
1

1

Unifying RISC and DSP

hyperstone electronics

hyperstone electronics tutorial

E1-32/E1-16
and

Software Development Tools

hyperstone electronics tutorial

E1-32/E1-16
and

Software Development Tools

2

2

Unifying RISC and DSP

Table Of Contents (1)

❑ Memory
• Memory Address Space
• Memory Control Register

• Memory Write Access Modes

• Bus Control Register
• Connecting DRAM

• Connecting Boot EPROM

• Internal RAM

❑ Peripherals
• I/O Bus Access

• UART of hyICE
• I/O Address Modes

• I/O Access with C Run-Time Library

3

3

Unifying RISC and DSP

Table Of Contents (2)

❑ Inputs and Outpus
• Function Control Register
• Interrupt Inputs

• Input Status Register

• Wait Pin INT3
• Outputs

• Clock Output

❑ Internal Timer
• Timer Prescaler Register, Timer Register, Timer Compare Register

• Timer Prescaler Register and PLL

4

4

Unifying RISC and DSP

Table Of Contents (3)

❑ Runtime Stack
• Local Registers and Stack Frame
• Runtime Stack

• Register Stack

❑ Privilege States

❑ Trap Entry Table
❑ Interrupt-Lock Flag L

❑ Global Registers
• Global Registers

• High Global Flag

❑ Supervisor State

❑ Runtime Stack Initialization
❑ Power-Down Mode

❑ Sleep Mode

5

5

Unifying RISC and DSP

Table Of Contents (4)

❑ Assembler Example
• hyMasm
• hyLink

• hyEPROM

❑ Real-Time Operating System hyRTK
• Stack-Level Tasks

• Interrupt-Level Tasks
• CreateTask

• System Calls for Delaying Tasks

• Guards

• System Calls for accessing System Resources

6

6

Unifying RISC and DSP

Table Of Contents (5)

❑ C Example
• hyC
• hyLink

• hyAdmin

• hyDebug
• hyProf

• hyEPROM

• Boot Loader romboot.hye

❑ DSP Unit
• ALU and DSP Unit

• Parallelism ALU - DSP
• Example Dot Product

7

7

Unifying RISC and DSP

Memory

❑ Memory
• Memory Address Space
• Memory Control Register

• Memory Write Access Modes

• Bus Control Register
• Connecting DRAM

• Connecting Boot EPROM

• Internal RAM

8

8

Unifying RISC and DSP

Memory Address Space

❑ Connecting External Memory

• 32-bit (E1-16: 16-bit) wide data bus

• 26-bit (E1-16: 22-bit) wide address bus

• memory address space of 4 GByte in total

• memory address space is divided into five memory areas

• each memory area with separate bus timing and bus width

Memory Area Memory Address Range Data Bus Width Memory Type

MEM0 0000 000016..3FFF FFFF16 32, 16, 8 ROM, SRAM, DRAM

MEM1 4000 000016..7FFF FFFF16 32, 16, 8 ROM, SRAM

MEM2 8000 000016..BFFF FFFF16 32, 16, 8 ROM, SRAM

IRAM C000 000016..DFFF FFFF16 32 internal RAM (on-chip)

MEM3 E000 000016..FFFF FFFF16 32, 16, 8 ROM, SRAM

9

9

Unifying RISC and DSP

Memory Control Register

❑ Memory Control Register MCR

• memory types of MEM0

Fast Page Mode (FPM) DRAM

Extended Data Output (EDO) DRAM (E1-32X)

non-DRAM

• individual parameters for MEM0..MEM3:

• data bus width (32-bit, 16-bit, 8-bit)

• memory bus hold cycles (skipping, inserting)

• memory write access modes (E1-32X)

byte write strobe

byte enable signal

• 32-bit write-only register

• all bits set to one on Reset

Bit 21 of the MCR specify the type of memory connected to the memory
area MEM0:

MCR(21) = 0 for DRAM
MCR(21) = 1 for non-DRAM

Bit 15 of the MCR specify the type of DRAM connected to the memory
area MEM0:

MCR(15) = 0 for EDO DRAMs
MCR(15) = 1 for FPM DRAMs

Bits 7..0 of the write-only memory control register MCR defines the data
bus width (32-bit, 16-bit, 8-bit) for MEM0..MEM3.

Bits 11..8 of the MCR specify a memory bus hold break for memory area
MEM3..MEM0 respectively. The default setting is disabled. When memory
bus hold break is enabled, bus hold cycles are skipped when the next
memory access addresses the same memory area.

The number of inserted memory bus hold cycles can be specified in the bus
control register BCR.

10

10

Unifying RISC and DSP

MCR: Memory Write Access Modes (E1-32X)

❑ Byte Write Strobe

A25..A2

Byte 0Byte 0

WE0#

D31..D0

Byte 1Byte 1

WE1#

Byte 2Byte 2

WE2#

Byte 3Byte 3

WE3#OE#

❑ Byte Enable Signal

D31..D24 D23..D16 D15..D8 D7..D0

/WE /WE/WE/WE/OE/CS /OE /OE/OE /CS/CS/CSMEM0: RAS#
MEM1: CS1#
MEM2: CS2#
MEM3: CS3#

A23..A0 A23..A0A23..A0A23..A0

A25..A2

Byte 0Byte 0

WE#

D31..D0

Byte 1Byte 1

WE#

Byte 2Byte 2

WE#

Byte 3Byte 3

WE#OE#

D31..D24 D23..D16 D15..D8 D7..D0

/WE /WE/WE/WE/OE/CS /BE /OE /OE/OE /CS /BE/CS /BE/CS /BE

MEM0: RAS#
MEM1: CS1#
MEM2: CS2#

A23..A0 A23..A0A23..A0A23..A0

BE0# BE1# BE2# BE3#

11

11

Unifying RISC and DSP

Bus Control Register

❑ Bus Control Register BCR

• individual parameters for MEM0..MEM3:

