
National Semiconduc	Ctor Feb	oruary 1995
LM148/LM149 Series Quad 7	41 Op Amp	
LM148/LM248/LM348 Quad 741 Op A LM149/LM349 Wide Band Decompen	•	
General Description	Features	
The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar	 741 op amp operating characteristics Low supply current drain Class AB output stage—no crossover distorti Pin compatible with the LM124 	A/Amplifier on
741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of	Low input offset voltage	1 mV
a single 741 type op amp. Other features include input off-	Low input offset current	4 nA
set currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between	 Low input bias current Gain bandwidth product 	30 nA
amplifiers has been achieved by independently biasing each	LM148 (unity gain)	1.0 MHz
amplifier and using layout techniques which minimize ther-	LM149 (A _V \ge 5)	4 MHz
mal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater.	 High degree of isolation between amplifiers Overload protection for inputs and outputs 	120 dB
The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required.		

©1995 National Semiconductor Corporation TL/H/7786

RRD-B30M115/Printed in U. S. A.

	pecified devices are required	l, plea	ase con	tact 1	the N	ational	Semi	cond	uctor S	ales (Office/	
Distributors for availabili (Note 4)	ty and specifications.											
(LM	148/L	M149			LM24	8		LM3	848/L I	M349	
Supply Voltage		±22				±18				±18V		
Differential Input Voltage		$\pm 44V$			±36V				$\pm 36V$			
Output Short Circuit Duration (Note 1)		Continuous				Continu	ous		Continuous			
Power Dissipation (Pd at 25												
Thermal Resistance (θ_{jA}), (Note 2)								-	750		
Molded DIP (Ν) P _d θ _{iA}		_			_				750 mW 100°C/W			
Cavity DIP (J) Pd		1100 mW				800 m	W		700 mW			
θ_{JA}		110°C/	/W			110°C/	/W		110°C/W			
Maximum Junction Temperature (T _{iMAX})		150°(0		110°C				100°C			
Operating Temperature Range		$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$			$-25^{\circ}C \leq T_{A} \leq +85^{\circ}C$				$0^{\circ}C \leq T_{A} \leq + 70^{\circ}C$			
Storage Temperature Range		°C to ⊣	⊦150°C		-65°C to +150°C				-65°C to +150°C			
Lead Temperature (Solderi	ng, 10 sec.) Ceramic	300°C				300°(0			300°C	;	
Lead Temperature (Solderi	ng, 10 sec.) Plastic									260°C	;	
Soldering Information Dual-In-Line Package Soldering (10 seconds)	260°(C			260°0	C			260°C	;	
Small Outline Package Vapor Phase (60 seco		215°C				215°C				215°C		
Infrared (15 seconds)		220°C				220°C				220°C		
	nting Methods and Their Effect o	n Prod	uct Relia	ability''	for ot	her met	hods c	of sold	ering su	rface n	nount	
devices.												
ESD tolerance (Note 5)		500\	/			500\	/			500V		
ESD tolerance (Note 5)		500\	/			500\	/			500V		
ESD tolerance (Note 5)		500\	/			500\	/			500V		
ESD tolerance (Note 5)	Cteristics (Note 3)	500\	/			500\	/			500V		
Electrical Chara		1	/ 148/LM	149		500\ LM248		LM	348/LM			
, , , , , , , , , , , , , , , , , , ,	Cteristics (Note 3) Conditions	1		149 Max	Min			LM	348/LM Typ			
Electrical Chara		LM	148/LM		Min	LM248				349	Units mV	
Electrical Chara Parameter	Conditions	LM	148/LM Typ	Max	Min	LM248 Typ	Max		Тур	349 Max	Units	
Electrical Chara Parameter nput Offset Voltage nput Offset Current	$\label{eq:conditions} \hline T_A = 25^\circ \text{C}, \ \text{R}_S \leq 10 \ \text{k}\Omega$	LM	148/LM Typ 1.0	Max 5.0	Min	LM248 Typ 1.0	Max 6.0		Typ 1.0	349 Max 6.0	Units mV	
Electrical Chara Parameter	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^\circ\mbox{C}, R_S \leq 10 \ \mbox{k}\Omega \\ T_A = 25^\circ\mbox{C} \\ T_A = 25^\circ\mbox{C} \\ \end{array}$	LM	148/LM Typ 1.0 4	Max 5.0 25	Min	LM248 Typ 1.0 4	Max 6.0 50		Typ 1.0 4	349 Max 6.0 50	Units mV nA	
Electrical Chara Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^\circ\mbox{C}, \mbox{R}_S \leq 10 \ \mbox{k}\Omega \\ T_A = 25^\circ\mbox{C} \\ T_A = 25^\circ\mbox{C} \\ T_A = 25^\circ\mbox{C} \\ \end{array}$	LM Min	148/LM Typ 1.0 4 30 2.5	Max 5.0 25		LM248 Typ 1.0 4 30	Max 6.0 50 200	Min	Typ 1.0 4 30 2.5	349 Max 6.0 50 200	Units mV nA nA MΩ	
Electrical Chara Parameter nput Offset Voltage nput Offset Current nput Bias Current	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^\circ\mbox{C}, R_S \leq 10 \ \mbox{k}\Omega \\ T_A = 25^\circ\mbox{C} \\ T_A = 25^\circ\mbox{C} \\ \end{array}$	LM Min	148/LM Typ 1.0 4 30	Max 5.0 25 100		LM248 Typ 1.0 4 30 2.5	Max 6.0 50	Min	Typ 1.0 4 30	349 Max 6.0 50	Units mV nA nA	
