(W)* written is 0 De ns: When IC tial value)	OCFB 0 R/(W)* (to clear th scription CF = 1, ICF	OVF 0 R/(W)* e flags) is read an	CCLRA 0 R/W
Bit Na Initial V R/W lote: F Bit 7	ime ′alue V For bits Input	ICF 0 R/(W)* 7, and 3 t Bit Nan capture fl	0 0 0 1, the o ne ag (ICF)	- nly va Value 0 1		0 can be v condition n to it (In ponditions capture s	OCFA 0 R/(W)* written is 0 De s: When IC tial value) When FR(signal	OCFB 0 R/(W)* (to clear th scription CF = 1, ICF C value is s	OVF 0 R/(W)* e flags) is read an sent to ICR	CCLRA 0 R/W d then 0 is by the
Bit Na Initial V R/V lote: F Bit	ime ′alue V For bits Input	ICF 0 R/(W)* 7, and 3 t Bit Nan capture fl	0 0 0 1, the o ne ag (ICF)	- nly va Value 0	e Clear writter Set cc input o Clear then 0	0 condition to it (In ponditions capture s condition) is writte	OCFA 0 R/(W)* written is 0 De s: When IC tial value)	OCFB 0 R/(W)* (to clear th scription CF = 1, ICF C value is s CFA = 1, C al value)	OVF 0 R/(W)* e flags) is read an sent to ICR DCFA is rea	CCLRA 0 R/W d then 0 is by the ad and

et4U

	Bit	Bit Name	Value	Description
	2	Output compare flag B (OCFB)	0	Clear conditions: When OCFB = 1, OCFB is read and then 0 is written to it (Initial value)
			1	Set conditions: When FRC value becomes equal to OCRB
	1	Timer overflow flag (OVF)	0	Clear conditions: When OVF = 1, OVF is read and then 0 is written to it (Initial value)
			1	Set conditions: When FRC value changes from H'FFFF to H'0000
	0	Counter clear A	0	Disables FRC clear (Initial value)
_		(CCLRA)	1	Clears FRC on compare match A

Free-runnir	ng counter (FRC)	H'FFFFFE12(FRCH) H'FFFFFE13(FRCL)	16*
Noto: Acc	occ EPCH first and that	n EPCL two 8 hit unite	

Note: Access FRCH first and then FRCL, two 8-bit units.

								E	Bit							
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name																
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						Data	Shee	et4U.	com							
Bit		Bit I	Name	÷						Des	cripti	on				
15 to 0 (0	Count	value	e)		Co	ounts	input	clock	puls		•					
om Dutput compa	are rec	gister	A/B*	1	H'FF	FFFE	14(0	CRA/	BH							D
OCRA/B)		5				FFFE					16* ²					
Votes: 1. Sv	witch I	regist	ers w	ith OC			· ·		/							
Notes: 1. Sv 2. Ad		-			CRS i	n TO	CR.			8-bit (
Notes: 1. Sv 2. Ad		-			CRS i	n TO	CR.			8-bit (
		-			CRS i	n TO	CR.	′BL, ir		8-bit I						
		-			CRS i	n TO	CR.	′BL, ir	n two	8-bit 1		4	3	2	1	0
2. Ad	ccess	OCR	A/BH	first a	CRS i and th	n TO 1en O	CR. CRA/	/BL, ir E	n two Bit		units.		3	2	1	0
2. Ao	ccess	OCR	A/BH	first a	CRS i and th	n TO 1en O	CR. CRA/	/BL, ir E	n two Bit		units.		3	2	1	0
2. Ao Item Bit Name	15	OCR.	A/BH 13	first a	CRS i and th 11	n TO nen O 10	CR. CRA/ 9 0	/BL, ir <u>E</u> 8	n two Bit 7	6	units. 5	4			0	0
2. Ac Item Bit Name Initial Value	15 0	0CR	A/BH 13 0	first a	CRS i and th 11 0	n TO nen O 10 0	CR. CRA/ 9 0	/BL, ir E 8 0	n two Bit 7 0	6 0	units. 5 0	4	0	0	0	0
2. Ac Item Bit Name Initial Value	15 0	0CR 14 0 R/W	A/BH 13 0	first a	CRS i and th 11 0	n TO nen O 10 0	CR. CRA/ 9 0	/BL, ir E 8 0	n two Bit 7 0	6 0 R/W	units. 5 0 R/W	4 0 R/W	0	0	0	0
2. Ad Item Bit Name Initial Value R/W Bit	0 R/W	0CR. 14 0 R/W Bit I	A/BH 13 0 R/W	first a	CRS i and th 11 0 R/W	n TO nen O 10 0 R/W	CR. CRA/ 9 0 R/W	/BL, ir <u>8</u> 0 R/W	n two Bit 7 0 R/W	6 0 R/W Des	5 0 R/W	4 0 R/W	0	0	0	0
2. Ad Item Bit Name Initial Value R/W Bit	15 0	0CR. 14 0 R/W Bit I	A/BH 13 0 R/W	first a	CRS i and th 11 0 R/W	n TO nen O 10 0 R/W	CR. CRA/ 9 0 R/W	/BL, ir E 8 0	in two Sit 7 0 R/W OCF/	6 R/W Des	o R/W Cripti	4 0 R/W	0	0	0	0

FRT

Timer control register (TCR)	H'FFFFFE16	8

				В	it			
Item	7	6	5	4	3	2	1	0
Bit Name	IEDGA	_	—	_	_	_	CKS1	CKS0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Value	Description
7	Input edge select	0	Captures input on falling edge (Initial value)
	(IEDG)	1	Captures input on rising edge
1, 0	Clock selects	0 0	Internal clock: count on $\phi/8$ (Initial value)
	(CKS1 and CKS0)	0 1	Internal clock: count on φ/32
		1 0	Internal clock: count on $\phi/128$
		1 1	External clock: count on rising edge

Timer output compare control		
register (TOCR)	H'FFFFFE17	8

DataSheet4U.	Data	She	et4U	l.œm
--------------	------	-----	------	------

				_				
Item	7	6	5	4	3	2	1	0
Bit Name		_	—	OCRS	—	—	OLVLA	OLVLB
Initial Value	1	1	1	0	0	0	0	0
R/W		_		R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Value	Descriptio	n
4	Output compare register	0	Selects OCRA register	(Initial value)
	select (OCRS)	1	Selects OCRB register	
1	Output level A (OLVLA)	0	Outputs 0 on compare match A	(Initial value)
		1	Outputs 1 on compare match A	
0	Output level B (OLVLB)	0	Outputs 0 on compare match B	(Initial value)
		1	Outputs 1 on compare match B	

DataSheet4U.com

Input capture register (ICR)

H'FFFFFE18 (ICRH) H'FFFFFE19 (ICRL) 16*

Note: Access ICRH first and then ICRL, in two 8-bit units.