• address bus timing

• data bus timing

• DRAM page size

• DRAM refresh rate

• parity generation and checking

• 32-bit write-only register

• all bits are set to one on Reset

The write-only bus control register BCR defines the parameters (memory
bus timing, DRAM page size, DRAM refresh rate, parity generation and
checking) for accessing external memories located in address spaces
MEM0..MEM3.

All bits of the MCR and the BCR are set to one on Reset and have to be
initialized according to the external connected memories after Reset. These
default settings represent the slowest memory bus timing. Thus all types of
memories can operate with this moderate bus timing.

12

12

Unifying RISC and DSP

Connecting DRAM, 32-bit Data Bus (only MEM0)

❑ 4MByte = 4 * 1Mx8 DRAM

A11..A2

Byte 0Byte 0

WE#

D31..D0

Byte 1Byte 1 Byte 2Byte 2 Byte 3Byte 3

RAS#

D31..D24 D23..D16 D15..D8 D7..D0

/CAS /CAS/CAS/CAS/W/RAS /W /W/W /RAS/RAS/RAS

A9..A0 A9..A0A9..A0A9..A0

CAS0# CAS3#CAS2#CAS1#

Page Size Code

Column Address Range

BCR(6..4) 32-bit Bus Size 16-bit Bus Size 8-bit Bus Size

000 A15..A2 A15..A1 A15..A0

001 A14..A2 A14..A1 A14..A0

010 A13..A2 A13..A1 A13..A0

011 A12..A2 A12..A1 A12..A0

100 A11..A2 A11..A1 A11..A0

101 A10..A2 A10..A1 A10..A0

110 A9..A2 A9..A1 A9..A0

111 A8..A2 A8..A1 A8..A0

13

13

Unifying RISC and DSP

Connecting DRAM, 16-bit Data Bus (only MEM0)

❑ 8MByte = 2 * 4Mx8 DRAM

A11..A1

WE#

D31..D0

Byte 2Byte 2 Byte 3Byte 3

RAS#

D15..D8 D7..D0

/CAS/CAS /W /W/RAS/RAS

A10..A0A10..A0

CAS3#CAS2#

Page Size Code

Column Address Range

BCR(6..4) 32-bit Bus Size 16-bit Bus Size 8-bit Bus Size

000 A15..A2 A15..A1 A15..A0

001 A14..A2 A14..A1 A14..A0

010 A13..A2 A13..A1 A13..A0

011 A12..A2 A12..A1 A12..A0

100 A11..A2 A11..A1 A11..A0

101 A10..A2 A10..A1 A10..A0

110 A9..A2 A9..A1 A9..A0

111 A8..A2 A8..A1 A8..A0

14

14

Unifying RISC and DSP

Connecting Boot EPROM (only MEM3)

A25..A0
D31..D0

Byte 3Byte 3

D7..D0

/OE/CS

CS3#

A25..A0

OE#

Input BOOTW Input BOOTB Data Bus Width
Don’t care HIGH 8-bit

LOW LOW 16-bit
HIGH LOW 32-bit

❑ Selecting Data Bus Width for MEM3

A25..A1
D31..D0

Byte 2Byte 2

D15..D8

/OE/CS

CS3#

A24..A0

OE#

Byte 3Byte 3

D7..D0

/OE/CS

CS3#

A24..A0

OE#

A25..A2
D31..D0

Byte 0Byte 0

D31..D24

/OE/CS

CS3#

A23..A0

OE#

Byte 1Byte 1

D23..D16

/OE/CS

CS3#

A23..A0

OE#

Byte 2Byte 2

D15..D8

/OE/CS

CS3#

A23..A0

OE#

Byte 3Byte 3

D7..D0

/OE/CS

CS3#

A23..A0

OE#

15

15

Unifying RISC and DSP

Internal RAM

❑ Internal RAM (IRAM)
• 8 KBytes (E1-32: 4 KBytes) on-chip memory

• mapped to memory base address C000 000016

• wraps around modulo 8KBytes up to memory addess DFFF FFFF16

• implemented as dynamic memory, needing refresh

• refresh rate is specified in bits 18..16 of Memory Control Register
MCR (default is refresh disabled)

• one clock cycle access time

• automatic insertion of one wait cycles, if the target register of the load
is addressed before the data is loaded into the target register:

MOVI L0, $C0000000 ; first address in IRAM

LDW.R L0, L1 ; LOAD word from address $C0000000 into L1

 ; automatic insertion of one wait cycle

 ; between LOAD and USE

ADDI L1, 1 ; USE target register L1 of preceding load

8 KBytes (E1-32: 4 KBytes) of memory are provided on-chip. This internal
RAM (IRAM) is mapped to the memory address C000 000016 and wraps
around modulo 8KBytes up to memory address DFFF FFFF16. The IRAM is
implemented as dynamic memory, needing refresh.