Electrical Chara Parameter hput Offset Voltage hput Offset Current hput Bias Current hput Resistance supply Current All Amplifiers	$\label{eq:transform} \begin{array}{c} \mbox{Conditions} \\ T_A = 25^{\circ} \mbox{C}, \mbox{R}_S \leq 10 \ \mbox{k} \mbox{\Omega} \\ T_A = 25^{\circ} \mbox{C} \\ T_A = 25^{\circ} \mbox{C} \\ T_A = 25^{\circ} \mbox{C}, \mbox{V}_S = \pm 15 \mbox{V} \\ T_A = 25^{\circ} \mbox{C}, \mbox{V}_S = \pm 15 \mbox{V} \\ T_A = 25^{\circ} \mbox{C}, \mbox{V}_S = \pm 15 \mbox{V} \\ \end{array}$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4	349 Max 6.0 50 200	Units mV nA MΩ mA	
Electrical Chara Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance supply Current All Amplifiers arge Signal Voltage Gain amplifier to Amplifier coupling	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4 160	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/m\	
Electrical Chara Parameter nput Offset Voltage nput Offset Current nput Bias Current nput Resistance supply Current All Amplifiers arge Signal Voltage Gain amplifier to Amplifier coupling	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4 160 -120	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 2.5 2.4 160 -120	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/m\ dB	
Electrical Chara Parameter aput Offset Voltage aput Offset Current aput Bias Current aput Resistance upply Current All Amplifiers arge Signal Voltage Gain mplifier to Amplifier oupling mall Signal Bandwidth	$\label{eq:conditions} \begin{array}{c} \mbox{Conditions} \\ \hline T_A = 25^\circ C, \ R_S \leq 10 \ k\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline V_{OUT} = \pm 10V, \ R_L \geq 2 \ k\Omega \\ \hline T_A = 25^\circ C, \ f = 1 \ Hz \ to \ 20 \ kHz \\ \ (Input Referred) \ See \ Crosstalk \\ \hline Test \ Circuit \\ \hline T_A = 25^\circ C \\ \ LM148 \ Series \\ \hline LM148 \ Series \ (A_V = 1) \\ \hline T_A = 25^\circ C \end{array}$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 2.5 2.4 160 -120 1.0 4.0 60	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/m\ dB MHz degree	
Electrical Chara Parameter put Offset Voltage put Offset Current put Bias Current put Resistance upply Current All Amplifiers arge Signal Voltage Gain mplifier to Amplifier oupling mall Signal Bandwidth hase Margin	$\label{eq:conditions} \begin{array}{c} \mbox{Conditions} \\ \hline T_A = 25^\circ C, \ \mbox{R}_S \leq 10 \ \mbox{k}\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ \mbox{V}_S = \pm 15 V \\ \hline T_A = 25^\circ C, \ \mbox{V}_S = \pm 15 V \\ \hline V_{OUT} = \pm 10V, \ \mbox{R}_L \geq 2 \ \mbox{k}\Omega \\ \hline T_A = 25^\circ C, \ \mbox{f} = 1 \ \mbox{Hz} \ \mbox{to constalk} \\ \hline T_A = 25^\circ C, \ \mbox{f} = 1 \ \mbox{Hz} \ \mbox{to constalk} \\ \hline T_A = 25^\circ C \\ \ \mbox{LM148 Series} \\ \hline T_A = 25^\circ C \\ \ \mbox{LM148 Series} \\ \hline T_A = 25^\circ C \\ \ \mbox{LM148 Series} \ \mbox{(Av} = 1) \\ \hline T_A = 25^\circ C \\ \ \mbox{LM149 Series} \ \mbox{(Av} = 5) \\ \hline \end{array}$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/m\ dB MHz degree	
Electrical Chara Parameter put Offset Voltage put Offset Current put Bias Current put Resistance upply Current All Amplifiers arge Signal Voltage Gain mplifier to Amplifier oupling mall Signal Bandwidth hase Margin	$\label{eq:conditions} \hline $T_A = 25^\circ\text{C}, \text{R}_S \le 10 \ \text{k}\Omega$ $T_A = 25^\circ\text{C}$ $T_A = 25^\circ\text{C}$ $T_A = 25^\circ\text{C}$ $T_A = 25^\circ\text{C}$ $T_A = 25^\circ\text{C}$, $V_S = \pm 15V$ $T_A = 25^\circ\text{C}$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 \ \text{k}\Omega$ $T_A = 25^\circ\text{C}$, $f = 1 \ \text{Hz}$ to 20 \ \text{kHz}$ (Input Referred) See Crosstalk $Test Circuit$ $T_A = 25^\circ\text{C}$ $LM148 \ \text{Series}$ $T_A = 25^\circ\text{C}$ $LM149 \ \text{Series}$ $LM148 \ \text{Series}$ $(A_V = 1)$ $T_A = 25^\circ\text{C}$ $LM149 \ \text{Series}$ $(A_V = 5)$ $LM148 \ \text{Series}$ $(A_V = 1)$ $T_A = 25^\circ\text{C}$ $LM148 \ \text{Series}$ $(A_V = 1)$ $T_A = 25^\circ$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/m\ dB MHz degree degree	
