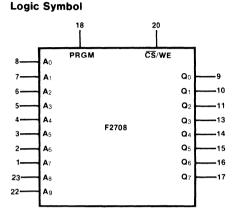
F2708 1024 x 8 UV Erasable PROM

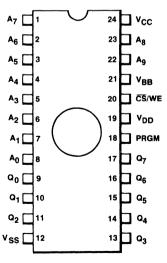
MOS Memory Products

Description


The F2708 is an 8, 192-bit ultraviolet light Erasable and electrically Programmable Read Only Memory (EPROM) manufactured using the Isoplanar n-channel silicon gate technology. Organized 1024 x 8, the F2708 is ideally suited for non-volatile data storage in applications such as 8-bit microprocessor systems, where reprogrammability, high bit-density, maximum performance and simple interfacing are essential parameters. All inputs and outputs are TTL compatible. The 3-state outputs become high impedance when the F2708 is deselected, allowing a direct interface capability which is useful in many computer bus structures.

The F2708 provides inexpensive, non-volatile storage of data/program code in applications where fast turn-around and experimentation are important requirements.

- 1024 x 8-BITS ORGANIZATION
- FAST ACCESS TIME 350 ns MAX (F2708-1)
- TTL COMPATIBLE INPUTS AND OUTPUTS
- 3-STATE OUTPUTS
- STANDARD POWER SUPPLIES +12 V, +5 V, -5 V
- CHIP SELECT INPUT FOR MEMORY EXPANSION
- STATIC OPERATION
- PIN COMPATIBLE TO 8K AND 16K ROMs FOR LOW-COST PRODUCTION
- LOW POWER DURING PROGRAMMING
- CONTENTS ERASABLE WITH ULTRAVIOLET LIGHT


Pin Names

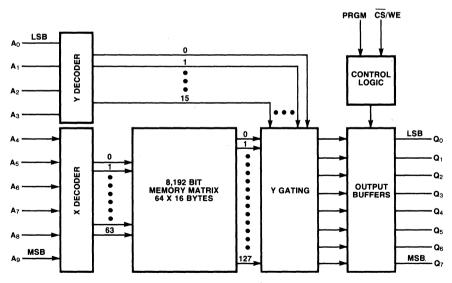
A0-A9	Address Inputs
PRGM	Program Pulse Input
CS/WE	Chip Select / Write Enable
Q0-Q7	Data Outputs/Programming Inputs
V _{DD}	+12 V Supply
Vcc	+5 V Supply
Vss	Ground
VBB	-5 V Supply

- $V_{DD} = Pin 19$
- $V_{CC} = Pin 24$
- $V_{BB} = Pin 21$ $V_{SS} = Pin 12$
- 33 • • •

Connection Diagram 24-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	7C	D


Absolute Maximum Ratings

V _{DD} Supply Voltage	-0.3 V to +20 V
V _{CC} or V _{SS} Supply Voltage	-0.3 V to +15 V
PRGM Input Voltage	
During Programming	-0.3 V to +35 V
CS/WE Input Voltage	
During Programming	-0.3 V to +20 V
Any Other Input	
During Programming	-0.3 V to +15 V
Any Input or Output During Read	-0.3 V to +15 V
Operating Temperature (Ambient)	0°C to 70°C
Storage Temperature (Ambient)	-65°C to +125°C
Power Dissipation	1.8 W
•	

All voltages with respect to VBB.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Diagram

Pin Connections During Read or Programming Modes

Mode	Data I/O	V _{SS} Supply	PRGM	V _{DD} Supply	CS/WE	V _{BB} Supply	V _{CC} Supply
Mode	9-11, 13-17	12	18	19	20	21	24
Read	Output Data	GND	GND	+12 V	VIL	-5 V	+5 V
Program	Input Data	GND	Pulsed 26 V	+12 V	+12 V	-5 V	+5 V
Deselect	High Impedance	GND	GND	+12 V	VIH	-5 V	+5 V