The refresh rate must be specified in the MCR bits 18..16 before any use.
The number given in MCR(18..16) specifies the refresh rate in CPU clock
cycles; e.g. 128 specifies a refresh cycle automatically inserted every 128
clock cycles. Each refresh cycle refreshes 16 bytes, thus, 256 refresh cycles
are required to refresh the whole IRAM. Without refresh the dynamic cell
can hold the data for about 80 ms. A high refresh rate does not degrade
performance since the refresh cycles are inserted on idle IRAM cycles
whenever possible.

In order to parallelize accesses to the internal RAM and the externel
memory, a separate memory pipeline has been added for accesses to the
IRAM. This means e.g. that a new instruction can be fetched from the
IRAM while a data load or data store to external memory is still in progress.

The minimum delay for a load access is one cycle; that is, the data is not
available in the cycle after the load instruction. One wait cycle is
automatically inserted if the target register of the load is addressed before
the data is loaded into the target register.

16

16

Unifying RISC and DSP

Peripherals

❑ Peripherals
• I/O Bus Access
• UART of hyICE

• I/O Address Modes

• I/O Access with C Run-Time Library

17

17

Unifying RISC and DSP

I/O Bus Access

❑ I/O Address Bits 25..13 can be used as I/O Address

❑ I/O Bus Timing for an I/O Access is specified
by bits 9..3 of the I/O Address

• address setup time (bit 9, 8)

• access time for read or write access (bit 7..5)

• bus hold time after read or write access (bit 4, 3)

❑ Bit 10 of the I/O Address controls Device Mode
• address bit 10 = 0

IORD# (I/O read strobe)

IOWR# (I/O write strobe)

• address bit 10 = 1

IORD# (data strobe)

WE# (read/write direction)

❑ Bit 12 reserved for System Peripherals

❑ Data Bus Access with fixed 32-bit wide

I/O Device
(Read/Write Strobe Control)

I/O Device
(Read/Write Strobe Control)

IOWR#

/WR

INT1..INT4
IO1..IO3IORD#

INT/RD

D31..D0

D7..D0

D15..D0

D31..D0

A25..A0

A25..A13

I/O Device
(Data Strobe Control)

I/O Device
(Data Strobe Control)

WE#

/RW

INT1..INT4
IO1..IO3

IORD#

INT/DS

A25..A13

D7..D0

D15..D0

D31..D0

18

18

Unifying RISC and DSP

I/O Bus Access: UART of hyICE (1)

❑ UART Startech ST16450
• I/O chip select with A12
• 8 Registers selected by A13..A15
• IORD# (read strobe)

• IOWR# (write strobe)
• interrupt output to INT4

• data bus D7..D0

❑ UART Startech ST16450
• I/O chip select with A12
• 8 Registers selected by A13..A15
• IORD# (read strobe)

• IOWR# (write strobe)
• interrupt output to INT4

• data bus D7..D0

An own application should not use INT4, since this signal is used by the
hyICE and the real-time operating system hyRTK.

19

19

Unifying RISC and DSP

I/O Bus Access: UART of hyICE (2)

• I/O Bus Timing, Device Control Mode and Register Address of UART

SystemChipSelect EQU (%1 << 12) ; Bit 12

DeviceControlMode EQU (%0 << 10) ; Bit 10

AddressSetupTime EQU (%11 << 8) ; Bit 9, 8

AccessTime EQU (%101 << 5) ; Bit 7, 6, 5

BusHoldTime EQU (%11 << 3) ; Bit 4, 3

UARTBaseAddress EQU SystemChipSelect+DeviceControlMode+ \

 AddressSetupTime+AccessTime+BusHoldTime

UARTRegisterOffset EQU (1<<13) ; Bit 15, 14, 13

UARTRegister0 EQU UARTBaseAddress+(UARTRegisterOffset * 0)

UARTRegister1 EQU UARTBaseAddress+(UARTRegisterOffset * 1)

UARTRegister2 EQU UARTBaseAddress+(UARTRegisterOffset * 2)

UARTRegister3 EQU UARTBaseAddress+(UARTRegisterOffset * 3)

UARTRegister4 EQU UARTBaseAddress+(UARTRegisterOffset * 4)

UARTRegister5 EQU UARTBaseAddress+(UARTRegisterOffset * 5)

UARTRegister6 EQU UARTBaseAddress+(UARTRegisterOffset * 6)

UARTRegister7 EQU UARTBaseAddress+(UARTRegisterOffset * 7)

The assembler directive EQU is used to give constant expressions or string
patterns a symbolic name. Any identifier used to define an equate must not
have been previously defined.
Binary numbers are unsigned 32-bit integers beginning with the % character
and followed by a sequence of the characters 0 or 1 with no spaces in
between.
The assembler operator << shifts an operand left by a number of bit
positions.

20

20

Unifying RISC and DSP

I/O Absolute Address Mode

❑ I/O Absolute Address Mode
Notation load instruction: LDx.IOA 0, Rs, dis

Notation store instruction: STx.IOA 0, Rs, dis

Data Type x is with: W: word; D: double-word;

• Absolute addressing of peripheral devices
LDW.IOA 0, L1, UARTRegister0 ; load word from UART reg. 0 to L1

LDW.IOA 0, L1, UARTRegister1 ; load word from UART reg. 1 to L1

LDW.IOA 0, L1, UARTRegister2 ; load word from UART reg. 2 to L1

I/O Absolute Address Mode:

Notation load instruction: LDx.IOA 0, Rs, dis

Notation store instruction: STx.IOA 0, Rs, dis

Data Type x is with:

W: word; D: double-word;

The displacement dis is used as an address into I/O address space.