Electrical Chara Parameter put Offset Voltage put Offset Current put Bias Current put Resistance Supply Current All Amplifiers arge Signal Voltage Gain amplifier to Amplifier coupling Small Signal Bandwidth Phase Margin Siew Rate	$\label{eq:conditions} \hline T_A = 25^{\circ}\text{C}, \ R_S \leq 10 \ \text{k}\Omega \\ \hline T_A = 25^{\circ}\text{C} \\ \hline T_A = 25^{\circ}\text{C} \\ \hline T_A = 25^{\circ}\text{C} \\ \hline T_A = 25^{\circ}\text{C}, \ V_S = \pm 15\text{V} \\ \hline T_A = 25^{\circ}\text{C}, \ V_S = \pm 15\text{V} \\ \hline T_A = 25^{\circ}\text{C}, \ V_S = \pm 15\text{V} \\ \hline V_{OUT} = \pm 10\text{V}, \ R_L \geq 2 \ \text{k}\Omega \\ \hline T_A = 25^{\circ}\text{C}, \ f = 1 \ \text{Hz} \ to 20 \ \text{kHz} \\ \hline (Input \ Referred) \ \text{See Crosstalk} \\ \hline T_A = 25^{\circ}\text{C}, \ f = 1 \ \text{Hz} \ to 20 \ \text{kHz} \\ \hline T_A = 25^{\circ}\text{C} \\ \ LM148 \ \text{Series} \\ \hline T_A = 25^{\circ}\text{C} \\ \ LM149 \ \text{Series} \ (A_V = 1) \\ \hline T_A = 25^{\circ}\text{C} \\ \ LM148 \ \text{Series} \ (A_V = 1) \\ \hline T_A = 25^{\circ}\text{C} \\ \ LM148 \ \text{Series} \ (A_V = 5) \\ \hline \hline LM148 \ \text{Series} \ (A_V = 5) \\ \hline \end{array}$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5 2.0	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 2.5 2.4 160 -120 1.0 4.0 60 60 0.5 2.0	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5 2.0	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/m\ dB MHz degree degree V/μs	
Electrical Chara Parameter put Offset Voltage put Offset Voltage put Offset Current put Bias Current put Resistance upply Current All Amplifiers arge Signal Voltage Gain mplifier to Amplifier oupling mall Signal Bandwidth hase Margin lew Rate Putput Short Circuit Current	$\label{eq:conditions} \begin{array}{ c c c } \hline Conditions \\ \hline T_A = 25^\circ C, \ R_S \leq 10 \ k\Omega \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline T_A = 25^\circ C, \ V_S = \pm 15V \\ \hline V_{OUT} = \pm 10V, \ R_L \geq 2 \ k\Omega \\ \hline T_A = 25^\circ C, \ f = 1 \ Hz \ to \ 20 \ \text{kHz} \\ \hline (Input \ Referred) \ See \ Crosstalk \\ \hline T_A = 25^\circ C \\ LM148 \ Series \\ \hline T_A = 25^\circ C \\ LM149 \ Series \ (A_V = 1) \\ \hline T_A = 25^\circ C \\ LM149 \ Series \ (A_V = 5) \\ \hline LM148 \ Series \ (A_V = 5) \\ \hline T_A = 25^\circ C \\ LM149 \ Series \ (A_V = 5) \\ \hline T_A = 25^\circ C \\ LM149 \ Series \ (A_V = 5) \\ \hline T_A = 25^\circ C \\ \hline \end{array}$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5	Max 5.0 25 100 3.6	0.8	LM248 Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 60 0.5	Max 6.0 50 200 4.5	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5	349 Max 6.0 50 200 4.5	Units mV nA nA MΩ mA V/m dB MHz degree degree V/μs V/μs	
Electrical Chara Parameter put Offset Voltage put Offset Current put Bias Current put Resistance Supply Current All Amplifiers arge Signal Voltage Gain mplifier to Amplifier Coupling Small Signal Bandwidth Phase Margin	$\label{eq:conditions} \hline T_A = 25^{\circ}\text{C}, \text{R}_S \leq 10 \text{ k}\Omega \\ \hline T_A = 25^{\circ}\text{C} \\ \hline T_A = 25^{\circ}\text{C} \\ \hline T_A = 25^{\circ}\text{C} \\ \hline T_A = 25^{\circ}\text{C}, \ V_S = \pm 15\text{V} \\ \hline T_A = 25^{\circ}\text{C}, \ V_S = \pm 15\text{V} \\ \hline T_A = 25^{\circ}\text{C}, \ V_S = \pm 15\text{V} \\ \hline V_{OUT} = \pm 10\text{V}, \ \text{R}_L \geq 2 \text{ k}\Omega \\ \hline T_A = 25^{\circ}\text{C}, \ f = 1 \text{ Hz to } 20 \text{ kHz} \\ (\text{Input Referred}) \text{ See Crosstalk} \\ \hline T_A = 25^{\circ}\text{C}, \ f = 1 \text{ Hz to } 20 \text{ kHz} \\ \hline T_A = 25^{\circ}\text{C} \\ \ LM148 \text{ Series} \\ \hline T_A = 25^{\circ}\text{C} \\ \ LM149 \text{ Series} \\ (A_V = 1) \\ \hline T_A = 25^{\circ}\text{C} \\ \ LM148 \text{ Series} (A_V = 1) \\ \hline T_A = 25^{\circ}\text{C} \\ \ LM148 \text{ Series} (A_V = 5) \\ \hline \hline LM148 \text{ Series} (A_V = 5) \\ \hline \end{array}$	LM Min 0.8	148/LM Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5 2.0	Max 5.0 25 100	0.8	LM248 Typ 1.0 4 2.5 2.4 160 -120 1.0 4.0 60 60 0.5 2.0	Max 6.0 50 200	Min 0.8	Typ 1.0 4 30 2.5 2.4 160 -120 1.0 4.0 60 0.5 2.0	349 Max 6.0 50 200	Units mV nA nA MΩ mA V/m\ dB MHz degree	