Read Mode dc Electrical Requirements $T_A = 0^{\circ}C$ to 70°C unless otherwise indicated. All voltages referenced to V_{SS}

Symbol	Characteristic	Min	Тур	Max	Unit	Note
V _{DD}	Supply Voltage	11.4	12.0	12.6	V	
Vcc	Supply Voltage	4.75	5.0	5.25	V	
V _{CC} V _{SS}	Supply Voltage	0	0	0	V	1
V _{BB}	Supply Voltage	-5.25	-5.0	-4.75	V	
VIH	Input HIGH Voltage	3.0		V _{CC} +1.0	V	
VIL	Input LOW Voltage	V _{SS}		0.65	V	

Read Mode dc Electrical Characteristics

Over full range of voltage and temperature unless otherwise indicated

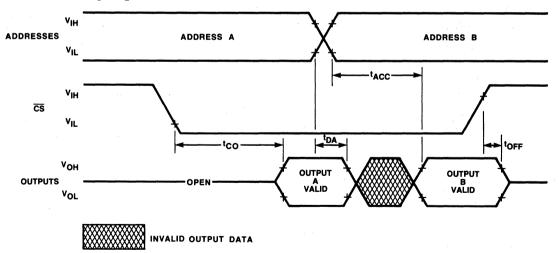
Symbol	Characteristic (1)	Min	Тур	Max	Unit	Note
IDD	Average V _{DD} Current		50	65	mA	2
Icc	Average V _{CC} Current		7.5	10	mA	2
IBB	Average V _{BB} Current		30	45	mA	2
İIN	Input Leakage Current	ļ	1.0	10	μA	3
Ιουτ	Output Leakage Current		1.0	10	μA	4
VOH	Output HIGH Voltage I _{OH} = -1.0 mA	2.4			v	
	Output HIGH Voltage $I_{OH} = -100 \ \mu A$	3.7			v	
VOL	Output LOW Voltage I _{OL} = 1.6 mA			0.45	v	
PD	Power Dissipation $T_A = 70^{\circ}C$			800	mW	5
CIN	Input Capacitance		4.0	6.0	pF	6
Соит	Output Capacitance		8.0	12	pF	7

Notes on following page.

F2708

Read Mode ac Electrical Characteristics

		F2708-1		F2708			
Symbol	Characteristic (Note 8)	Min	Max	Min	Max	Unit	Note
tACC	Address to Output Delay Time		350		450	ns	
tco	Chip Select to Output Delay Time		120		120	ns	
tOFF	Chip Deselect to Output High Impedance		120		120	ns	
tDA	Data Valid After Address Time	0		0		ns	


Notes

1. All voltage levels are referenced to $V_{SS} = 0 V$.

- 2. Supply current limits are measured with all inputs HIGH (including $\overline{CS}/WE = 5.0$ V) and ambient temperature at $T_A = 0^{\circ}C.$
- 3. Measured both with V_{IN} = 5.25 V and V_{IN} = V_{IL}(min) = V_{SS}. 4. Measured both with V_{OUT} = 5.5 V and \overline{CS}/WE = 5.0 V.
- 5. The total power dissipation of the 2708 is specified at 800 mW. It is not calculable by summing the various currents (IDD, ICC and IBB) multiplied by their respective voltages, since current paths exist between the various power supplies and $V_{\mbox{SS}}.$ The $I_{\mbox{DD}},$ $I_{\mbox{CC}}$ and $I_{\mbox{BB}}$ currents should be used to determine power supply capacity only.
- 6. Measured with V_{IN} = 0 V, T_A = 25°C and f = 1.0 MHz.
- 7. Measured with V_{OUT} = 0 V, T_A = 25°C and f = 1.0 MHz.