Address bits one and zero of dis are treated as zero.

Execution of a memory instruction with I/O address mode does not disrupt
any page mode sequence.

The I/O absolute address mode provides code efficient absolute addressing
of peripheral devices and allows simple decoding of I/O addresses.

When on a load instruction only a byte or a halfword is placed on the lower
part of the data bus, the higher-order bits are undefined and must be masked
out before the loaded operand is used further.

21

21

Unifying RISC and DSP

I/O Displacement Address Mode

❑ I/O Displacement Address Mode
Notation load instruction: LDx.IOD Rd, Rs, dis

Notation store instruction: STx.IOD Rd, Rs, dis

Data Type x is with: W: word; D: double-word;

• Dynamic addressing of peripheral devices
MOVI L0, UARTRegister0 ; L0 = address of UART reg. 0

LDW.IOD L0, L1, 0 ; load word from UART reg. 0 to L1

ADDI L0, UARTRegisterOffset ; L0 = L0 + offset to next UART reg

LDW.IOD L0, L1, 0 ; load word from UART reg. 1 to L1

ADDI L0, UARTRegisterOffset ; L0 = L0 + offset to next UART reg

LDW.IOD L0, L1, 0 ; load word from UART reg. 2 to L1

I/O Displacement Address Mode:

Notation load instruction: LDx.IOD Rd, Rs, dis

Notation store instruction: STx.IOD Rd, Rs, dis

Data Type x is with:

 W: word; D: double-word;

The sum of the contents of the destination register Rd plus a signed
displacement dis is used as an address into I/O address space.

The destination register Rd may denote any register except the status
register SR.

Address bits one and zero of dis are treated as zero for the calculation of
Rd + dis.

Execution of a memory instruction with I/O displacement address mode
does not disrupt any page mode sequence.

The I/O displacement address mode provides dynamic addressing of
peripheral devices.

When on a load instruction only a byte or halfword is placed on the lower
part of the data bus, the higher-order bits are undefined and must be masked
out before the loaded operand is used further.

22

22

Unifying RISC and DSP

C Run-Time Library: inpw()

❑ inpw

Synopsis

#include <io.h>

unsigned long int inpw(unsigned long int portid);

Description

The macro inpw reads a 32-bit value from the address portid located
in the hyperstone I/O address space and returns this value as
unsigned long int.

Returns

The macro inpw returns the value read from I/O address space.

23

23

Unifying RISC and DSP

C Run-Time Library: outpw()

❑ outpw

Synopsis

#include <io.h>

unsigned long int outpw(unsigned int long portid,
 unsigned int long value);

Description

The macro outpw writes the 32-bit value to the address portid
located in the hyperstone I/O address space.

Returns

The macro outpw returns the 32-bit value written to portid.

24

24

Unifying RISC and DSP

Inputs and Outputs

❑ Inputs and Outpus
• Function Control Register
• Interrupt Inputs

• Input Status Register

• Wait Pin INT3
• Outputs

• Clock Output

25

25

Unifying RISC and DSP

Interrupts and Function Control Register

❑ Function Control Register FCR

• controls interrupt mask and polarity of

interrupt pins INT4..INT1 (interrupt inputs)

• controls interrupt mask, polarity and direction of

I/O pins IO3..IO1 (general inputs, general outputs or interrupt inputs)

• controls interrupt mask and priority of

internal timer interrupt

• controls polarity and behaviour of

clock output pin CLKOUT (only E1-32X)

• 32-bit write-only register

• all bits are set to one on Reset

The write-only function control register FCR controls the polarity and
interrupt mask of the interrupt pins INT4..INT1 and the I/O pins IO3..IO1,
the timer interrupt mask and the priority of the internal timer interrupt.

Each of the four interrupt pins INT4..INT1 can cause a processor interrupt,
when the corresponding interrupt mask bit INT4Mask..INT1Mask is cleared
(bit 31, 30, 29 and 28). The E1-32/E1-16 only supports level-sensitive
interrupts.

The corresponding polarity bit INT4Polarity..INT1Polarity (bit 27, 26, 25
and 24) determines whether the signal at the interrupt pin INT4..INT1 must
be low (INTxPolarity = 0) or high (INTxPolarity = 1) to cause an interrupt.

The corresponding direction bit IO3Direction..IO1Direction (bit 10, 6 and
2) determines whether the I/O pins IO3..IO1 can be either used as general
input or interrupt input (IOxDirection = 1) or as general output
(IOxDirection = 0).

The corresponding polarity bit IO3Polarity..IO1Polarity (bit 9, 5 and 1)
determines whether the signal at the I/O pin must be low (IOxPolarity = 0)
or high (IOxPolarity = 1) to cause an interrupt, if used as interrupt input.

Each of the three pins IO3..IO1 can cause a processor interrupt, when the
corresponding interrupt mask bit IO3Mask..IO1Mask is cleared (bit 8, 4,
and 0) and the corresponding direction bit is set (IOxDirection = 1).

Bit 23 of the FCR enables or disables the internal timer interrupt. Bit 21..20
specify the priority of the timer interrupt. Priority 12, 10, 8 and 6 are
selectable.