	Bit															
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name																
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Bit Name	Description
15 to () (Stores FRC value)	Stores FRC value when an input capture signal occurs

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

582 DataSheet4U.com

INTC

Interrupt priority level setting		
register A (IPRA)	H'FFFFFEE2	8/16

								Bit								
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	DIVU	DIVU	DIVU	DIVU	DMAC	DMAC	DMAC	DMAC	WDT	WDT	WDT	WDT				
	IP3	IP2	IP1	IP0	IP3	IP2	IP1	IP0	P3	IP2	IP1	IP0	—	—	—	—
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R

Bit	Bit Name	Description
15 to 12	Division unit (DIVU) interrupt priority level (DIVUIP3–DIVUIP0)	These bits set the division unit (DIVU) interrupt priority level
11 to 8	DMA controller interrupt priority level (DMACIP3–DMACIP0)	These bits set the DMA controller (DMAC) interrupt priority level
7 to 4	Watchdog timer (WDT) interrupt priority level (WDTIP3–WDTIP0)	These bits set the watchdog timer (WDT) interrupt priority level and bus state controller (BSC) interrupt priority level

Interrupt priority level setting register B (IPRB) H'F	DataSheet4U.com FFFFE60 8/	16
---	-------------------------------	----

			Bit															
	Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
t4U.co	Bit Name	SCI	SCI	SCI	SCI	FRT	FRT	FRT	FRT								Data	She
		IP3	IP2	IP1	IP0	IP3	IP2	IP1	IP0	—	—	—	—	—	—	—	—	
-	Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R	

E	Bit	Bit Name	Description
15 1	to 12	Serial communication interface (SCI) interrupt priority level (SCIIP3–SCIIP0)	These bits set the serial communication interface (SCI) interrupt priority level
11	to 8	Free-running timer (FRT) interrupt priority level (FRTIP3–FRTIP0)	These bits set the free-running timer (FRT) interrupt priority level

DataSheet4U.com

taSheet4U.con INTC

WWW

Vector number setting register A		
(VCRA)	H'FFFFFE62	8/16

	Bit															
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name		SER		SRX												
	—	V6	V5	V4	V3	V2	V1	V0	—	V6	V5	V4	V3	V2	V1	V0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R/W	R	R/W												

Bit	Bit Name	Description
14 to 8	Serial communication interface	These bits set the vector number for the serial
	number (SERV6–SERV0)	communication interface (SCI) receive-error interrupt (ERI)
6 to 0	Serial communication interface (SCI) receive-data-full interrupt	These bits set the vector number for the serial communication interface (SCI) receive-data-full
	vector number (SRXV6–SRXV0)	interrupt (RXI)

Vector number setting register B		
(VCRB)	H'FFBEFE64eet4U.con	n 8/16

									В	it								
	Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
- 411 0	Bit Name		STX		STE	STE	STE	STE	STE	STE		01 -						
et4U.c	;0111	—	V6	V5	V4	V3	V2	V1	V0	—	V6	V5	V4	V3	V2	V1	Volta	aShe
	Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	R/W	R	R/W	R	R/W													

Bit	Bit Name	Description						
14 to 8	Serial communication interface (SCI) transmit-data-empty interrupt vector number (STXV6– STXV0)	These bits set the vector number for the serial communication interface (SCI) transmit-data-empty interrupt (TXI)						
6 to 0	Serial communication interface (SCI) transmit-end interrupt vector number (STEV6–STEV0)	These bits set the vector number for the serial communication interface (SCI) transmit-end interrupt (TEI)						

DataSheet4U.com

www.DataSheet4U.com

584 DataSheet4U.com

INTC

Vector number setting register C		
(VCRC)	H'FFFFE66	8/16

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name		FIC		FOC												
	—	V6	V5	V4	V3	V2	V1	V0	—	V6	V5	V4	V3	V2	V1	V0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R/W	R	R/W												

Bit	Bit Name	Description
14 to 8	Free-running timer (FRT) input- capture interrupt vector number (FICV6–FICV0)	These bits set the vector number for the free-running timer (FRT) input-capture interrupt (ICI)
6 to 0	Free-running timer (FRT) output- compare interrupt vector number (FOCV6–FOCV0)	These bits set the vector number for the free-running timer (FRT) output-compare interrupt (OCI)

Vector number setting register D		
(VCRD)	H'FFFFE68	8/16
P	DataSheet4U.com	

			Bit														
	Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
•	Bit Name		FOV														
et4U.co	om	—	V6	V5	V4	V3	V2	V1	V0	—	—	—	—	_	—	_	DataSh
501010	Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	R/W	R	R/W	R	R	R	R	R	R	R	R						

	Bit	Bit Name	Description
	14 to 8	Free-running timer (FRT) overflow	These bit set the vector number for the free-running
		interrupt vector number (FOVV6–	timer(FRT) overflow interrupt (OVI)
_		FOVV0)	

DataSheet4U.com

aSheet4U.cor INTC

WWW

Vector number setting register		
WDT (VCRWDT)	H'FFFFFEE4	8/16

_								В	it							
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name		WIT		BCM												
	—	V6	V5	V4	V3	V2	V1	V0	—	V6	V5	V4	V3	V2	V1	V0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R/W	R	R/W												

Bit	Bit Name	Description
14 to 8	Watchdog timer (WDT) interval interupt vector number (WITV6– WITV0)	These bits set the vector number for the interval interrupt (ITI) of the watchdog timer (WDT)
6 to 0	Bus state controller (BSC) compared match interrupt vector number (BCMV6–BCMV0)	eThese bits set the vector number for the compare match interrupt (CMI) of the bus state controller (BSC)

Vector number setting register		
DIV (VCRDIV)	H'FFFFFF0C	32

	DataSheet4U _{Bit} om																	
	Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
•	Bit Name	_	_	_	_	_	_	—	_	_	_	_	_	—	_	_	_	
-	Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
:4U.G	Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	-Dat	3206
	Bit Name																	
-	Initial Value																	
-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Bit Name	Description
15 to 0	(Vector number setting)	These bits set the vector number for the interrupt when caused by overflow or underflow of the division unit

DataSheet4U.com

www.DataSheet4U.com

INTC

DMA0 and DMA1 (VCRDMA0,	H'FFFFFFA0 (channel 0) H'FFFFFFA8 (channel 1)	32
VCRDMA1)		

		Bit														
Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit Name	-	_	_	_	_	-	_	—	_	_	-	_	_		_	_
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	—	—	—	—	_	—	—	_	VC7	VC6	VC5	VC4	VC3	VC2	VC1	VC0
Initial Value	0	0	0	0	0	0	0	0	_	_	_			_	_	_
R/W	R	R	R	R	R	R	R	R	R/W							

Bit	Bit Name	Description
7 to 0	Vector number bits (VC7–VC0)	These bits set the vector number at the end of DMA transfer

Interrupt control register (ICR)	H'FFEFEEet4U.com	8/16

	Bit																
	Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit Name																VEC
et4U.co	om	NMIL	—	—	—	—	—	—	NMIE	—	—	—	—	—	—	—	MotaShe
	Initial Value	0/1*	0	0	0	0	0	0	0	_		_		_			_
	R/W	R	R	R	R	R	R	R	R/W	R	R	R	R	R	R	R	R/W

Note: When NMI input is high: 1; when NMI input is low: 0

Bit	Bit Name	Value	Description
15	NMI input level (NMIL)	0	NMI input level is low
		1	NMI input level is high
8	NMI edge select (NMIE)		Interrupt request is detected on falling edge of NMI input (Initial value)
		1	Interrupt request is detected on rising edge of NMI input
1	RL interrupt vector		Auto-vector mode, automatically set internall (Initial value)
	mode select (VECMD)	1	External vector mode, external input

DataSheet4U.com

WDT

Watchdog timer control/status		8 (read)
register (WTCSR)	H'FFFFE80	16 (write)

				E	Bit			
Item	7	6	5	4	3	2	1	0
Bit Name	OVF	WT/IT	TME	—	_	CKS2	CKS1	CKS0
Initial Value	0	0	0	1	1	0	0	0
R/W	R/(W)*	R/W	R/W			R/W	R/W	R/W

Note: WTCSR differs from other registers in being more difficult to write. See section 12.2.4, Register Access, for details.

