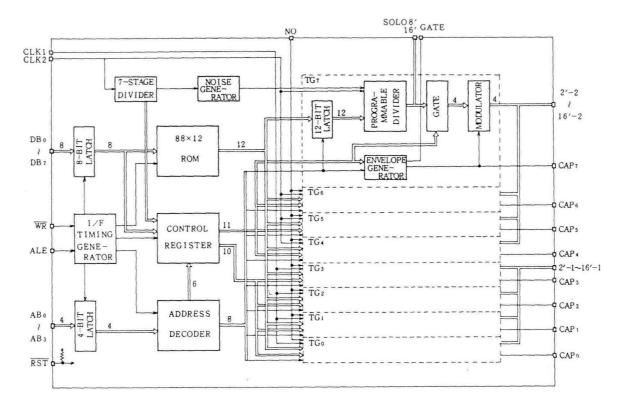
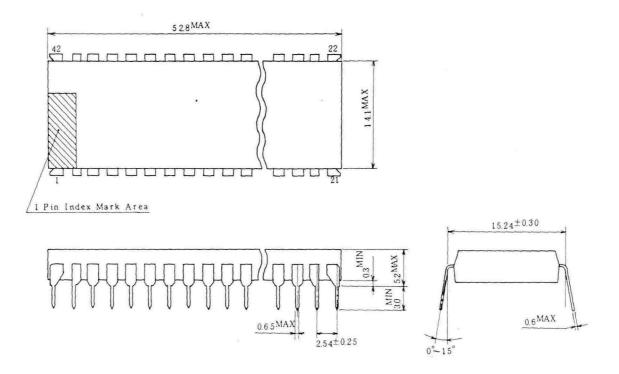
### MSM5232RS

8 CHANNEL TONE GENERATOR


FOR MUSICAL INSTRUMENTS

The MSM5232RS is an integrated circuit used as a sound source for musical instruments and contains a frequency divider circuit and envelope generator for 8 scale generation, and an 8 bit bus interface circuit integrated in one chip. The device is capable of outputting 8 tones simultaneously within a 7 octaves range while under microprocessor control.

#### FEATURES


- o 4 + 4 polyphonic tone output composed into 2 groups.
   Each group is independently provided with clock input, output bus, and control register so that many beautiful and deep sounds can be generated.
- o Generation of 7 octave scales in addition to noise output,
- o 4 kinds of feet output; 2 ' , 4 ' , 8 ' , and 1 6 ' .
- The envelope generator is incorporated.
   There are two kinds of envelope waveforms; lasting sound and damping sound.
   In addition, the attack and decay time constant can be changed.
- o Interface to cope with an 8 bit microprocessor.
- o ROM is incorporated to convert key number data to divided frequency to generate scales.
- o Low power dissipation due to the CMOS IC.
- (This specification is subject to change without prior notice.)

# BLOCK DIAGRAM



OKI electric

EXTERNAL DIMENSIONS



|            |    | 7         |
|------------|----|-----------|
| Solo 8'[   | 1  | 42 GATE   |
| Solo 16' [ | 2  | 41 VDD2   |
| VDD1 [     | 3  | 40 CAP 7  |
| DB 7 [     | 4  | 39 CAP 6  |
| DB 6 [     | 5  | 38 CAP 5  |
| DB 5       | 6  | 37] CAP 4 |
| DB 4 [     | 7  | 36] 2' -2 |
| DB 3 [     | 8  | 35 4'-2   |
| DB 2 [     | 9  | 34 8′-2   |
| DB1 [      | 10 | 33 16′-2  |
| DBo [      | 11 | 32] Vss3  |
| WR [       | 12 | 31 16′ -1 |
| ALE [      | 13 | 30 8' -1  |
| AB 3 [     | 14 | 29 4'-1   |
| AB 2 [     | 15 | 28 2' -1  |
| AB1 [      | 16 | 27 CAP 3  |
| AB 0 [     | 17 | 26 CAP 2  |
| RST [      | 18 | 25 CAP 1  |
| CLK2 [     | 19 | 24 CAPo   |
| CLK1 [     | 20 | 23 Vss2   |
| Vss1 [     | 21 | 22 NO     |