26

26

Unifying RISC and DSP

FCR: Interrupt Inputs INT4..INT1, IO3..IO1

INT4Mask EQU (%0 << 31) ; Bit 31 enable INT4 interrupt
INT3Mask EQU (%0 << 30) ; Bit 30 enable INT3 interrupt
INT2Mask EQU (%0 << 29) ; Bit 29 enable INT2 interrupt
INT1Mask EQU (%0 << 28) ; Bit 28 enable INT1 interrupt
INT4Polarity EQU (%1 << 27) ; Bit 27 INT4 interrupt on high level
INT3Polarity EQU (%1 << 26) ; Bit 26 INT3 interrupt on high level
INT2Polarity EQU (%0 << 25) ; Bit 25 INT2 interrupt on low level
INT1Polarity EQU (%0 << 24) ; Bit 24 INT1 interrupt on low level
IO3Direction EQU (%1 << 10) ; Bit 10 IO3 input
IO2Direction EQU (%1 << 6) ; Bit 6 IO2 input
IO1Direction EQU (%1 << 2) ; Bit 2 IO1 input
IO3Mask EQU (%0 << 8) ; Bit 8 enable IO3 interrupt
IO2Mask EQU (%0 << 4) ; Bit 4 enable IO2 interrupt
IO1Mask EQU (%0 << 0) ; Bit 0 enable IO1 interrupt
IO3Polarity EQU (%1 << 9) ; Bit 9 IO3 interrupt on high level
IO2Polarity EQU (%1 << 5) ; Bit 5 IO2 interrupt on high level
IO1Polarity EQU (%1 << 1) ; Bit 1 IO1 interrupt on high level
IO3Control EQU (%11 << 12) ; Bit 13, 12 IO3 standard mode
TimerMask EQU (%0 << 23) ; Bit 23 enable internal timer interrupt
TimerPriority EQU (%00 << 20) ; Bit 21, 20 Priority 12

FCRValue EQU INT4Mask + INT3Mask + INT2Mask + INT1Mask + \
 INT4Polarity + INT3Polarity + INT2Polarity + INT1Polarity + \
 IO3Mask + IO2Mask + IO1Mask + \
 IO3Polarity + IO2Polarity + IO1Polarity + \
 IO3Direction + IO2Direction + IO1Direction + IO3Control + \
 TimerMask + TimerPriority

All bits of the function control register FCR are set to one on Reset. They
have to be initialized according to the hardware environmnet and the desired
function. The reserved bits 22, 19..18, 15..14, 11, 7 and 3 must not be
changed when the FCR is updated.

A signal of a specified level on any of the interrupt request pins INT4..INT1
or on any of the general input-output pins IO3..IO1 (when configured as
interrupt input) causes an interrupt exception when the interrupt-lock flag L
is zero and the corresponding INTxMask or IOxMask bit in the FCR is not
set.

Bit 15 of the status register SR is the interrupt-lock flag L. When the L flag
is one, all Interrupt, Parity Error and Extended Overflow exceptions are
inhibited. The interrupt-lock flag L is set by any exception (Reset, Interrupt
etc.), thus no further interrupts can occur until the L flag is cleared.

Interrupt signals on INT4..INT1 and IO3..IO1 may be signaled
asynchronously to the processor clock, they are not stored internally. A
transition of INT4..INT1 or IO3..IO1 is effective after a minimum of three
clock cycles. The response time may be much higher depending on the
number of cycles to the end of the current instruction or the number of
cycles until the interrupt-lock flag is cleared.

27

27

Unifying RISC and DSP

Input Status Register

❑ Input Status Register ISR

• Bits 6..4 reflects input level at pins IO3..IO1

• Bits 3..0 reflects input level at pins INT4..INT1

• input levels are not affected by the polarity bits in FCR

• input levels reflect always true signal at corresponding pin

• “1” signals high level at input level

• 32-bit read-only register

The read-only input status register ISR reflects the input level at the pins
IO3..IO1 as well as the input levels at the interrupt pins INT4..INT1.

The input levels are not affected by the polarity bits in the FCR register,
they reflect always the true signal at the corresponding pins with a latency
of 2..3 clock cycles, a “1” signals high level.

Bits 6..4 reflects the input level at the pins IO3..IO1.

The signal level of INT4..INT1 can be inspected in bit 3..0 of the ISR. Thus,
with the corresponding INTxMask bit set, INT4..INT1 can be used just as
input signals.

28

28

Unifying RISC and DSP

Minimum Access TimeAddress Setup Time Bus Hold Time

INT3 ignored

Additional
Access Time

Total Access Time

Access with Wait Pin INT3 (E1-32X)

• Stretched I/O access
Bit 11 of the I/O address enables wait-pin INT3 controlled I/O access

• Stretched memory access for memory area MEM2 and MEM3

Bit 27 and 26 of the MCR enables wait-pin INT3 controlled memory
access

• wait-pin INT3 controlles termination of access
• minimum access time of 4 cycles

INT3

CLK

OE#

assert deassert

Example: memory read access

29

29

Unifying RISC and DSP

FCR: Outputs IO3..IO1

...
IO3Direction EQU (%1 << 10) ; Bit 10 IO3 output
IO2Direction EQU (%1 << 6) ; Bit 6 IO2 output
IO1Direction EQU (%1 << 2) ; Bit 2 IO1 output
IO3Mask EQU (%1 << 8) ; Bit 8 IO3 Output reflects IO3Polarity
IO2Mask EQU (%1 << 4) ; Bit 4 IO2 Output reflects IO2Polarity
IO1Mask EQU (%1 << 0) ; Bit 0 IO1 Output reflects IO1Polarity
IO3Polarity EQU (%1 << 9) ; Bit 9 IO3 Polarity non-inverted
IO2Polarity EQU (%1 << 5) ; Bit 5 IO2 Polarity non-inverted
IO1Polarity EQU (%0 << 1) ; Bit 1 IO1 Polarity inverted
IO3Control EQU (%11 << 12) ; Bit 13, 12 IO3 standard mode
...