	Bit	Bit Name	Value			Descripti	on						
_	7	Overflow flag (OVF)		value)			al timer mode (Initial						
				Cleared by reading OVF, then writing 0 in OVF									
_			1	WTCN	IT ovei	flow in interval time	er mode						
	6	Timer mode select					er interrupt (ITI) reque	est					
		(WT/IT)				hen WTCNT overfl	- ` /						
			1	1 Watchdog timer mode: WDTOVF signal is output externally when WTCNT overflows									
-													
	5	Timer enable (TME)	0 Timer disabled: WTCNT is initialized to H'00 and count-										
						ial value)							
			1			ed: WTCNT starts co							
					IT over	signal or interrupt is	generated when						
_	2 to 0	Clock select 2 to 0	CKS2			Clock Source	Overflow Interval						
	2 10 0	(CKS2 to CKS0)	01102	01101	01101		$(\phi = 28.7 \text{ MHz})$						
			0	0	0		17.8µs						
t4U.co	om		0	0	1	¢/64	570.8μs	DataSh					
			0	1	0	ф/128	1.1ms	Dataon					
			0	1	1	ф/256	2.2ms						
			1	0	0	ф/512	4.5ms						
			1	0	1	ф/1024	9.1ms						
			1	1	0	ф/4096	35.5ms						
			1	1	1	ф/8192	73.0ms						

DataSheet4U.com

www.DataSheet4U.com

WDT

Watchdog timer counter	H'FFFFFE80 (write)	16 (write)
(WTCNT)	H'FFFFFE81 (read)	8 (read)

				В	it			
Item	7	6	5	4	3	2	1	0
Bit Name								
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Description
7 to 0	(Count value)	Input clock count value

Reset control/status register	H'FFFFFE82 (write)	16 (write)
(RSTCSR)	H'FFFFE83 (read)	8 (read)

				E	Bit			
Item	7	6	5	4	3	2	1	0
Bit Name	WOVF	RSTE	RSTS	neet <u>41</u> 1 c	om	_	_	_
Initial Value	0	0	0	1	1	1	1	1
R/W	R/(W)*	R/W	R/W	_	—	—	—	_

Note: Only 0 can be written in bit 7 to clear the flag.

et4U.cor	m Bit	Bit Name	Value	Description	DataShe
-	7	Watchdog timer overflow flag (WOVF)	0	No WTCNT overflow in watchdog timer mode (Initial value) Cleared when software reads WOVF, then writes 0 in WOVF	1
			1	Set by WTCNT overflow in watchdog timer mode	
_	6	Reset enable (RSTE)		No internal reset when WTCNT overflows (Initial value)	
			1	Internal reset when WTCNT overflows	
_	5	Reset select (RSTS)	0	Power-on reset (Initial value)	
_		· · ·	1	Manual reset	