8. Timing parameters are measured with input logic levels of VIL(max) = 0.65 V and VIH(min) = 3.0 V. Timing measurement reference levels are 0.8 V and 2.8 V for inputs and 0.8 V and 2.4 V for outputs. An output load of 1 TTL gate plus 100 pF is assumed.

Read Mode Timing Diagram

Programming Instructions

After the completion of an erase operation, every memory cell in the F2708 is in the logic "1" state (as indicated by a HIGH level at the data outputs). An 8-bit byte of data is entered into the memory by programming logic "0s" into the appropriate cell locations at some given address. Word locations in the memory are addressed in the same way as in read operations. Once a cell is programmed to a logic "0", it can be altered only through ultraviolet light erasure.

In order to program the F2708, the \overline{CS} /WE input must first be set to 12 V. Data to be programmed is entered in 8-bit bytes through the output data terminals (Q₀ through Q₇). Input logic levels for the data lines, addresses, and supply voltages are the same as in a read operation.

Programming is accomplished by executing a number (n) of passes through a programming loop, each of which involves sequencing through all 1024 locations in the address space. In each pass through the loop, a single, high-voltage (26 V) pulse is applied to the PRGM input, once at each address. Logic "Os" applied to the Data outputs (Q0 through Q7) are written into the proper bit positions at the location specified by the Address inputs (A₀ through A₇). There must be n successive passes through the programming loop in order to guarantee reliable programming of information. The required number of passes through the programming loop (n) is a function of the pulse width (tpw) of the high-voltage programming pulse applied to the PRGM input. Total programming time is given by the relationship:

$$t_{TOTAL} = n \times t_{PW} \ge 100 \text{ ms}$$
 (1)

The allowed range of pulse widths is from 0.1 ms to 1.0 ms. This implies that the minimum value of n must be in the range of 100 to 1000. WARNING: Applying more than one programming pulse in succession to the same address is not permitted since it will result in damage to the \underline{de} vice. At the end of a program sequence, the \overline{CS} /WE falling edge transition must occur before the first address transition when changing from the program mode to the read mode. The PRGM pin should be pulled down to approximately

 V_{SS} , (i.e., ground) with a low impedance device since this pin sources several milliamps of current when \overline{CS}/WE is at 12 V and the PRGM pin is LOW.

Programming Examples

The programming relationship in Equation 1 above should always be used in determining values of tpw and n.

Example 1

The full capacity of 1024 bytes could be programmed using 0.2 ms programming pulse widths. In this case, the minimum number of passes through the programming loop would be

$$n = {t_{TOTAL} \over t_{PW}} = {100 ms \over 0.2 ms} = 500 \text{ passes}$$
 (2)

Each of the 500 passes through the programming loop must sequence through address locations 0 through 1023.

Example 2

Word locations 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The programmed pulses are 0.5 ms wide. Thus, the minimum number of passes through the program loop is

$$n = \frac{100 \text{ ms}}{0.5 \text{ ms}} = 200 \text{ passes}$$
 (3)

The data entered into the "don't care" locations should consist of all logic "1s". Even though portions of the address space are not used (or "don't care"), the programming loop should still sequence through all 1024 addresses on each pass.

Example 3

Extending the case of Example 2, the F2708 is now to be updated to include new data at locations 850 to 880 which previously were programmed as "don't care"; in this case, logic "1s". The mimimum number of passes through the programming loop is the same as in Example 2, n = 200 passes. Address locations 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern. The remaining unused addresses should again be programmed as logic "1s".