FCRValue EQU INT4Mask + INT3Mask + INT2Mask + INT1Mask + \
 INT4Polarity + INT3Polarity + INT2Polarity + INT1Polarity + \
 IO3Mask + IO2Mask + IO1Mask + \
 IO3Polarity + IO2Polarity + IO1Polarity + \
 IO3Direction + IO2Direction + IO1Direction + IO3Control + \
 TimerMask + TimerPriority

hyperstone E1-32 Development Board with two on-board LED’s

IO1 drives red LED1

IO2 drives green LED2

The I/O pins IO3..IO1 are configured as output if the corresponding
direction bit IO3Direction..IO1Direction (bit 10, 6, 2) is set.

In this case the polarity bit IO3Polarity..IO1Polarity (bit 9, 5, 1) in the FCR
specifies the output signal level at the corresponding I/O pin.

IOxPolarity = 1 specifies a high level.

IOxPolarity = 0 specifies a low level.

The interrupt mask bit IO3Mask..IO1Mask (bit 8, 4, 0) must be set (disable
interrupt), when the corresponding I/O pin is used as output.

hyperstone E1-32 Development Board

The hyperstone E1-32 Development Board has two on-board LED’s driven
by pin IO1 and IO2:

IO1 drives the red LED1.

IO2 drives the green LED2.

LED1 and LED2 can be disconnected separately by board jumper group J3
when using the corresponding I/O pin as input.

30

30

Unifying RISC and DSP

FCR: Clock Output CLKOUT (only E1-32X)

❑ Bit 22 of FCR controls polarity of CLKOUT

❑ Bit 19..18 of FCR controls clock rate of CLKOUT

FCR(19) FCR(18) CLKOUT
1 1 static level
1 0 Processor Clock
0 1 Processor Clock : 2
0 0 Processor Clock : 4

31

31

Unifying RISC and DSP

Internal Timer

❑ Internal Timer
• Timer Prescaler Register TPR
• Timer Register TR

• Timer Compare Register TCR

• Timer Prescaler Register TPR and PLL

32

32

Unifying RISC and DSP

Internal Timer

❑ On-chip Timer
• controlled via three 32-bit registers:

Timer Prescaler Register TPR

Timer Register TR

Timer Compare Register TCR

• TR is incremented by one each time unit modulo 232

• internal timer interrupt generated when:

TR ≥ ≥ TCR ⇒⇒ result(31..0) := TR(31..0) - TCR(31..0)

result(31) = 0

and timer interrupt in FCR enabled

• internal timer interrupt cleared by:

loading the TCR with a value > than the current content of the TR

• A timer delay time in the TCR is calculated according to the formula:

TCR Value = current content of TR + numbers of delay time units

The on-chip timer is controlled via the three registers:

Timer Prescale Register TPR

Timer Register TR

Timer compare register TCR

The TR is a 32-bit register which is incremented by one each time unit
modulo 232. The content of the TCR is compared continuously with the
content of the Timer Register TR. When the internal timer interrupt is
enabled (bit 23 in FCR cleared) and the value in the TR is higher than or
equal to the value in the TCR, a timer interrupt is generated.

This timer interrupt is cleared by loading the TCR with a value higher than
the current content of the TR.

The timer interrupt can be masked out by setting bit 23 of the Function
Control Register FCR to one (default after Reset). This bit does not affect
the timer and compare function.

A timer delay time in the TCR is calculated according to the formula:

TCR Value = current content of TR + number of delay time units

The maximum number of delay time units allowed for this calculation is
231-1.

33

33

Unifying RISC and DSP

Timer Prescaler Register (1)

❑ Timer Prescaler Register TPR

• Bits 23..16 of the TPR contain the Prescaler Value

• Prescaler Value adapts timer clock to different processor clock frequencies:

• Prescaler Value is calculated according to the formula:

Prescaler Value = (Time Unit * Frequency of Processor Clock) - 2

• Prescaler Value must be in the range of 0..255

• Bits 23..16 are set to zero on Reset

Frequency of Timer Clock
Frequency of Processor Clock

Prescaler Value + 2
=

34

34

Unifying RISC and DSP

Timer Prescaler Register (2)

❑ Timer Prescaler Register TPR

• Bits 27..26 of the TPR control internal phased locked loop PLL (only E1-32X)

• PLL provides processor clock rate multiplication of the input clock

• Bits 27..26 are set to 102 on Reset

TPR(27) TPR(26) Clock Rate Multiplication
1 1 Processor Clock = Clock Input : 2
1 0 Processor Clock = Clock Input (default after Reset)
0 1 Processor Clock = Clock Input x 2
0 0 Processor Clock = Clock Input x 4

Defining Prescaler Value (example)

PLLClockDivider EQU %10 << 26 ; CPU Clock = Clock Input

TimeUnit EQU 1 ; in microseconds (10^-6)

ProcessorClock EQU 50 ; in megahertz (10^6)