(Top View) 42 Lead Plastic DIP

### ELECTRICAL CHARACTERISTICS

# o Maximum Absolute Rating

|                     |              | $(Ta = -10 \sim +70 C)$                                        |                       |      |  |  |  |  |  |
|---------------------|--------------|----------------------------------------------------------------|-----------------------|------|--|--|--|--|--|
| Item                | Symbol       | Condition                                                      | Rated value           | Unit |  |  |  |  |  |
| Power voltage       | Vss1         |                                                                | -6.5~+0.3             | V    |  |  |  |  |  |
| rower voltage       | Vss2<br>Vss3 |                                                                | -1 6~+0.3             | V    |  |  |  |  |  |
| Input voltage       | VI 1         | CLK1, 2, WR, ALE, RST $DB_0 \sim 7$ , AB $_0 \sim 3$           | Vs s1 -0.3 ~Vdd1 +0.3 | V    |  |  |  |  |  |
| Input Voltage       | VI 2         | CAP 0~7                                                        | Vss 2-0.3~VDD 2+0.3   | V    |  |  |  |  |  |
| Output current      | Io1          | NO, SOLO8', SOLO16', GATE<br>2'-1,2, 4'-1, 2, 8'-1,2, 16'-1, 2 | $-10 \sim +10$        | mA   |  |  |  |  |  |
| Output current      | Io2          | CAP 0 ~ 7                                                      | $-20 \sim +20$        | mA   |  |  |  |  |  |
| Tolerable loss      | Pd           | Ta=25°C                                                        | 800                   | mW   |  |  |  |  |  |
| Storage temperature | Tstg         | Status data generalitati anna an a                             | -55~+150              | C    |  |  |  |  |  |

### o Operating Range

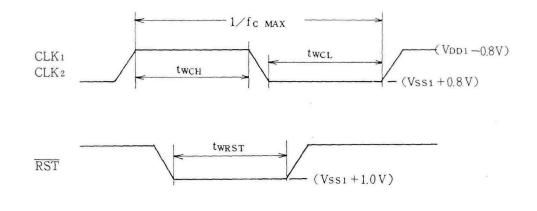
| Item                  | Symbol       | Condition | Range             | Unit |
|-----------------------|--------------|-----------|-------------------|------|
|                       | Vssi         |           | -5.25~-4.75       | V    |
| Power voltage         | Vss2<br>Vss3 |           | $-1.6 \sim -4.75$ | V    |
| Operating temperature | Тор          | N         | -10~70            | C    |

# DC CHARACTERISTICS

|                        |        |                                                                    |             | (14         | 10~+     |           |      |
|------------------------|--------|--------------------------------------------------------------------|-------------|-------------|----------|-----------|------|
| Item                   | Symbol | Condition                                                          | Vss1<br>[V] | Vss2<br>(V) | MIN      | MAX       | Unit |
| "L" input              | IILI   | Input terminals other<br>than RST V <sub>I</sub> =Vss <sub>1</sub> | -5.25       | -           | -        | -1        |      |
| current                | IIL2   | $\overline{RST}$<br>VI = VSS1                                      | -5.0        | -           | -25      | -120      | μA   |
| "H" input              | I I H1 | Input terminals other<br>than $\overline{RST}$ $V_{I} = V_{DD}$    | -5.25       |             | -        | 1         | μA   |
| current                | I I H2 | $\overline{RST} V_I = V_{DD}$                                      | 0.20        |             | -        | 1         | μΑ   |
|                        | VILI   | ABn, DBn, WR, ALE                                                  |             |             | -        | Vss1 +0.8 |      |
| "L" input<br>voltage   | VIL2   | CLK1, CLK2                                                         | -4.75       | -           | -        | Vss1+0.8  | V    |
|                        | VIL3   | RST                                                                |             |             |          | Vss1+1.0  |      |
|                        | VIH1   | ABn, DBn, $\overline{WR}$ , ALE                                    |             |             | Vss1+2.4 | -         |      |
| "H" input<br>voltage   | VIH2   | CLK1, CLK2                                                         | -4.75       | -           | -0.8     | _         | V    |
|                        | Vi H3  | RST                                                                |             |             | -1.0     | -         |      |
| EG<br>inversion        | VT     |                                                                    | -           | -5          | -1.5     | -0.5      | V    |
| voltage                |        |                                                                    | -           | -12         | -3.6     | -1.2      |      |
| "L" output             | Vol    | NO, GATE, SOLO8'<br>SOLO16'                                        |             | -5          | -        | -4.5      | V    |
| voltage                |        | Io = 0.1  mA                                                       | -           | -12         | -        | -11.5     |      |
| "H" output             | Vон    | NO, GATE, SOLO8'<br>SOLO16'                                        | -           | -5          | -0.5     |           | v    |
| voltage                | , on   | Io = -0.1  mA                                                      | -           | -12         | -0.5     | -         | v    |
|                        | Issil  | $f_{CLK1}$ , $f_{CLK2} = 2.12 \text{ MHz}$                         | -5.25       |             | -        | 5         |      |
| Current<br>consumption | Issel  |                                                                    |             | -5          |          | 1         | mA   |
|                        | 110021 |                                                                    | -           | -12         | -        | 3         |      |
| Input capacity         | C1     | f = 1 MHz                                                          | -           |             | _        | 15        | pF   |