F2708

Erasing Instructions

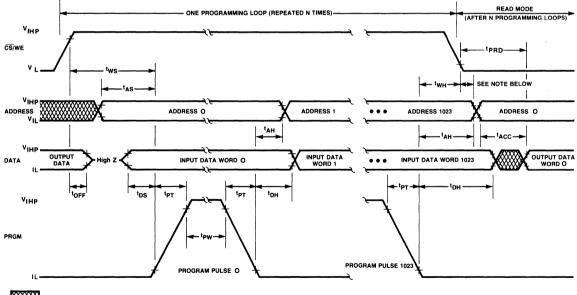
The contents of the F2708 EPROM can be erased by exposure to high-intensity short-wave ultraviolet (UV) light with a wavelength of 2537 Angstroms (Å). This can be accomplished with ultraviolet light EPROM erasure devices which are available from several U.S. manufacturers. These erasure devices contain a UV light source which is usually placed approximately one or two inches from the EPROM to illuminate the transparent window on top of the device. The minimum required integrated dose (intensity x exposure time) of UV light energy incident on the window of the device in order to reliably insure complete erasure is 12.5 W-s/cm². The UV erasure unit should be periodically calibrated if minimum exposure times are to be used. (Minimum exposure times range from 10 to 45 minutes, depending on model type and age of UV lamp). If longer exposure times are possible, variations in the output light intensity of the UV light source are not critical.

Program Mode dc Electrical Requirements $T_A = 25^{\circ}C \pm 5^{\circ}C$ unless otherwise indicated

Symbol	Characteristic		Min	Тур	Max	Unit	Note	
VDD	Supply Voltage Supply Voltage Supply Voltage		Supply Voltage 11.4	11.4	12.0	12.6	v	
Vcc			4.75	5.0	5.25	v		
VSS			0	0	0	v	1	
VBB	Supply Voltage		-5.25	-5.0	-4.75	v		
		Address and Data	3.0		V _{CC} + 1.0	V		
VIHP	Input HIGH Voltage During Programming	CS/WE Input	11.4	12.0	12.6	v		
		PRGM Input	25		27	v	2	
V. Inout I	Input LOW Voltage	PRGM Input	V _{SS}		1.0	V	2	
VIL		All Other Inputs	VSS		0.65	V		

Program Mode dc Electrical Characteristics $T_A = 25 \degree C \pm 5 \degree C$ unless otherwise indicated

Symbol	Characteristic		Min	Тур	Max	Unit	Note
IDD	Average V _{DD} Current			50	65	mA	3
Icc	Average V _{CC} Current			6.0	10	mA	3
IBB	Average V _{BB} Current			30	45	mA	3
IIN	Input Leakage Curren Addresses and CS/V		-10		10	μA	4
	PRGM Input Current	HIGH			20	mA	
IPRGM	Fridiw input Current	LOW	*-		3.0	mA	5


Notes

- 1. All voltage levels are referenced to $V_{SS} = 0 V$.
- 2. The voltage differential between V_{IHP} and V_{IL} at the PRGM input pin should be greater than or equal to 25 V.
- 3. Supply current limits are measured with all inputs HIGH (including \overline{CS} /WE = 5.0 V) and ambient temperature at $T_A = 0$ °C.
- 4. Measured both with $V_{IN} = 5.25$ V and $V_{IN} = V_{IL(min)} = V_{SS}$.
- 5. This is a current sourced by the PRGM pin when it is in the LOW state and when $\overline{CS}/WE = 12 V$.

F2708

Symbol	Characteristic		Min	Max	Unit	Note
t _{AS}	Address Set-up Time		10		μs	
t _{AH}	Address Hold Time		1.0		μs	
tws	Write Enable Set-up Time		10		μs	
twn	Write Enable Hold Time		0.5		μs	
tDS	Data Set-up Time		10		μs	
tDH	Data Hold Time		1.0		μs	
tpw	Program Pulse Width		0.1	1.0	ms	
	Program Pulse Transition Time	Rise	0.5	2.0	μs	
tрт		Fall	0.5	2.0	μs	
tPRD	Program to Read Delay			10	μs	
tOFF	Output Buffer Turn-off Delay		0	120	ns	

Program Mode Timing Diagram

DON'T CARE CONDITION OR INVALID OUTPUT DATA

Note

The falling edge of $\overline{\text{CS}}/\text{WE}$ must occur after the falling edge of the program pulse and before the address transition.