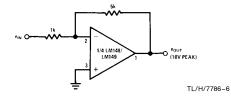
nA

nA

Input Offset Current

Input Bias Current

	acteristics (Note 3) (Continue	ed)		LM248			LM348/LM349				
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Large Signal Voltage Gain	$\label{eq:VS} \begin{array}{l} V_{S}=\pm15V, V_{OUT}=\pm10V,\\ R_{L}>2k\Omega \end{array}$	25			15			15			V/mV
Output Voltage Swing	$V_{S} = \pm 15 V, R_{L} = 10 \text{ k}\Omega$ $R_{L} = 2 \text{ k}\Omega$	±12 ±10	±13 ±12		±12 ±10	±13 ±12		±12 ±10	±13 ±12		V V
Input Voltage Range	$V_{S} = \pm 15V$	±12			±12			±12			V
Common-Mode Rejection Ratio	$R_{S} \leq 10 \ k\Omega$	70	90		70	90		70	90		dB
Supply Voltage Rejection	$R_{S} \leq 10 \; k\Omega, \; \pm 5V \leq V_{S} \leq \; \pm 15V$	77	96		77	96		77	96		dB


Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.

Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dicated by T_{jMAX} , θ_{jA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_d = (T_{jMAX} - T_A)/\theta_{jA}$ or the 25°C P_{dMAX} , whichever is less.

Note 3: These specifications apply for $V_S = \pm 15V$ and over the absolute maximum operating temperature range ($T_L \le T_A \le T_H$) unless otherwise noted. Note 4: Refer to RETS 148X for LM148 military specifications and refer to RETS 149X for LM149 military specifications.

Note 5: Human body model, 1.5 k Ω in series with 100 pF.