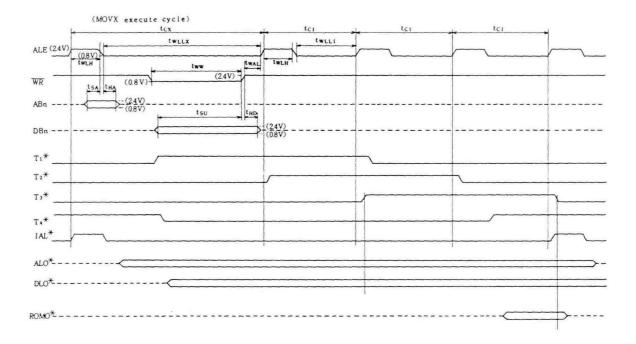
(Ta = -10 - 70t:)

| T  | 0 - | - 25 | $\mathcal{C}$ |
|----|-----|------|---------------|
| (1 | a - | - 40 | ()            |


| Item                            | Symbol | Condition                               | Vss1<br>(V) | Vss2<br>(V) | MIN  | MAX  | Unit    |
|---------------------------------|--------|-----------------------------------------|-------------|-------------|------|------|---------|
|                                 | Ica    | $V_0 = V_{SS2}$                         | —           | -5          | -1.4 | -2.8 | mA      |
|                                 | ICA    | VO - VSS2                               | _           | -12         | -3.7 | -7.4 |         |
|                                 | Icrf   | $V_0 = V_{DD2}$                         | _           | -5          | 85   | 170  |         |
| CAPn terminal<br>output current | ICKF   | VO – VDD2                               |             | -12         | 200  | 400  | $\mu A$ |
|                                 | Lana   | T                                       | -           | -5          | 8.5  | 17   |         |
|                                 | ICRS   | $V_0 = V_{DD2}$                         | -           | -12         | 20   | 40   | 1       |
|                                 | Icz    | Vo=Vss2 or VDD2                         | _           | -15         | -1   | 1    | μA      |
|                                 | Itf    | $V_0 = V_{DD2}, V_{CAP} = V_{SS2}$      | _           | _           | -    | 1    |         |
| TBn output                      | Itt    | $V_0 = V_{DD2}, V_{CAP} = V_{SS2} + 2V$ |             | -           | 1    | —    | μA      |
| current                         | Terry  | $V_0 = V_{DD2}, V_{CAP} = V_{DD2}$      | -           | -5          | 30   | 60   |         |
|                                 | Itn    | Single CH is<br>only ON                 |             | -12         | 190  | 380  | μA      |

### SWITCHING CHARACTERISTICS

 $(V_{SS1} = -4.75 \sim -5.25V, Ta = -10 \sim 70°C)$ 


| Item                       | Symbol          | Condition | MIN | MAX | Unit |
|----------------------------|-----------------|-----------|-----|-----|------|
| Maximum input<br>frequency | f c max         |           | 2.5 | -   | MHz  |
|                            | tcx             |           | 1.0 | —   |      |
| ALE cycle time             | tci             | 5         | 0.5 | 10  | μs   |
|                            | twch            |           | 150 |     |      |
| au 1                       | twcl            |           | 150 | -   |      |
|                            | twLH            |           | 150 | -   | ns   |
| Input pulse width          | twllx           |           | 500 | -   |      |
|                            | twlli           |           | 200 |     |      |
|                            | tww             |           | 400 |     |      |
|                            | twrst           |           | 10  | -   | μs   |
| 2                          | tsa             |           | 100 | -   |      |
| Set-up time                | t <sub>SD</sub> |           | 300 |     | ns   |
| Hold time                  | t <sub>HA</sub> |           | 100 | -   | ns   |
|                            | t <sub>HD</sub> |           | 8 0 |     | 115  |
| Input timing               | twal            |           | 0   | —   | ns   |

# Input waveforms



**OKI** electric

### Interface timing



\* These signals denote timing in IC.

Note: The voltage values at timing definition points are set according to Vssl which is used as a reference.

#### TERMINAL EXPLANATION

o  $DB_0 \sim DB_7$ These are the data input terminals which are connected to the CPU data bus; various data are input through these terminals.

 $O AB_0 \sim AB_3$ 

These are the address input terminals. Using this input, an internal register is selected to write data in.

o ALE This input is put in the "H" section, where signals sent to  $AB_0 \sim AB_3$  are inputted in the data latch and latched on at the trailing edge.

- 9 -

This input is entered in the "L" section, where signals sent to  $DB_0 \sim DB_7$  are inputted in the data latch and latched on at the trailing edge.

o  $CLK_1$  and  $CLK_2$ 

They are input into the standard clock and output scales can be obtained through the frequency-dividing of this input.  $CLK_1$  sets the standard frequency for tone generators  $TG_0 \sim TG_3$ (group 1), and  $CLK_2$  for tone generators  $TG_4 \sim TG_7$  (group 2).