DataSheet4U.com

14/14/14/	DataShoot4LL.com
~~~~~	DataSheet4U.com DIVU

Divisor register (DVSR)	H'FFFFFE00	32

Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit Name																
Initial Value	—	—		—	_	_	—	_	_	_	—	_	_	—	—	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ltem	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name																
Initial Value	_															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit		Bit I	Name	•						Dese	cripti	on				
31 to 0 (V	Vritter	n with	divis	or)	Us	sed to	o write	e the c	diviso	r for tl	he op	eratic	n			
Dividend regis division (DVD	ster L NT)	for 32	2-bit		H'FF	FFFE	04			32	2					
Dividend regis division (DVD	ster L NT)	for 32	2-bit		H'FF	FFFE	04	В	Bit	32	2	]				
Dividend regis division (DVD	ster L NT) 31	for 32	2-bit 29	28	H'FF 27		-	B		32 22	2 21	20	19	18	17	16
division (DVD	NT)			28			-					20	19	18	17	16
division (DVD	NT)			28			-					20	19	18	17	16
division (DVD Item Bit Name	NT)			28 			-					 R/W	<b>19</b> 	18 	<b>17</b> 	_
division (DVD Item Bit Name Initial Value	NT) 31	30	29	_	27	D <b>26</b>	SI <b>25</b> e	et4 <b>24</b> .0	CO <b>23</b>	22	21		_	_		_
livision (DVD Item Bit Name Initial Value R/W	NT) 31 	<b>30</b> — R/W	<b>29</b>  R/W	R/W	<b>27</b> 	26 	SI <b>25</b> 6  R/W		23	<b>22</b> 	<b>21</b> 	R/W	R/W	R/W	 R/W	 R/W
ltem Item Bit Name Initial Value R/W Item	NT) 31 	<b>30</b> — R/W	<b>29</b>  R/W	R/W	<b>27</b> 	26 	SI <b>25</b> 6  R/W		23	<b>22</b> 	<b>21</b> 	R/W	R/W	R/W	 R/W	 R/W 0
Item Bit Name Initial Value R/W Item Bit Name	NT) 31 	<b>30</b> — R/W	29 — R/W 13 —	R/W	<b>27</b> 	26 	S 25 6 — R/W 9		23	<b>22</b> 	<b>21</b> 	 R/W 4	R/W	 R/W 2	 R/W 1	 R/W 0
ltem Bit Name Initial Value R/W Item Bit Name Initial Value	NT) 31 – R/W 15 –	30  R/W 14  R/W	29 — R/W 13 —	 R/W 12  R/W	27 	26 	S 25 6 — R/W 9			22 	21 — R/W 5	 R/W 4  R/W	 R/W 3	 R/W 2	 R/W 1	R/W 0

www.DataSheet4U.com

DIVU

Division control register (DVCR) H'FFFFF08 16/32	Division control register (DVCR)	H'FFFFF08	16/32

								В	lit							
Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit Name	—	—	_	_	_	—	_	—	_	_	_	—	_	—	_	_
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name															OVF	
	_	_	_	_	—	_	_	_	—	_	—	—	—	_	IE	OVF
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W

Bit	Bit Name	Value	Description
1	OVF interrupt enable (OVFIE)		Disables interrupt request (OVFI) caused by OVF (Initial value)
		1	Enables interrupt request (OVFI) caused by OVF
0	Overflow flag (OVF)	0	No overflow has occurred (Initial value)
		1	Overflow has occurred

	DataShaat/UL.com	
	0.0000000000000000000000000000000000000	
Dividend register H (DVDNTH)	H'FFFFFF10	32

				Bit														
U.com	Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16ataS	
	Bit Name																	
Ir	nitial Value	—	—	—	_	—	—	—	—	_	—	_	_	—	_	_	_	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	ltem	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Bit Name																	
Ir	nitial Value		_	_	_		_	_			_	_		_	_	_	_	
-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Bit Name	Description
31 to 1	(Dividend setting)	Set with the upper 32 bits of the dividend used for 64-bit/32- bit division operations

DataSheet4U.com

10/10/10/	Data	Shoo	+A 🗆	com
WWW	Data	onee	λī	10011

Dividend regiater L (DVDNTL)	H'FFFFFF14	32

								В	Bit							
Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit Name																
Initial Value	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name																
Initial Value	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/

Bit	Bit Name	Description
31 to 1	(Dividend setting)	Set with the lower 32 bits of the dividend used for 64-bit/32-
		bit division operations

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

592 DataSheet4U.com

Break address register AH		
(BARAH)	H'FFFFFF40	16/32

								В	lit							
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BAA															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

	Bit	Bit Name	Description
_	15 to 0	Break address BAA31–	These bits specify the upper bits (bit 31 to bit 16) of the
		BAA16	channel A break condition address

Break address register AL		
(BARAL)	H'FFFFFF42	16

	Bit															
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BAA	BAA	BAA	BAA					BAA	BAA	BAA	BAA	BAA	BAA	BAA	BAA
	15	14	13	12	_11 ^D	at _{f0} S	hæt	4Ug ca	<b>y</b> nc	6	5	4	3	2	1	0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

et4U.com Bit	Bit Name	Description	DetaSho
15 to 0	Break address BAA15–	These bits specify the lower bits (bit 15 to bit 0) of the	DataShe
	BAA0	channel A break condition address	

DataSheet4U.com

Break address mask register AH		
(BAMRAH)	H'FFFFFF44	16/32

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BAM															
	A31	A30	A29	A28	A27	A26	A25	A24	A23	A22	A21	A20	A19	A18	A17	A16
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	B	it Naı	me		Value	e				De	escrip	otion				
	eak ade MA31-				0		annel dition				s BAA	n is iı	nclude	ed in	the bi	reak
				-	1		annel ak coi			dress	s BAA	n is r	not inc	cludeo	ៅ in th	e
														n	ı = 31	to 16
					ł	Data	Shee	et4U.	com							
Break addres (BAMRAL)	s mas	k reg	ister /	AL	H'FF	FFFF	46			1	6					
								E	Bit							
com Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	<b>o</b> Da
Bit Name	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Bit Name	BAM A15	BAM A14	BAM A13	BAM A12	BAM A11	BAM A10	BAM A9	BAM A8	BAM A7	BAM A6	BAM A5	BAM A4	BAM A3	BAM A2	BAM A1	BAM A0
item	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM A8 0	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Bit Name	BAM A15	BAM A14	BAM A13	BAM A12	BAM A11	BAM A10	BAM A9 0	BAM A8	BAM A7	BAM A6	BAM A5	BAM A4 0	BAM A3	BAM A2 0	BAM A1 0	BAM A0 0
Bit Name Initial Value	BAM A15 0 R/W	BAM A14 0	BAM A13 0 R/W	BAM A12 0 R/W	BAM A11 0	BAM A10 0 R/W	BAM A9 0	BAM A8 0	BAM A7 0	BAM A6 0 R/W	BAM A5 0	BAM A4 0 R/W	BAM A3 0	BAM A2 0	BAM A1 0	BAM A0 0
Bit Name Initial Value R/W Bit 15 to 0 Bre	BAM A15 0 R/W	BAM A14 0 R/W it Nai	BAM A13 0 R/W	BAM A12 0 R/W	BAM A11 0 R/W	BAM A10 0 R/W e Cha	BAM A9 0 R/W	BAM A8 0 R/W	BAM A7 0 R/W	BAM A6 0 R/W De	BAM A5 0 R/W	BAM A4 0 R/W	BAM A3 0 R/W	BAM A2 0	BAM A1 0 R/W	BAM A0 0 R/W

n = 15 to 0

DataSheet4U.com

www.DataSheet4U.com

Break bus cycle register A		
(BBRA)	H'FFFFF48	16/32

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	—	_	_	_	—	—	_	—	CPA	CPA	IDA1	IDA0	RWA	RW	SZA	SZA
									1	0			1	A0	1	0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

	Bit	Bit Name	Value	Description	
	7, 6	CPU cycle/peripheral cycle select A		No channel A user break interrupt generated (Initial value)	
		(CPA1, CPA0)		Break only on CPU cycles	
		· · /		Break only on peripheral cycles	
				Break on both CPU and peripheral cycles	
	5, 4	Instruction fetch/data access select A		No channel A user break interrupt generated (Initial value)	
		(IDA1, IDA0)	0 1 B	Break only on instruction fetch cycles	
		·	1 0 B	Break only on data access cycles	
			1 1 P	Break on both instruction fetch and data access cycles	S
	3, 2	Read/write select A (RWA1, RWA0)		No channel A user break interrupt generated (Initial value)	
		· · ·	0 🛛 aà	Break only on read cycles	
				Break only on write cycles	
l			1 1 P	Break on both read and write cycles	
	1, 0	Operand size select A	0 0 C	Operand size is not a break condition (Initial value)	
1		(SZA1, SZA0)		Break on byte access	
et4U.com	n	· ·	1 0 B	Break on word access	DataShe
			1 1 P	Break on longword access	

Break address register BH		
(BARBH)	H'FFFFF60	16/32

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BAB															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Description
DataSheq15 to 000 Brea	k address BAB31–	These bits specify the upper bits (bit 31 to bit 16) of the
BAB		channel B break condition address

WWW

Break address register BL		
(BARBL)	H'FFFFF62	16

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BAB															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

В	Bit	Bit Name	Description
15 t	to 0	Break address BAB15–	These bits specify the lower bits (bit 15 to bit 0) of the
		BAB0	channel B break condition address

Break address mask register BH		
(BAMRBH)	H'FFFFF64	16/32

	Bit															
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM	BAM
	B31	B30	B29	B28		Data			B23	B22	B21	B20	B19	B18	B17	B16
Initial Value	0	0	0	0	0	0	SILLE	0.40	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Value	Description
et4U.co115 to 0	Break address mask		Channel B break address BABn is included in the break DataShe
	BAMB31–BAMB16		conditions (Initial value)
		1	Channel B break address BABn is not included in the
			break conditions

n = 31 to 16

www.DataSheet4U.com

DataSheet4U.com

Break address mask register BL		
(BAMRBL)	H'FFFFF66	16

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BAM															
	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Value	Description
15 to 0	Break address mask BAMB15–BAMB0		Channel B break address BABn is included in the break conditions (Initial value) Channel B break address BABn is not included in the
			break conditions

n = 15 to 0

Break data register BH (BDRBH)	H'FFFFF70	16/32
--------------------------------	-----------	-------

		DataSheet4U com															
	Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	Bit Name	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB	BDB
_		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
10.00																	Dal

Bit	Bit Name	Description
15 to 0	Break data BDB31–	These bits specify the upper bits (bit 31 to bit 16) of the
	BDB16	channel B break condition data

DataSheet4U.com

ataSneet4U.com UBC

Break data register BL (BDRBL)	H'FFFFFF72	16/32

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BDB															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

 Bit	Bit Name	Description
15 to 0	Break data BDB15–BDB0	These bits specify the lower bits (bit 15 to bit 0) of the