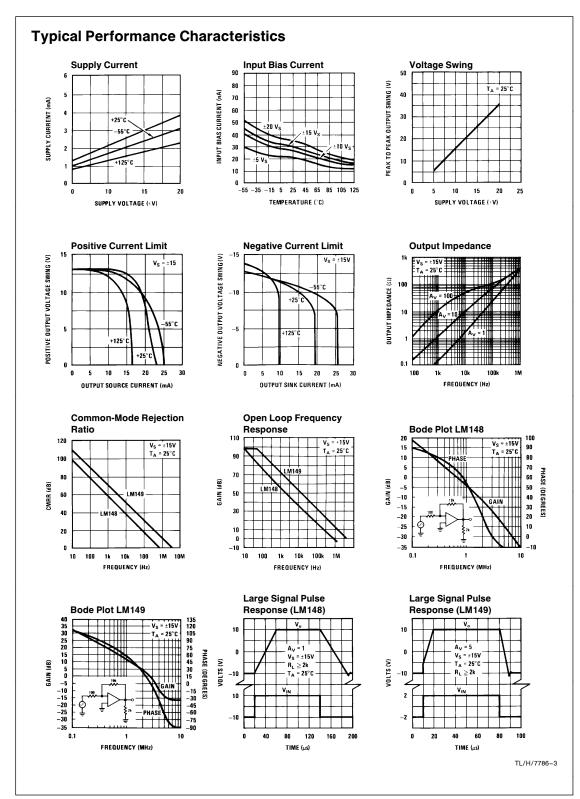
Cross Talk Test Circuit

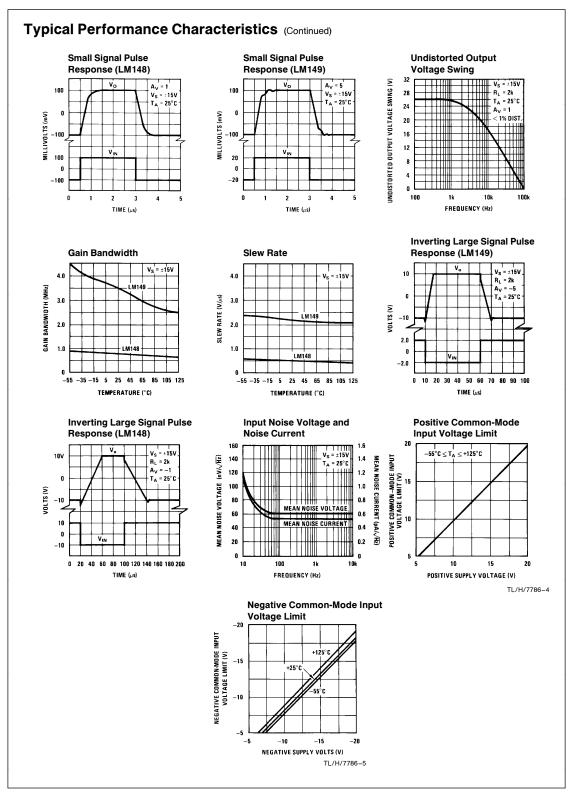
Application Hints

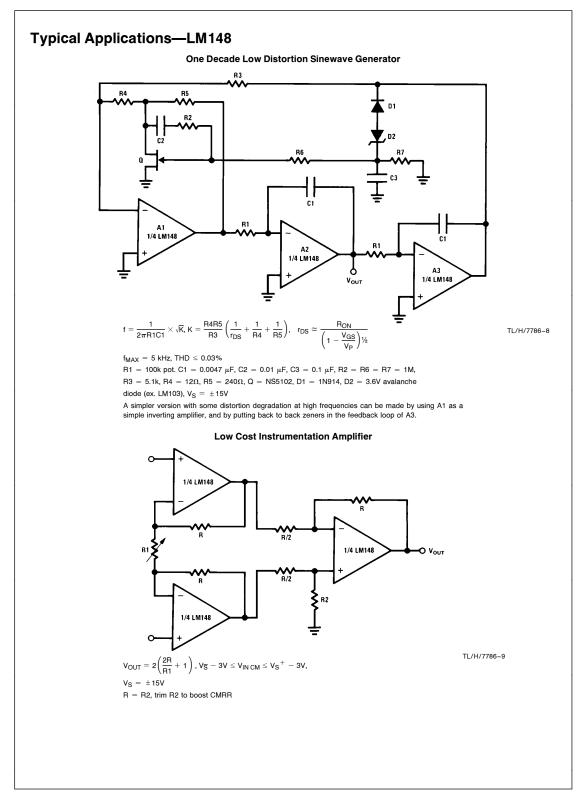
The LM148 series are quad low power 741 op amps. In the proliferation of quad op amps, these are the first to offer the convenience of familiar, easy to use operating characteristics of the 741 op amp. In those applications where 741 op amps have been employed, the LM148 series op amps can be employed directly with no change in circuit performance. The LM149 series has the same characteristics as the LM148 except it has been decompensated to provide a wider bandwidth. As a result the part requires a minimum gain of 5.

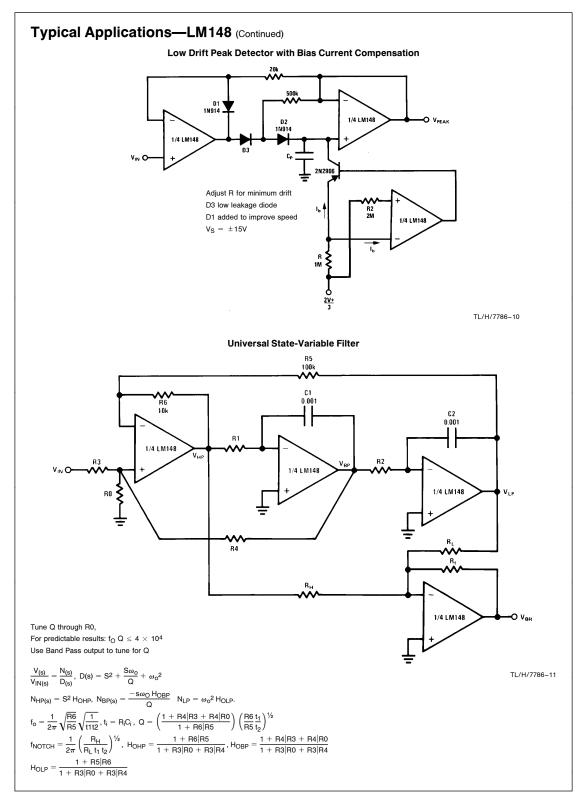