0/RST

o/WR

This is the input terminals for internal parts initialization and are incorporated with the pull-up resistance. Figure 2 shows internal register conditions after initialization.

o CAP<sub>0</sub> ~ CAP<sub>7</sub>

These are terminals that connect the capacitor to the envelope generator. The envelope is generated by charging and discharging its capacity through the enclosed resistance. In addition, when operation of the envelope generator is inhibited, a high impedance state results, and envelope waveforms can be inputted from the outside.

o 2' - 1 ~ 16' - 1 and 2' - 2 ~ 16' - 2

These are tone bus output terminals divided into group 1 and group 2, each of which consists of 4 registers; 2 ', 4 ', 8 ', and 16'. Four tone generators are connected to each tone bus, and they are mixed in a form of current addition. This is why it is important to receive this output from outside at a low impedance.

o SOLO 8' and SOLO 16' These are solo sound source output terminals that constantly output square waveforms of 8' and 16' tones from tone generator  $TG_7$ .

### O GATE

This terminal outputs the solo output ON/OFF signals. In the solo mode case, GF of  $TG_7$  is outputted, and in cases when the solo mode is inhibited, it is set to the "L" level.

o NO

This is the noise sound source output terminal that always outputs noise generated by the incorporated pseudo random pulse generation circuit.

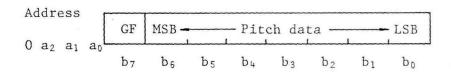
- o  $\mathbf{VDD}_1$  and  $\mathbf{VSS}_1$  . These are power terminals for 5V lines.
- o  $\mbox{VDD}_2\,,\mbox{VSS}_2\,,\mbox{ and }\mbox{Vss}_3$  These are power terminals for 5  $\sim$  15V lines,
  - Note: Connect  $VDD_1$  and  $VDD_2$  and  $VSS_2$  and  $VSS_3$  externally and respectively before use.

| Addr. | b7       | b 6 | b <sub>5</sub> | b4   | b <sub>3</sub> | b <sub>2</sub> | b <sub>1</sub> | bo            |                          |
|-------|----------|-----|----------------|------|----------------|----------------|----------------|---------------|--------------------------|
| 0     | GF0      | MSB |                | Note | Data           | 0              |                | LSB           | $TG_0$ data              |
| 1     | GF1      |     |                | Note | Data           | 1              |                |               | ${\tt TG}_1$ data        |
| 2     | GF 2     |     |                | Note | Data           | 2              |                |               | $TG_2$ data              |
| 3     | GF 3     |     |                | Note | Data           | 3              | 1              |               | $TG_3$ data              |
| 4     | GF 4     |     |                | Note | Data           | 4              | 1              |               | ${\tt TG}_4$ data        |
| 5     | GF 5     |     |                | Note | Data           | 5              | 1              |               | TG₅ data                 |
| 6     | GF 6     |     |                | Note | Data           | 6              |                |               | $TG_6$ data              |
| 7     | GF7      |     |                | Note | Data           | 7              |                |               | TG7 data                 |
| 8     |          |     |                |      |                | Attac<br>MS B  | kTimeI         | Data 1<br>LSB | Group 1 attack time data |
| 9     |          |     |                |      |                | Attac          | kTimel         | Data 2        | Group 2 attack time data |
| А     |          | 1   |                |      | De<br>MSB      | cay Tir        | ne Dat         | a 1<br>LSB    | Group 1 decay time data  |
| В     |          |     |                |      | Dee            | cay Ti         | me Da          | ta 2          | Group 2 decay time data  |
| С     |          |     | EGEı           | ARM1 | OE2'1          | OE4'ı          | OE8'1          | OE161         | Group 1 control data     |
| D     | $\angle$ | SF  | EGE 2          | ARM2 | OE2′2          | OE4'2          | OE8′2          | OE16′2        | Group 2 control data     |