		channel B break condition data

Break data mask register BH		
(BDMRBH)	H'FFFFFF74	16/32

	Bit															
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name																BDM
	B31	B30	B29	B28	B27	B26	B25	B24	B23	B22	B21	B20	B19	B18	B17	B16
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

et4U.comBit	Bit Name Valu	
15 to 0 Break d	lata mask 0	Channel B break address BDBn is included in the break
BDMB3	81–BDMB16	conditions (Initial value)
	1	Channel B break address BDBn is masked and therefore not included in the break conditions

n = 31 to 16

DataSheet4U.com

www.DataSheet4U.com

598 DataSheet4U.com

Break data mask register BL		
(BDMRBL)	H'FFFFF76	16

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	BDM															
	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Value	Description
15 to 0	Break data mask BDMB15–BDMB0	-	Channel B break address BDBn is included in the break conditions (Initial value)
			Channel B break address BDBn is masked and therefore not included in the break conditions
			- 45 to 0

n = 15 to 0

DataSheet4U.com

et4U.com

DataShe

DataSheet4U.com

heet4U.con UBC

WWW

Break bus cycle register B		
(BBRB)	H'FFFFF68	16/32

	Bit															
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	_	_	_	_	_	_	_	_	CPB	CPB	IDB	IDB	RWB	RWB	SZB	SZB
									1	0	1	0	1	0	1	0
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R/W							

	Bit	Bit Name	Val	lue	e Description	
	7, 6	CPU cycle/peripheral	0	0	No channel B user break interrupt generated	_
		cycle select B			(Initial value)	
		(CPB1, CPB0)	0		Break only on CPU cycles	
			1		Break only on peripheral cycles	
·			1	1	Break on both CPU and peripheral cycles	
I	5, 4	Instruction fetch/data	0	0	No channel B user break interrupt generated	
I		access select B			(Initial value)	
l		(IDB1, IDB0)	0	1	Break only on instruction fetch cyclcs	
I			1	0	Break only on data access cycles	_
			1	1	Break on both instruction fetch and data access cycles	,
_	3, 2	Read/write select B	0	0	No channel B user break interrupt generated	
		(RWB1, RWB0)			(Initial value)	
			0	1	Break only on read cycles	_
			1	0	Break only on write cycles	
			1	1	Break on both read and write cycles	
1 -	1, 0	Operand size select B	0	0	Operand size is not a break condition (Initial value)	
l		(SZB1, SZB0)	0		Break on byte access	
et4U.con	m	· · ·	1		Break on word access	DataShe
			1	1	Break on longword access	

DataSheet4U.com

www.DataSheet4U.com

Brea	k contr	rol regis	ster (B	RCR)		H'FF	FFFF7	78			16/3	32					
									F	Bit							
	ltem	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bi	it Name	CMI	F CMF							CMF	CMF	iiiii					
		CA	PA	EBBE	UMD		PCBA			СВ	PB	_	SEQ	DBEB	PCBB		_
Init	tial Valu	ie 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R/W	R/W	/ R/W	/ R/W	R/W	R	R/W	R	R	R/W	R/W	R	R/W	R/W	R/W	R	R
	Bit		Bit Na			Valu							otion				
15 CPU condition match flag A (CMFCA)				0					le con erated				natch,	no us	ser		
flag A (CMFCA)					1	Char	nnel /	A CP	U cyc	le con				atched	, use	r	
1	14 P	Peripher	ral cor	ndition		0				t gene riphera		e co	nditio	ns do	not ma	atch,	no
		natch fl					user	brea	k inte	errupt	gener	rated	l (Initia	al valu	ıe)		
13External bus break enable (EBBE)12UBC mode (UMD)10PC break select A (DODA)				1	user	br <u>ea</u>	A per k i <u>nt</u> e	ipnera errupt	al cycl gener	e co at <u>ec</u>	nditioi	ns na	ve mat	cheu	,		
				0	(Initial value)									ons			
				1				-	-								
				0		patib 604 r			or SH7	000	series	s UBC	Cs (Init	ial va	lue)		
					DaPlad	esth	el cha	annel				ch cyc	le bre	ak be	fore		
	(F	PCBA)			-	1	<ul><li>instruction execution (Initial value)</li><li>Places the channel A instruction fetch cycle break af</li></ul>									ak of	for
						I	instruction execution									lei	
7		CPU co			;h	1	Char	nnel E	в СР	U cyc	le con				natch,	no us	ser
om	fl;	ag B (C	CMFC	B)							erated						-D;
						0				'U cyc t gene		ditio	ns ha	ve ma	atched	, use	r
	6 P	Peripher	ral cor	odition		0						A CO	nditio	ob an	not ma	atch	nn
-		natch fla				Ŭ					gener					a.o.,	no
				-	, <u>-</u>	1	Char	nnel E	B per	riphera	al cycl	e co	nditio		ve mat	ched	,
							user	brea	k inte	errupt	gener	rated					·
2		Sequent elect (S		Idition		0	(Initia	al val	lue)						epende		
						1	Com ( <u>cha</u>	ipare nn <u>el</u>	char A, <u>th</u>	nel A en <u>ch</u> a	and E annel	3 cor B)	ndition	is seq	luentia	lly	
3		)ata bre DBEB)	ak en	able E	3	0	Do n	not ind	clude		bus co		tions i	n the	chann	el B	
					-	1					/	ns in	the ch	nanne	B co	nditio	ns
2 Instruction break select B (PCBB)						0	Plac	es th	e cha	annel		ructio	on feto		le bre		
			<i>.</i> ,		-	1	Plac	es the	e cha	annel I	B instr			ch cyc	le bre	ak af	ter
	4U.cor						instr	uctior	n exe	ecutior	า <u></u>	_		- Inital	-Data	aShe	ot 4

DMAC

DMA source address registers 0	H'FFFFFF80 (channel 0)	
and 1 (SAR0 and SAR1)	H'FFFFFF90 (channel 1)	32

								В	lit							
Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit Name																
Initial Value	—	—	—	—	—	—	—	—	—	—	—	—	—	_	_	—
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ltem	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name																
Initial Value	—	_	_	_	—	_	_	_	—	_	_	_	—	—	—	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Description
31 to 0	(Transfer source address	These bits specify the DMA transfer source address
	specification)	

DMA destination address registers	H'FFFFFF84 (channel 0)	
0 and 1 (DAR0 and DAR1)	H'FFFFFF94 (channel 1)	32

					Γ	Data	Shee	t4UB	biom								
Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Bit Name																	
Initial Value	_	—	—	_	_	—	_	_	—	—	_	—	—	—	—	_	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
COTT Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0Da	atas
Dit Nome																	
Bit Name																	
Initial Value		_	_	_	_	_	_		_	_	_	_	_	_		_	-

Bit	Bit Name	Description
,	Transfer destination ddress specification)	These bits specify the DMA transfer destination address

DataSheet4U.com

www.DataSheet4U.com

602 DataSheet4U.com

DMAC

DMA transfer count registers 0 and	H'FFFFFF88 (channel 0)	
1 (TCR0 and TCR1)	H'FFFFFF98 (channel 1)	32

								E	Bit							
Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit Name	_	_	_	—	_	_	_	_								
Initial Value	0	0	0	0	0	0	0	0	—	—	—	—	—	—	—	—
R/W	R	R	R	R	R	R	R	R	R/W							
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name																
Initial Value	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

	Bit	Bit Name	Description
_	23 to 0	(Transfer count	Specifies the DMA transfer count (during a DMA transfer,
_		specification)	these bits indicate the remaining transfer count)

DMA channel control registers 0, 1	H'FFFFFF8C (channel 0)	
(CHCR0, CHCR1)	H'FFFFFF9C (channel 1)	32

						D	ataS	heet	4U.Œ	bitn							
lte	m	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit N	ame	_	—	_	—			_		_	—	_		—	_	_	_
Initial	Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/\	N	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
l.com Ite	m	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Data
Bit N	ame	DM1	DM0	SM1	SM0	TS1	TS0	AR	AM	AL	DS	DL	ΤB	ΤA	IE	ΤE	DE
Initial	Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/\	N	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	R/W
																(W)*	

Note: Only 0 can be written, after reading 1, to clear the flag.

	Bit	Bit Name	Valu	e Description
	14, 15	Destination address	0 (	) Fixed destination address (Initial value)
		mode bits 1, 0 (DM1, DM0)	0	Destination address is incremented (+1 for byte transfer size, +2 for word transfer size, +4 for longword transfer size, and +16 for 16-byte transfer size)
			1 (	<ul> <li>Destination address is decremented (-1 for byte transfer size, -2 for word transfer size, -4 for longword transfer size, and -16 for 16-byte transfer size)</li> </ul>
			1	Reserved (setting prohibited)
Sho	ot/LL o	om		www.DataSheet4U.com

DataSheet4U.com

www <mark>D</mark>	<del>ataSh</del>	eet4U.com		
L		DMAC		
_	Bit	Bit Name	Value	
	13, 12	Source address mode	0 0	Fixed source address (+16 for 16-byte transfer size)
		bits 1, 0 (SM1, SM0)		(Initial value)
			0 1	Source address is incremented (+1 for byte transfer size,
				+2 for word transfer size, +4 for longword transfer size,
			4 0	and +16 for 16-byte transfer size)
			1 0	Source address is decremented (-1 for byte transfer size,
				–2 for word transfer size, –4 for longword transfer size, and +16 for 16-byte transfer size)
			1 1	Reserved (setting prohibited)
	11 10	Transfer size bits 1, 0	0	Byte unit (Initial value)
	11, 10	(TS1, TS0)	0	Word (2-byte) unit
		(101, 100)	1	Longword (4-byte) unit
			1	16-byte unit (4 longword transfers)
—	9	Auto-request mode bit	0	Module request mode (Initial value)
	3	(AR)	1	Auto-request mode
_	8	Acknowledge/transfer	0	DACK output in read cycle/transfer from memory to
	0	mode bit (AM)	U	device (Initial value)
			1	DACK output in write cycle/transfer from device to
			•	memory
	7	Acknowledge level bit	0	DACK is an active-low signal (Initial value)
	-	(AL)	1	DACK is an active-high signal
	6	DREQ select bit (DS)	0	Detected by level (Initial value)
	-	,	1	Detected by edge
	5	DREQ level bit (DL)		When DS is 0, DREQ is detected by low level; when DS
			L	is 1, DREQ is detected by fall (Initial value)
			1	When DS is 0, DREQ is detected by high level; when DS
_				is 1, DREQ is detected by rise
	4	Transfer bus mode bit	0	Cycle-steal mode
	~~~	(TB)		
U.cor			1	Burst mode DataS
	3	Transfer address mode bit (TA)	0	Dnal address mode
_			1	Single address mode
	2	Interrupt enable bit (IE)	0	Interrupt disabled (Initial value)
			1	Interrupt enabled
	1	Transfer-end flag bit	0	DMA has not ended or was aborted (Initial value)
		(TE)		Cleared by reading 1 from the TE bit and then writing 0
			1	DMA has ended nomally (by TCR = 0)
	0	DMA enable bit (DE)	0	DMA transfer disabled (Initial value)
			1	DMA transfer enabled