The package pin-outs are such that the inverting input of each amplifier is adjacent to its output. In addition, the amplifier outputs are located in the corners of the package which simplifies PC board layout and minimizes package related capacitive coupling between amplifiers.

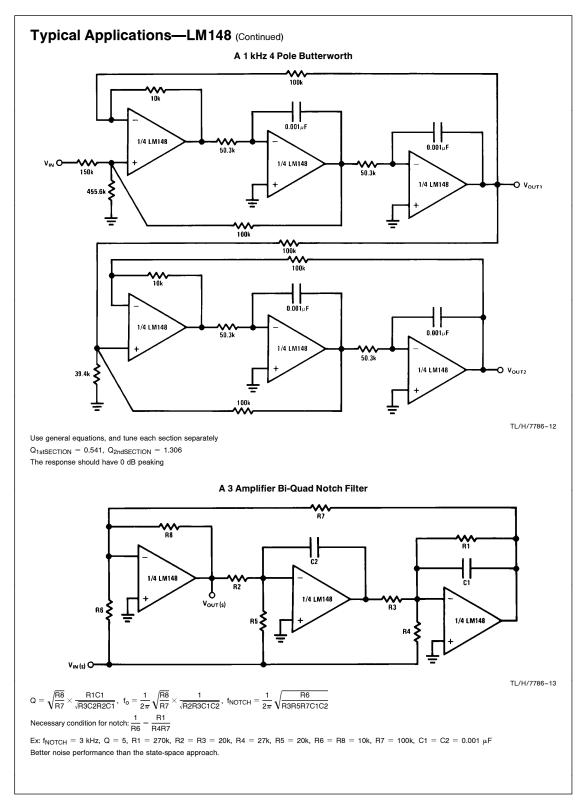
The input characteristics of these amplifiers allow differential input voltages which can exceed the supply voltages. In addition, if either of the input voltages is within the operating common-mode range, the phase of the output remains correct. If the negative limit of the operating common-mode range is exceeded at both inputs, the output voltage will be positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode, resistors should be placed in series with the inputs to limit the current.