PrescalerValue EQU ((TimeUnit * ProcessorClock) - 2) << 16

TPRValue EQU PLLClockDivider + PrescalerValue

35

35

Unifying RISC and DSP

Runtime Stack

❑ Runtime Stack
• Local Registers and Stack Frame
• Runtime Stack

• Register Stack

36

36

Unifying RISC and DSP

Local Registers and Stack Frame

❑ Local Registers

• 64 local registers of 32 bits each

• each local register can be used as operand register, as source register and as

destination register of an instruction

• organized into a 64-word circular register stack to hold subprogram stack

frames

❑ Stack Frame

• a set of up to 16 local registers

• automatically allocated upon subprogram entry (CALL or TRAP instruction)

• automatically released upon subprogram return (RET instruction)

• stack frames can overlap to pass parameters (FRAME instruction)

The hyperstone RISC technology is based on a load-store architecture. It is
register-oriented and build around a 32-bit wide register stack that holds 64
general purpose local registers. Each local register can be used as operand
register, as source register and as destination register of an instruction.

The local registers are organized into a 64-word, circular register stack to
hold subprogram stack frames. A stack frame is a set of up to 16 local
registers, its registers can be addressed by an instruction as L0..L15.

The Call instruction and the Trap instruction causes a branch to a
subprogram. These instructions create a new stack frame with a length of six
local registers. The contents of the global program counter register PC and
the global status register SR are automatically saved into the first two
registers (L0 and L1) of the new stack frame.

The Return instruction returns control from a subprogram entered through a
Call or a Trap to the instruction located at the return address and restores the
status from the saved return status. The Return instruction releases the
current stack frame and restores the preceding stack frame.

A Frame instruction restructures the current stack frame. The current stack
frame can overlap with the previous stack frame at a variable range to pass
parameters between two subprograms.

37

37

Unifying RISC and DSP

Runtime Stack (1)

❑ Runtime Stack

• divided into a memory part (hardware stack) and a register part (register

stack)

❑ Register Part of Runtime Stack (register stack)

• holds most recent stack frames

• current stack frame is always kept in the register part of the stack

• frame pointer FP points to the first register of the current stack frame

(addressed as local register L0)

• frame length FL indicates the number of registers (maximum 16) assigned

to the current stack frame

The runtime stack holds generations of stack frames in last-in-first-out order
and is divided into a memory part and a register part.

The register part of the stack, implemented by the 64 local registers
organized as a circular buffer, holds the most recent stack frames. The
current stack frame is always kept in the register part of the stack.

The frame pointer FP points to the first register of the current stack frame
(addressed as register L0). All registers of a stack frame are addressed
relative to this pointer. The frame length FL indicates the number of local
registers (maximum 16) assigned to the current stack frame. FP and FL are
part of the global status register SR.

The real-time operating system hyRTK supports multiple runtime stacks.
Each user task (stack-level task) has its own runtime stack.

38

38

Unifying RISC and DSP

Runtime Stack (2)

❑ Memory Part of Runtime Stack (hardware stack)

• stack frames are pushed to the memory part of the runtime stack, if the

register stack overflows

• stack frames are popped from the memory part of the runtime stack, if the

register stack underflows

• overflow and underflow of the register stack is managed automatically

• global stack pointer register SP contains the address of the first free

memory location + 4 in which the first local register would be saved by a

push operation

• global upper stack bound register UB guards the memory part of the

runtime stack

Stack frames are automatically pushed to the memory part of the runtime
stack, if the register stack overflows. Stack frames are automatically popped
from the memory part of the runtime stack, if the register stack underflows.

The global stack pointer register SP contains the top address + 4 of the
memory part of the stack, that is the address of the first free memory
location in which the first local register would be saved by a push operation
to the memory part of the runtime stack.

The memory part of the runtime stack grows from low to high address and
is guarded by the global upper stack bound register UB. The UB contains
the address beyond the highest legal memory stack location. It is used by the
Frame instruction to inhibit stack overflow.

A small stack space can be reserved above UB. UB can then be set to a
higher value by a Frame Error handler to free stack space for error handling.

39

39

Unifying RISC and DSP

Register Stack (1)

A: FRAME L9, L0 ; set frame length FL = 9

 :

 code of function A
 : ; L7 and L8 contain parameters to pass B
 CALL L9, 0, B ; call function B
 :
 code of function A

 :
 RET PC, L0 ; return to function calling A, restore frame

B: FRAME L11, L2 ; set frame length FL = 11, decrement FP by 2
 : ; passed parameter1 can now be addressed in L0
 : ; passed parameter2 can now be addressed in L1
 :
 code of function B
 :
 RET PC, L2 ; return to function A, frame A is restored by
 ; copying return PC and return SR in L2 and L3
 ; of frame B to PC and SR

A: FRAME L9, L0 ; set frame length FL = 9

 :

 code of function A
 : ; L7 and L8 contain parameters to pass B
 CALL L9, 0, B ; call function B
 :
 code of function A

 :
 RET PC, L0 ; return to function calling A, restore frame

B: FRAME L11, L2 ; set frame length FL = 11, decrement FP by 2
 : ; passed parameter1 can now be addressed in L0
 : ; passed parameter2 can now be addressed in L1
 :
 code of function B
 :
 RET PC, L2 ; return to function A, frame A is restored by
 ; copying return PC and return SR in L2 and L3
 ; of frame B to PC and SR

Because the complete stack management is accomplished automatically by
the hardware, programming the stack handling instructions is easy and does
not require any knowledge of the internal working of the stack.

The above example demonstrate how the Call, Frame and Return
instructions are applied to achieve the stack behaviour of the register part of
the stack shown in the next figure.