www.DataSheet4U.com

DMA request/response selection contro registers 0 and 1 (DRCR0, DRCR1)	H'FFFFFE71 (channel 0) H'FFFFFE72 (channel 1)	8
--	--	---

				E	Bit			
Item	7	6	5	4	3	2	1	0
Bit Name	_	—	—		—		RS1	RS0
Initial Value	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R/W	R/W

E	Bit	Bit Name	Val	ue Description
1	, 0	Resource select bits	0	0 DREQ (external request) (Initial value)
		1, 0 (RS1, RS0)	0	1 RXI (receive-data-full interrupt transfer request of the on- chip serial communication interface (SCI))
			1	0 TXI (transmit-data-full interrupt transfer request of the on- chip SCI)
			1	1 Reserved (setting prohibited)

et4U.com

DataShe

DataSheet4U.com

DMAC

WWW

DMA operation register (DMAOR)	H'FFFFFB0	32

		Bit														
Item	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit Name	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	_	_	_	_	_	_	_	_	_	_	_	_	PR	AE	NMIF	DME
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/	R/	R/W
														(W)*	(W)*	

Note: Only 0 can be written, to clear the flag.

Bit	Bit Name	Value	Description	
3	Priority mode bit (PR)	0	Fixed priority (Ch 0 > Ch 1) (Initial value)	
		1	Round-robin mode (High priority switches to low after each transfer)	
			(The priority for the first DMA transfer after a reset is $Ch \ 1 > Ch \ 0$)	
2	Address error flag bit	0	No DMAC address error (Initial value)	
	(AE)	1	Address error by DMAC	
1	NMI flag bit (NMIF)	0	No NMIF interrupt (Initial value)	
			To clear the NMIF bit, read 1 from it and then write 0	
		1	NMIF has occurred	
0	DMA master enable bit	0	DMA transfers disabled on all channels (Initial value)	
	(DME)	1	DMA transfers enabled on all channels	
J.c om				DataS

DataSheet4U.com

www.DataSheet4U.com

BSC

Bus control register 1 (BCR1)	H'FFFFFE0	16/32

	Bit															
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	MAS			END	BST	PSHR	AHLW	AHLW	A1LW	A1LW	A0LW	A0LW		DRAM	DRAM	DRAM
	TER	—	—	IAN	ROM		1	0	1	0	1	0	—	2	1	0
Initial Value	—	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0
R/W	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W