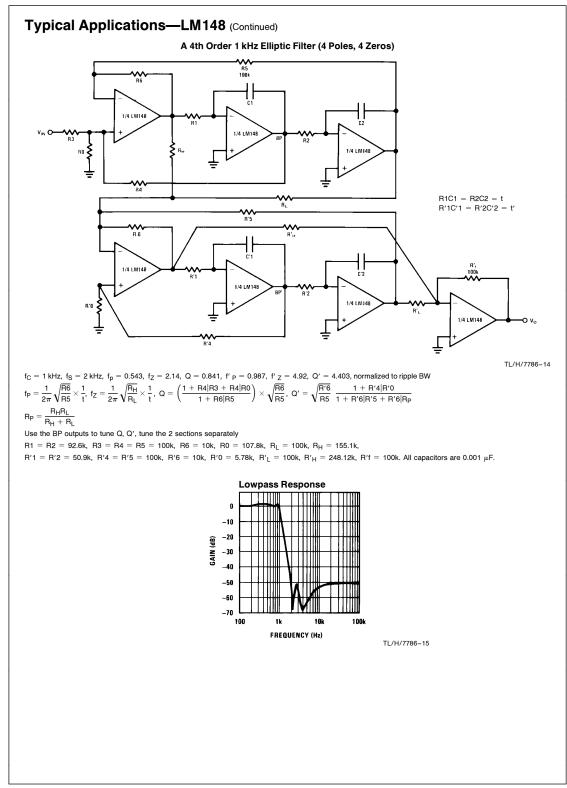

Like the LM741, these amplifiers can easily drive a 100 pF capacitive load throughout the entire dynamic output voltage and current range. However, if very large capacitive loads must be driven by a non-inverting unity gain amplifier,

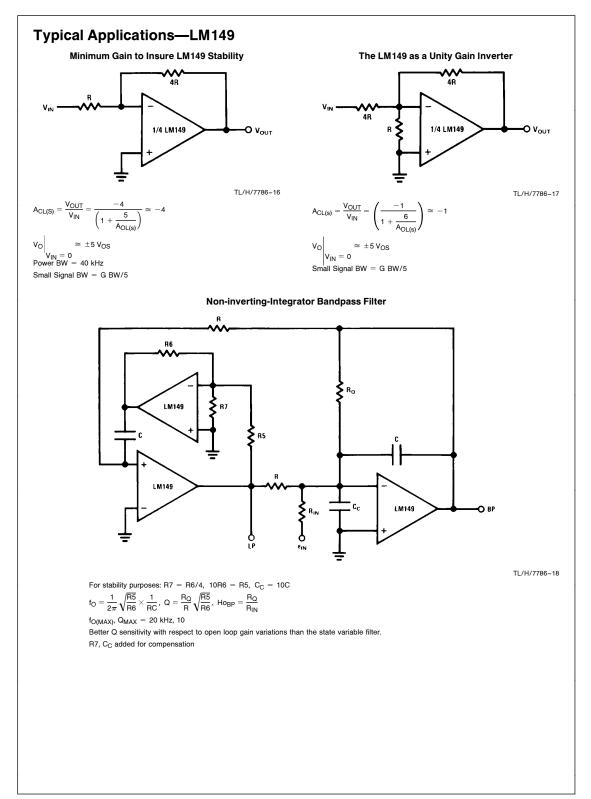

a resistor should be placed between the output (and feedback connection) and the capacitance to reduce the phase shift resulting from the capacitive loading.