Fig. 1 Internal Register Map

| Addr. | b7 | b 6 | b <sub>5</sub> | b4 | b <sub>3</sub> | b <sub>2</sub> | b 1 | bo | Condition                                                             |
|-------|----|-----|----------------|----|----------------|----------------|-----|----|-----------------------------------------------------------------------|
| 0     | 0  | *   | *              | *  | *              | ×              | *   | *  | GF=0, pitch indefinite                                                |
| 1     | 0  | *   | *              | *  | *              | *              | *   | *  | -                                                                     |
| 2     | 0  | *   | *              | *  | *              | *              | *   | *  | //                                                                    |
| 3     | 0  | *   | *              | *  | *              | *              | *   | *  | //                                                                    |
| 4     | 0  | *   | *              | *  | *              | *              | *   | *  |                                                                       |
| 5     | 0  | *   | *              | *  | , <del>X</del> | *              | *   | *  | 11                                                                    |
| 6     | 0  | *   | *              | *  | *              | *              | *   | *  | //                                                                    |
| 7     | 0  | *   | *              | *  | *              | *              | *   | *  | 11                                                                    |
| 8     |    |     |                |    | 1              | 0              | 0   | 0  | Attack time = 2 ms                                                    |
| 9     |    |     |                |    |                | 0              | 0   | 0  | //                                                                    |
| А     |    |     |                |    | 0              | 0              | 0   | 0  | Decay time = 40 ms                                                    |
| В     |    |     |                |    | 0              | 0              | 0   | 0  | 11                                                                    |
| С     |    |     | 0              | 0  | 0              | 0              | Ö   | 0  | Damping sound assigned, EG<br>inhibited and all registers OFF         |
| D     |    | 0   | 0              | 0  | 0              | 0              | 0   | 0  | Damping sound assigned, solo mode<br>inhibited, and all registers OFF |

Note: \* mark shows that it *is* indefinite (a previous condition *is* maintained)

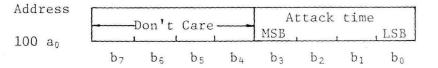

Fig. 2 Internal Condition after Initial Reset

#### OPERATION EXPLANATION

o Interface

This integrated circuit is controlled by writing control data in the internal registers.  $DB_0 \sim DB_7$ ,  $AB_0 \sim AB_3$ , WR and ALE signals are connected directly to the bus and CPU control signals (in case of a low speed CPU), or indirectly through some external parts (in case of a high speed CPU). The device is incorporated with the address latch to allow direct connection to the address data multiplexed bus in case of low speed CPUs. CPUs which can be connected directly: 8085A, 8048/49 (6 MHz).

- (1) Type of input data
  - a) TG data




The data assign ON/OFF and tone generator pitch. It assigns one of the 8 TGs by the lower order 3 bits  $(a_2 \sim a_0)$  of the address.

- GF (gate flag) 1: TG ON 2: TG OFF
- Pitch data

Data are written only when the pitch information is $b_7 = 1$  (TG ON). In the case when  $b_7 = 0$ , the contents of  $b_6 \sim b_0$  are optional. (The contents do not change.)

b) Attack time data



The attack time data assigns the envelope generator's attack time. One of 2 TG groups is selected by the lowermost order bit  $a_0$ , of the address. ( $a_0 = 0$ : Group 1 and  $a_0 = 1$ : Group 2).

c) Decay time data

| Address |    | D 1            |        |    |     | Decay | time | ]   |
|---------|----|----------------|--------|----|-----|-------|------|-----|
| 101an   |    | Don'i          | t care | 2  | MSB | 1     | 11   | LSB |
| 10140   | Ъ7 | b <sub>6</sub> | bs     | b4 | Ъз  | b2    | b1   | Ъo  |

The decay time data assigns the decay/release time of the envelope generator. One of the 2 TG groups is selected by the lowermost order bit  $a_0$ . ( $a_0 = 0$ : Group 1 and  $a_0 = 1$ : group 2).

d) Control data

| Address  | Don't |    | DOD            |     | 2'             | 4 '            | 8'  | 16' |
|----------|-------|----|----------------|-----|----------------|----------------|-----|-----|
| 110 a.   | Care  | SF | EGE            | ARM | OE             | OE             | OE, | OE  |
| 1 1 0 40 | b7    | be | b <sub>5</sub> | b 4 | b <sub>3</sub> | b <sub>2</sub> | bı  | Ъо  |

The data sets the operational mode of individual TG groups. One of 2 TG groups is assigned a mode by the lowermost order bit  $a_0$  of the address. ( $a_0 = 0$ : Group 1 and  $a_0 = 1$ : Group 2).

- SF (solo flag, significant only for group 2)
  - 1: Solo mode assignment
  - 0: Solo mode release
- EGE (envelope generator enable)
  - 1: Envelope generator operation
  - 0: Envelope generator inhibited
- ARM (attack release mode)
  - 1: Assignment of lasting sound
  - 0: Assignment of damping sound

2' OE, 4' OE, 8' OE, and 16' OE
1: Individual register output ON

0: Individual register output OFF

#### (2) Timing

Signals sent to the address and data bus are temporarily latched respectively by the trailing edge of ALE and /NR in the internal address and data latch, and pitch data are converted by the incorporated ROM into divided frequency data, and after that, the data is written in an assigned register by the address. Accordingly, it is essential that signals to the address and data bus are stabilized during the period before set-up time and after the trailing edge holding time of ALE and /NR respectively.