_	Bit	Bit Name	Va	alue	<u>.</u>	Description	
	15	Bus arbitration		0		Master mode	
		(MASTER)		1		Slave mode	
	12	Endian specification for		0	_	Big-endian, as in other areas (Initial value)	
		area 2 (ENDIAN)		1	_	Little-endian	
	11	Area 0 burst ROM	_	0	_	Area 0 is accessed normally (Initial value)	
_		enable (BSTROM)		1		Area 0 is accessed as burst ROM	
	10	Partial space share		0	_	Total master mode when MD5 = 0 (Initial mode)	
_		specification (PSHR)		1	_	Partial-share master mode when MD5 = 0	
	9, 8	Long wait specification	0	0)	3 waits (Initial value)	
		for areas 2 and 3	0	1	Ē	4 waits	
		(AHLW1, AHLW0)	1	0)	5 waits	
_			1	Dat		6 waits	
	7, 6	Long wait specification	0	0	jar	3 waits (Initial value)	
		for area 1 (A1LW1,	0	1	<u> </u>	4 waits	
		A1LW0)	1	0)	5 waits	
_			1	1	Ē	6 waits	
et4U.cor	5, 4	Long wait specification	0	0)	3 waits (Initial value)	
3[40.00	11	for area 0 (A0LW1,	0	1	i	4 waits	DataShe
		A0LW0)	1	0)	5 waits	
_			1	1	-	6 waits	
	2 to 0	Enable for DRAM and	0	0 (0	Areas 2 and 3 are ordinary spaces (Initial value)	
		other memory (DRAM2-	0	0	1		
		DRAM0)				DRAM space	
						Area 2 is ordinary space; area 3 is DRAM space	
			0	1		· · · · · · · · · · · · · · · · · · ·	
						space	
i			1	0 (Area 2 is synchronous DRAM space; area 3 is	
i						ordinary space	
				-		Areas 2 and 3 are synchronous DRAM spaces	
			<u> </u>			Reserved (setting prohibited)	
			1	1	1	Reserved (setting prohibited)	