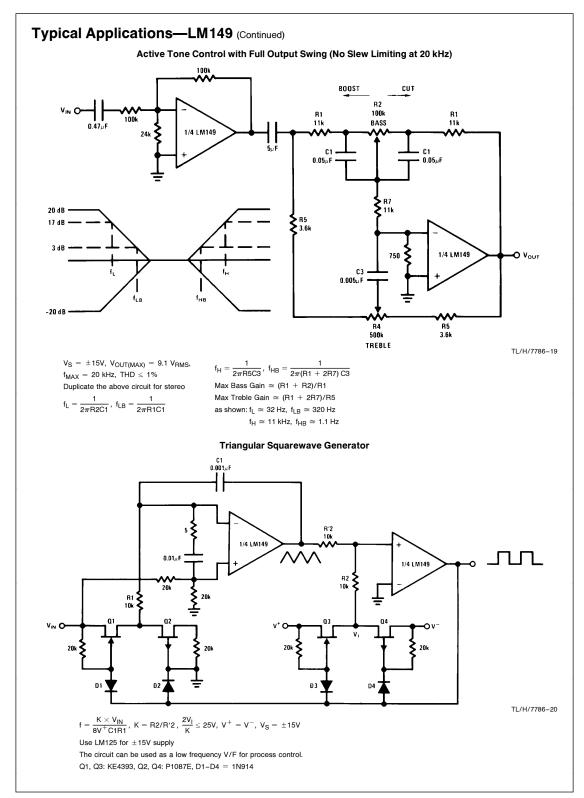

The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the power supplies will not destroy the unit. However, if multiple output shorts occur simultaneously, the time duration should be short to prevent the unit from being destroyed as a result of excessive power dissipation in the IC chip.

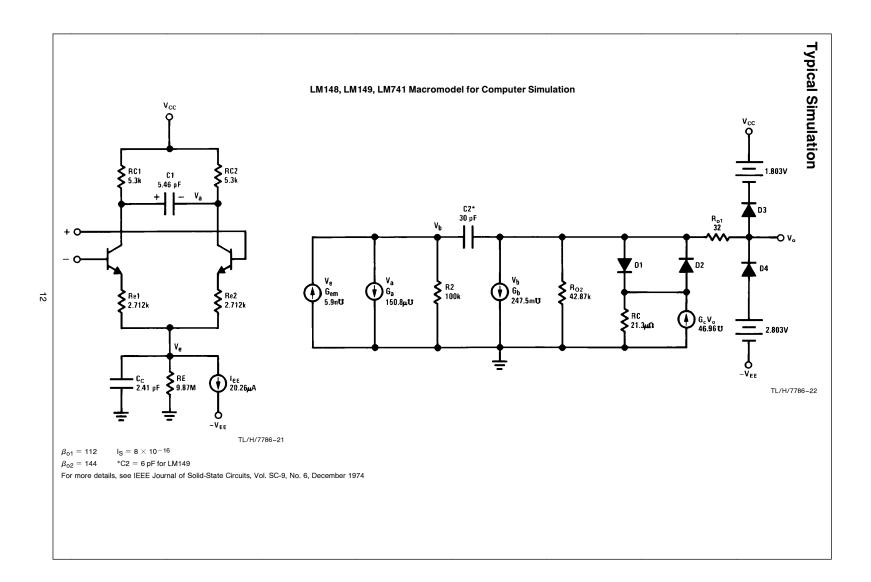

As with most amplifiers, care should be taken lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole which capacitance from the input to ground creates.

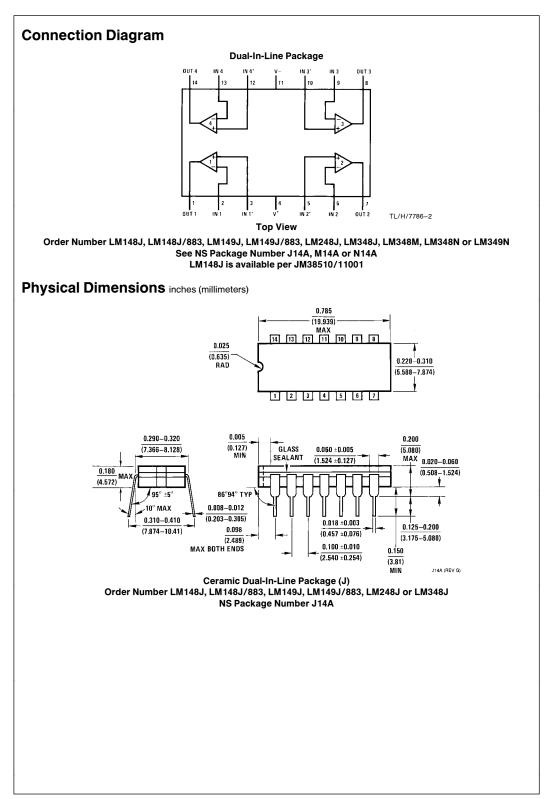

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.











National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

LM249 - http://www.ti.com/product/Im249?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM148 - http://www.ti.com/product/Im148?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM149 - http://www.ti.com/product/Im149?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM248 - http://www.ti.com/product/Im248?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM349 - http://www.ti.com/product/Im349?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM348 - http://www.ti.com/product/Im348?HQS=TI-null-null-dscatalog-df-pf-null-wwe