The timing of writing in each register is set by a strobe pulse generated from the timing generation circuit according to an ALE signal. Since this strobe pulse is generated at the timing shown in the timing chart, it is essential that more than four ALE pulses are added before the next writing operation.

### o Tone Generator

This integrated circuit is incorporated with 8 tone generators (TG) and these tone generators are individually capable of generating scales and envelopes independently. An individual TG has 4 registers which output a pitch of 2 ', 4 ', 8 ', and 16' respectively.

Eight tone generators are divided into 2 groups; 1 group consists of 4 tone generators, and the TG output is connected by group, to the internal tone bus. Moreover, the control and envelope data are set by these groups. Furthermore, clock input. which serves as a standard for pitch, is divided into groups.

(1) Frequency dividing circuit

This circuit divides standard clock (CLK1, CLK2) frequency to obtain an output frequency which is assigned by the pitch data, and consists of a programmable counter which generates tones in octaves, and a binary counter which generates the tones between octaves. Table 1 shows the relationship between pitch data and divided frequency.

#### (2) Envelope generator

This circuit generates signals for TG output amplitude modulation, and functions to form the waveforms shown in Figure 3 by the charging and discharging of the external capacitor through the incorporated resistance of control data and the time constant.

When 0 is written in EGE bit in the control data, incorporated resistance is open, then external envelope signals can be input from the CAPn terminal.

a) Operation mode

ARM = 1 (lasting sound assigned)

When GF in the TG data register is 1, it is set in the attack condition, and when GF is 0, it is set in the release condition.

ARM = 0 (damping sound assigned)

It is set in che attack condition at a point where GF is changed from 0 to 1, and it is set in the decay condition

when the electrical potential of the CAPn terminal exceeds the EG inversion voltage VT. When GF is turned to 0, it is set in the damping condition, irrespective of the preceeding condition.

#### b) Explanation of individual conditions

Attack condition

CAPn terminal is connected to  $\ensuremath{\text{VDD}}_2$  through incorporated resistance

Decay/release condition

CAPn terminal is connected to  $VSS_2$  through incorporated resistance ( $R_{\text{RF}}$  or  $R_{\text{RS}}$ )

Damping condition

CAPn terminal is connected to  $Vss_2$  through incorporated resistance( $R_{RF})$  .

c) Time constant control

The speed of attack or decay/release is set by the contents of individual attack time or decay time registers. The time constant is controlled by changing charge or discharge current flow time by the opening or closing of resistance. In case of decay/release, however, two kinds of resistance are changed over because the change width is wide. The time constant is *always a* minimum value in the damping condition.

### (3) Modulation circuit

This circuit is used to convert a square wave of frequency by dividing circuit output into amplitude-modulated current output through the amplitude modulation signal. Four circuits are provided for each TG, and the output is connected to the tone bus of 2 ' , 4 ' , 8 ' , and 1 6 ' . The modulation signal is common to the 4 circuits but it can be turned ON/OFF for each feet by the OE bit in the control data.

### o Noise Generator

The device is incorporated with the noise generator which employs a pseudo random pulse generator by means of the shift register to generate noise as a noise source. This output is supplied as a noise source for individual tone generators, and at the same time, is constantly output to the NO terminal.