DataSheet4U.com

14/14/14/	DataShoot/ULcom
~~~~~	DataSheet4U.com BSC

Bus control register 2 (BCR2)	H'FFFFFFE4	16/32

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name									A3	A3	A2	A2	A1	A1		
	—	—	—	—	—	—	—	—	SZ1	SZ0	SZ1	SZ0	SZ1	SZ0	—	—
Initial Value	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R

Bit	Bit Name	Va	alue	Description
7, 6	Bus size specification for area 3 (A3SZ1–	0	0	Reserved (setting prohibited)
	A3SZ0)(Valid only	0	1	Byte (8-bit) size
	when setting ordinary	1	0	Word (16-bit) size
	space)	1	1	Longword (32-bit) size (Initial value)
5, 4	Bus size specification for area 2 (A2SZ1–	0	0	Reserved (setting prohibited)
	A2SZ0) (Valid only	0	1	Byte (8-bit) size
	when setting ordinary	1	0	Word (16-bit) size
	space)	1	1	Longword (32-bit) size (Initial value)
3, 2	Bus size specification	0	0	Reserved (setting prohibited)
	for area 1 (A1SZ1–	0	1	Byte (8-bit) size
	A1SZ0)	1	DØt	Word (16-bit) size
		1	1	Longword (32-bit) size (Initial value)

Wait control register (WCR)	H'FFFFFE8	16/32
122		

et4U.com

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	IW31	IW30	IW21	IW20	IW11	IW10	IW01	IW00	W31	W30	W21	W20	W11	W10	W01	W00
Initial Value	1	0	1	0	1	0	1	0	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

	Bit	Bit Name	Va	lue	Description
	15 to 8	Idles between cycles	IW31	IW30	
		for areas 3 to 0	IW21	IW20	
		(IW31–IW00)	IW11	IW10	
			IW01	IW00	
			0	0	No idle cycle
			0	1	One idle cycle inserted
			1	0	Two idle cycles inserted (Initial value)
			1	1	Reserved (setting prohibited)
4-0					www.DataSheet/II.co

DataSheet4U.com

www.DataSheet4U.com

DataShe

BSC

Bit	Bit Name	Val		Description
7 to 0	Wait control of areas 3	Durin	g ba	sic cycle
	to 0 (W31–W00)	W31		
		W21		
		W11		
		W01		
		0	0	External wait input disabled without waits
		0	1	External wait input enabled with one wait
		1	0	External wait input enabled with two waits
		1	1	Complies with the long wait specification of bus control
				register 1 (BCR1)
				External wait input is enabled (Initial value)
				a 3 is DRAM
		W31		
		0	0	1 CAS assert cycle
		0	1	2 CAS assert cycles
		1	0	3 CAS assert cycles
		1	1	Reserved (setting prohibited)
		Wher	n are:	a 2 or 3 is synchronous DRAM
		W31	W30	1
		W21	W20	I
		0	0	1 CAS latency cycle
		0	1	2 CAS latency cycles
		1	0	3 CAS latency cycles
		1 г		4 CAS latency cycles (Initial value)
		Wher		a 3 is pseudo-SRAM
		W31		
		0		2 cycles from BS signal assertion to end of cycle
		0	1	3 cycles from BS signal assertion to end of cycle
Loom		1	0	4 cycles from BS signal assertion to end of cycle
J.com		1		Reserved (setting prohibited)

Individual memory control register		
(MCR)	H'FFFFFEC	16/32

		Bit														
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name				TRAS	TRAS											
	TRP	RCD	TRWL	1	0	BE	RASD	—	AMX2	SZ	AMX1	AMX0	RFSH	RMD	—	_
Initial Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R

DataSheet4U.com

www.<del>DataSheet4U.com</del> BSC

Bit	Bit Name	Value	Description
15	RAS precharge time	0	1 cycle (Initial value)
	(TRP)	1	2 cycles
14	RAS-CAS delay (RCD)	0	1 cycle (Initial value)
		1	2 cycles
13	Write-precharge delay	0	1 cycle (Initial value)
	(TRWL)	1	2 cycles
12, 11	CAS-before-RAS	0 0	2 cycles (Initial value)
	refresh RAS assert time	0 1	3 cycles
	(TRAS1, TRAS0)	1 0	4 cycles
		1 1	Reserved (setting prohibited)
10	Burst enable (BE)	0	Burst disabled (Initial value)
		1	High-speed page mode during DRAM interface is enabled. Data is continuously transferred in static column mode during pseudo-SRAM interfacing. During synchronous DRAM access, burst is always enabled regardless of this bit.
9	Bank active mode (RASD)	0	For synchronous DRAM, read or write is performed using auto-precharge mode. The next access always starts with a bank active command.
		1 Data	For synchronous DRAM, access ends with bank active status. This is only valid for area 3. When area 2 is synchronous DRAM, the mode is always auto-precharge.

et4U.com

DataShe

www.DataSheet4U.com

DataSheet4U.com



Bit	Bit Name	Valu	lue Description
7, 5, 4	Address multiplex	For DF	RAM interface
	(AMX2–AMX0)	0 0	0 8-bit column address DRAM (Initial value)
		0 0	0 1 9-bit column address DRAM
		0 1	0 10-bit column address DRAM
		0 1	1 11-bit column address DRAM
		1 0	0 Reserved (setting prohibited)
		1 0	1 Reserved (setting prohibited)
		1 1	0 Reserved (setting prohibited)
		1 1	1 Reserved (setting prohibited)
		For sy	ynchronous DRAM interface
		0 0	0 16-Mbit DRAM (1M × 16 bits) (Initial value)
		0 0	) 1 16-Mbit DRAM (2M × 8 bits)
		0 1	0 16-Mbit DRAM (4M × 4 bits)
		0 1	1 4-Mbit DRAM (256k × 16 bits)
		1 0	
		1 0	1 Reserved (setting prohibited)
		1 1	0 Reserved (setting prohibited)
		1 1	1 2-Mbit DRAM (128k $\times$ 16 bits)
6	Memory data size (SZ)	0	) Word (Initial value)
		1	1 Longword
3	Refresh control (RFSH)	0	
		1	I Refresh
2	Refresh mode (RMODE)	0	Normal refresh (Initial value)
		Da	Self-refresh

et4U.com

DataShe

DataSheet4U.com

Refresh ti register (F		H'FI	FFFF	FF0			16/3	32								
								E	Bit							
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name					_	_	_					CKS1			_	
Initial Valu		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R	R	R
Bit		Bit Na	ame		Va	alue						riptior	<u>n</u>			
7	Compa (CMF)		atch fla	ag	_	_	Clear 0 is w	· cond vritten	nd RTC dition: / n in CM	After I MF	RTCS	SR is re				
	Compa interrup			CMIE)		0			nterrup						nitial v	/alue)
	<u> </u>	<u> </u>				1			terrupt				by Cl	MF		
5 to 3	Clock s				-	0 0			ount u	ip (Init	tial va	lue)				
	(CKS2-	-CKS	0)		-		CLK/4									
							CLK/1									
						<u>1 1</u>										
							CLK/2 CLK/1									
						$\frac{0}{1}$										
						<u>1 0</u> 1 1										
						Dat		+090 -14U.(	com							
								<u></u>				1				
Refresh ti	mer co	unter (	(RTCI	NT)	H'FF	FFFF	FF4			16/3	32					
								E	Bit							
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0 Dat
Bit Name	-															Dai
Initial Valu		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	(22)		it Nam	ne			<u> </u>				scripti	ion				
7 to 0	(Cou	unt valu	ue)		<u> </u>	nput (	clock c	ount	value							
Refresh ti (RTCOR)	me con	istant	regist	er	H'F'	FFFF	FF8			16/3	32	]				
-				_					Bit							
Item	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name					_											
Initial Valu		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
												ion				

Cache

Cache control register (CCR)	H'FFFFE92	8

	Bit											
Item	7	6	5	4	3	2	1	0				
Bit Name	W1	W0		CP	TW	OD	ID	CE				
Initial Value	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				

Bit	Bit Name	Value	Description
7,6	Way specification	0 0	Way 0 (Initial value)
	(W1, W0)	0 1	Way 1
		1 0	Way 2
		1 1	Way 3
4	Cache purge (CP)	0	Normal operation (Initial value)
		1	Cache purge
3	Two-way mode (TW)	0	Four-way mode (Initial value)
		1	Two-way mode
2	Data replacement	0	Normal operation (Initial value)
	disable (OD)	1	Data not replaced even when cache miss occurs in data
			access
1	Instruction replacement	0	Normal operation (Initial value)
	disable (ID)	1 Da	Data not replaced even when cache miss occurs in instruction fetch
0	Cache enable (CE)	0	Cache disabled (Initial value)
		1	Cache enabled

et4U.com

DataShe

www DataSheet4U.com Power-down

Standby control register (SBYCR)	H'FFFFFE91	8
-------------------------------------	------------	---

	Bit							
Item	7	6	5	4	3	2	1	0
Bit Name	SBY	HIZ	_	MSTP4	MSTP3	MSTP2	MSTP1	MSTP0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W		R/W	R/W	R/W	R/W	R/W

 Bit	Bit Name	Value	Description
 7	Standby (SBY)	0	Executing SLEEP instruction puts the chip into sleep mode (Initial value)
		1	Executing SLEEP instruction puts the chip into standby mode
6	Port high impedance	0	Pin states held in standby mode (Initial value)
	(HIZ)	1	Pins at high impedance in standby mode
4	Module stop 4 (MSTP4)	0	DMAC running (Initial value)
		1	Clock supply to DMAC halted
 3	Module stop 3 (MSTP3)	0	MULT running (Initial value)
		1	Clock supply to MULT halted
 2	Module stop 2 (MSTP2)	0	DIVU running (Initial value)
		1	Clock supply to DIVU halted
 1	Module stop 1 (MSTP1)	0Da	FRT running (Initial value)
	, ,	1	Clock supply to FRT halted
 0	Module stop 0 (MSTP0)	0	SCI running (Initial value)
	,	1	Clock supply to SCI halted

et4U.com

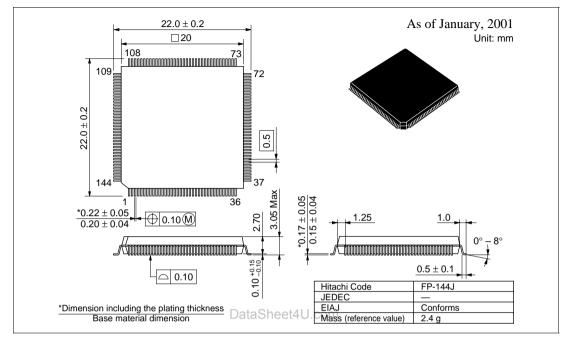
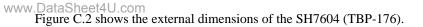
DataShe

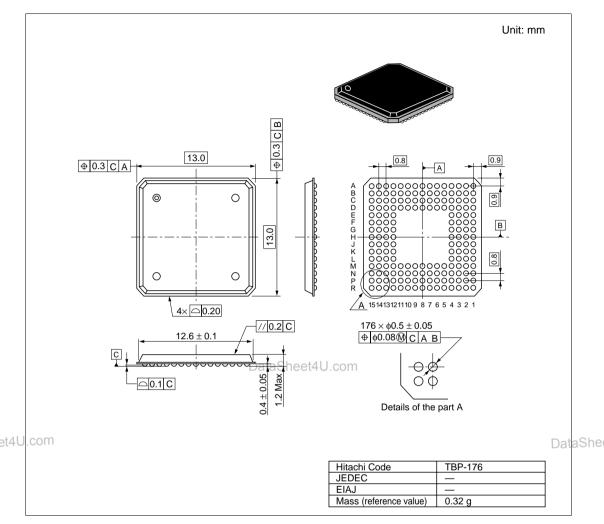
DataSheet4U.com

www.DataSheet4U.com

## Appendix C External Dimensions

Figure C.1 shows the external dimensions of the SH7604 (FP144J).



Figure C.1 External Dimensions

et4U.com

DataShe

DataSheet4U.com







www.DataSheet4U.com

616 DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.com

et4U.com

#### SH7604 Hardware Manual

 Publication Date:
 1st Edition, March 1995

 4th Edition, September 2001

 Published by:
 Customer Service Division

 Hitachi, Ltd.

 Edited by:
 Technical Documentation Center

 Hitachi Kodaira Semiconductor Co., Ltd.

Copyright C Hitachi, Ltd., 1995. All rights reserved. Printed in Japan.

DataSheet4U.com