OKI electric

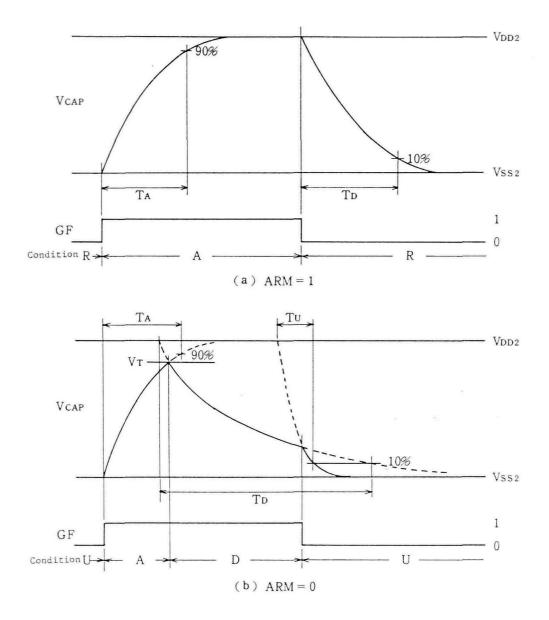



Fig. 3 Waveforms Generated by Envelope Generator

| Pitch data | Programmable counter | Binary divided frequency |      |        |       |  |  |
|------------|----------------------|--------------------------|------|--------|-------|--|--|
|            | divided frequency    | 2′                       | 4'   | 8'     | 16'   |  |  |
| 0          | 506                  | 1/16                     | 1/32 | 1/64   | 1/128 |  |  |
| 1          | 478                  |                          |      |        |       |  |  |
| 2          | 4 5 1                |                          |      |        |       |  |  |
| 3          | 426                  |                          |      |        |       |  |  |
| 4          | 402                  |                          |      |        | 2     |  |  |
| 5          | 379                  |                          |      |        |       |  |  |
| 6          | 358                  |                          |      |        |       |  |  |
| 7          | 338                  |                          |      |        |       |  |  |
| 8          | 319                  |                          |      |        |       |  |  |
| 9          | 301                  |                          |      |        |       |  |  |
| А          | 284                  |                          |      |        |       |  |  |
| В          | 268                  |                          |      |        |       |  |  |
| С          | 253                  |                          |      |        |       |  |  |
| D          | 478                  | 1/8                      | 1/16 | 1/32   | 1/64  |  |  |
| E          | 4 5 1                |                          |      |        |       |  |  |
| F          | 426                  |                          |      |        |       |  |  |
| 1 0        | 402                  |                          |      |        |       |  |  |
| 1          | 379                  |                          |      | *      |       |  |  |
| 2          | 358                  |                          |      |        |       |  |  |
| 3          | 338                  |                          |      | 19. j. |       |  |  |
| 4          | 319                  | 121                      |      |        |       |  |  |
| 5          | 301                  |                          |      |        |       |  |  |
| 6          | 284                  |                          | 2    |        |       |  |  |
| 7          | 268                  |                          |      |        |       |  |  |
| 8          | 253                  |                          |      |        |       |  |  |
| 9          | 478                  | 1/4                      | 1/8  | 1/16   | 1/32  |  |  |
| A          | 4 5 1                |                          |      |        |       |  |  |
| В          | 426                  |                          |      |        |       |  |  |
| С          | 402                  |                          |      |        |       |  |  |
| D          | 379                  |                          |      |        |       |  |  |
| E          | 358                  |                          |      |        |       |  |  |
| F          | 338                  |                          |      |        |       |  |  |
| 2 0        | 319                  | -                        |      |        |       |  |  |
| 1          | 301                  |                          |      |        |       |  |  |
| 2          | 284                  |                          |      |        |       |  |  |
| 3          | 268                  |                          |      |        |       |  |  |
| 4          | 2 5 3                |                          |      |        |       |  |  |
| 5          | 478                  | $-\frac{1}{1/2}$         | 1/4  | 1/8    | 1/16  |  |  |
| 6          | 4 5 1                |                          |      |        |       |  |  |
| 7          | 426                  |                          |      |        |       |  |  |

# Table 1 Pitch Data vs Divided Frequency

- continued on next page -

|            | Programmable counter |     | Binary divided frequency |     |      |  |
|------------|----------------------|-----|--------------------------|-----|------|--|
| Pitch data | divided frequency    | 2'  | 4'                       | 8'  | 16'  |  |
| 8          | 402                  |     |                          |     |      |  |
| 9          | 379                  |     |                          |     |      |  |
| A          | 3 5 8                |     |                          |     |      |  |
| В          | 3 3 8                |     |                          |     |      |  |
| C          | 319                  |     |                          |     |      |  |
| D          | 301                  |     |                          |     |      |  |
| · E        | 284                  |     |                          |     |      |  |
| F          | 268                  |     |                          |     |      |  |
| 30         | 253                  | 1/2 | 1/4                      | 1/8 | 1/16 |  |
| 1          | 478                  | 1/1 | 1/2                      | 1/4 | 1/8  |  |
| 2          | 451                  |     |                          |     |      |  |
| 3          | 426                  |     |                          |     |      |  |
| 4          | 402                  |     |                          |     |      |  |
| 5          | 379                  |     |                          |     |      |  |
| 6          | 358                  |     |                          |     |      |  |
| 7          | 338                  |     |                          |     |      |  |
| 8          | 319                  |     |                          |     |      |  |
| 9          | 301                  |     |                          | 1   |      |  |
| A          | 284                  |     |                          |     |      |  |
| В          | 268                  |     |                          |     |      |  |
| C          | 253                  |     |                          |     |      |  |
| D          | 478                  | 1/1 | 1/1                      | 1/2 | 1/4  |  |
| E          | 451                  |     |                          |     |      |  |
| F          | 426                  |     |                          |     |      |  |
| 4 0        | 402                  |     |                          |     |      |  |
| 1          | 379                  |     |                          |     |      |  |
| 2          | 358                  |     |                          |     |      |  |
| 3          | 338                  |     |                          |     |      |  |
| 4          | 319                  |     |                          |     |      |  |
| 5          | 301                  |     |                          |     |      |  |
| 6          | 284                  |     |                          |     |      |  |
| 7          | 268                  |     |                          |     |      |  |
| 8          | 253                  |     |                          |     |      |  |
| 9          | 478                  | 1/1 | 1/1                      | 1/1 | 1/2  |  |
| A          | 451                  |     |                          |     |      |  |
| В          | 426                  |     |                          |     |      |  |
| C          | 402                  |     |                          |     |      |  |
| D          | 379                  |     |                          |     |      |  |
| E          | 358                  |     |                          |     |      |  |
| F          | 3 3 8                |     |                          |     |      |  |

- continued on next page -

|            | Programmable counter | Binary divided frequency |      |      |       |
|------------|----------------------|--------------------------|------|------|-------|
| Pitch data | divided frequency    | 2'                       | 4′   | 8′   | 16′   |
| 5 0        | 319                  |                          |      |      |       |
| 1          | 301                  |                          |      |      |       |
| 2          | 284                  |                          |      |      |       |
| 3          | 268                  |                          |      |      |       |
| 4          | 2 5 3                |                          |      |      |       |
| 5          |                      |                          |      |      |       |
| 6          |                      |                          |      |      |       |
| 7          | 13                   | 1/16                     | 1/32 | 1/64 | 1/128 |
| 7 F        | (Noise generator)    | 1/1                      | 1/2  | 1/4  | 1/8   |

Note: The contents of pitch data 57 H are used as data for tests.

| Tone<br>name | Pitch data | Equal<br>temperament | 8' output<br>frequency | Cent error |
|--------------|------------|----------------------|------------------------|------------|
| С            | 18         | 261.63 Hz            | 261.74 Hz              | + 0.7 5    |
| C #          | 19         | 277.18               | 277.07                 | - 0.7 0    |
| D            | 1 A        | 293.66               | 293.66                 | - 0.0 6    |
| D #          | 1 B        | 3 1 1.1 3            | 310.89                 | - 1.3 1    |
| E            | 1 C        | 3 2 9.6 3            | 3 2 9.4 5              | - 0.9 2    |
| F            | 1 D        | 3 4 9.2 3            | 3 4 9.4 5              | + 1.0 8    |
| F #          | 1 E        | 369.99               | 3 6 9.9 4              | - 0.2 4    |
| G            | 1 F        | 392.00               | 3 9 1.8 3              | - 0.7 1    |
| G #          | 2 0        | 4 1 5.3 0            | 4 1 5.1 7              | - 0.5 5    |
| A            | 2 1        | 4 4 0.0 0            | 4 4 0.0 0              |            |
| A #          | 22         | 466.16               | 4 6 6.3 4              | + 0.6 5    |
| В            | 23         | 493.88               | 494.18                 | + 1.0 4    |
| C            | 24         | 5 2 3.2 5            | 5 2 3.4 8              | + 0.7 5    |

Table 2 Output Frequency Error

| Attac<br>b <sub>2</sub> |   |   | Resistance ON<br>Duty cycle | Attack time<br>nominal value |
|-------------------------|---|---|-----------------------------|------------------------------|
| 0                       | 0 | 0 | 1/1                         | 2 ms                         |
| 0                       |   | 1 | 1/2                         | 4                            |
| 0                       | 1 | 0 | 1/4                         | 8                            |
| 0                       | 1 | 1 | 1/8                         | 16                           |
| 1                       | × | 0 | 1/16                        | 32                           |
| 1                       | × | 1 | 1/32                        | 64                           |

# Table 3 Table of Attack Time Data vs Attack Time

\*: Don't care

Capacity to be added by external equipment = 0.39UF

Table 4 Table of Decay Time Data vs Decay Time

| De<br>b3 | b <sub>2</sub> | ime da<br>bı | ta<br>bo | Resistance ON<br>Duty cycle | Decay time nominal value |
|----------|----------------|--------------|----------|-----------------------------|--------------------------|
| 0        | 0              | 0            | 0        | 1/1                         | 4 0 ms                   |
| 0        | 0              | 0            | 1        | 1/2                         | 8 0                      |
| 0        | 0              | 1            | 0        | 1/4                         | 160                      |
| 0        | 0              | 1            | 1        | 1/8                         | 320                      |
| 0        | 1              | ×            | 0        | 1/16                        | 640                      |
| 0        | 1              | ×            | 1        | 1/32                        | 1.3 s                    |
| 1        | 0              | 0            | 0        | 1/1                         | 0.3 3                    |
| 1        | 0              | 0            | 1        | 1/2                         | 0.5                      |
| 1        | 0              | 1            | 0        | 1/4                         | 1                        |
| 1        | 0              | 1            | 1        | 1/8                         | 2                        |
| 1        | 1              | $\star$      | 0        | 1/16                        | 4                        |
| 1        | 1              | $\star$      | 1        | 1/32                        | 8                        |

\*: Don't care

Capacity to be added by external equipment = 0.39UF

(Note that a simplified mark may be employed for a product's model name)