A currently activated function A has a frame length of FL = 9. A call to
function B needs 2 parameters to be passed. The parameters are placed by
function A in registers L7 and L8 before calling B. The Call instruction
addresses L9 as destination for the return PC and return SR register pair to
be used by function B on return to function A.

On entry of function B, the new frame of B has an implicit length of FL = 6.
It starts physically at the former register L9 of frame A. However, since the
frame pointer FP has been incremented by 9 by the Call instruction, this
register location is now being addressed as L0 of frame B. The passed
parameters cannot be addressed because they are located below the new
register L0 of frame B. To make them addressable, a Frame instruction
decrements the frame pointer FP by 2. The frame instruction must be
executed immediately after the preceding Call instruction, otherwise an
Interrupt, Parity Error, Extended Overflow or Trace exception could
seperate the Call from the corresponding Frame instruction before the frame
pointer FP is decremented to include the passed parameters.

40

40

Unifying RISC and DSP

Register Stack (2)

A: FRAME L9, L0

 ...

 CALL L9, 0, B

 ...

 RET PC, L0

B: FRAME L11, L2

 ...

 RET PC, L2

A: FRAME L9, L0

 ...

 CALL L9, 0, B

 ...

 RET PC, L0

B: FRAME L11, L2

 ...

 RET PC, L2

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

L15

Frame
Pointer
(FP)

current
length
of
frame A
FL = 9

must not
be used

FP+FL
L0

L1

L2

L3

L4

L5

New
FP

current
length
of
frame B
FL = 6

parameters

for frame B

ret. PC for A

ret. SR for A

ret. PC for B

ret. SR for B

FP+FL

reserved for

max. number

of variables

in frame B

ret. PC for A

ret. SR for A

New
FP

current
length
of
frame B
FL = 11

parameters

for frame B

ret. PC for B

ret. SR for B

FP+FL

ret. PC for A

ret. SR for A

reserved

for

maximum

number of

variables

in frame B

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

parameters

for frame B

for

max. number

of variables

in frame A

reserved

after FRAME L9, L0 after CALL L9, 0, B after FRAME L11, L2after FRAME L9, L0 after CALL L9, 0, B after FRAME L11, L2

41

41

Unifying RISC and DSP

Miscellaneous Topics

❑ Privilege States
❑ Trap Entry Table

❑ Interrupt-Lock Flag L
❑ Global Registers

• Global Registers

• High Global Flag

❑ Supervisor State
❑ Runtime Stack Initialization

❑ Power-Down Mode
❑ Sleep Mode

42

42

Unifying RISC and DSP

❑ Supervisor State Flag S of the Status Register SR controls Privilege State

• User State S = 0

• Supervisor State S = 1

❑ Entering into Supervisor State
• Executing a Trap

• Exception Processing (ordered by priority)

Privilege States

Reset

Range, Pointer, Frame and Privilege
Error

Extended Overflow

Parity Error

Interrupt and Timer Interrupt

Trace Exception

Reset

Range, Pointer, Frame and Privilege
Error

Extended Overflow

Parity Error

Interrupt and Timer Interrupt

Trace Exception

Trap 0 .. Trap 63Trap 0 .. Trap 63

43

43

Unifying RISC and DSP

Trap Entry Table (1)

• Trap Entry Table contains up to 64 entries
• Entries of the Trap Entry Table are intended to each contain an instruction

branching to the associated function.

• Spacing of the entries is 4 bytes
• Trap Entries TRAP 0 .. TRAP 55

Address Trap Entry Description Example of Instruction

FFFF FF00 TRAP 0 TRAP0: MOVI PC, #Trap0

FFFF FF04 TRAP 1 TRAP1: MOVI PC, #Trap1

: : :

FFFF FFC0 TRAP 48 IO2 Interrupt -- priority 15 TRAP48: MOVI PC, #IO2Interrupt

FFFF FFC4 TRAP 49 IO1 Interrupt -- priority 14 TRAP49: MOVI PC, #IO1Interrupt

FFFF FFC8 TRAP 50 INT4 Interrupt -- priority 13 TRAP50: MOVI PC, #INT4Interrupt

FFFF FFCC TRAP 51 INT3 Interrupt -- priority 11 TRAP51: MOVI PC, #INT3Interrupt

FFFF FFD0 TRAP 52 INT2 Interrupt -- priority 9 TRAP52: MOVI PC, #INT2Interrupt

FFFF FFD4 TRAP 53 INT1 Interrupt -- priority 7 TRAP53: MOVI PC, #INT1Interrupt

FFFF FFD8 TRAP 54 IO3 Interrupt -- priority 5 TRAP54: MOVI PC, #IO3Interrupt

FFFF FFDC TRAP 55 Timer Interrupt -- priority selectable as 6, 8, 10, 12 TRAP55: MOVI PC, #TimerInterrupt

44

44

Unifying RISC and DSP

Trap Entry Table (2)

• Trap Entries TRAP 56 .. TRAP 63

Address Trap Entry Description Example of Instruction

FFFF FFE0 TRAP 56 Reserved -- priority 17 (lowest) TRAP56: MOVI PC, #TrapReservecd

FFFF FFE4 TRAP 57 Trace Exception -- priority 16 TRAP57: MOVI PC, #TraceException

FFFF FFE8 TRAP 58 Parity Error -- priority 4 TRAP58: MOVI PC, #ParityError

FFFF FFEC TRAP 59 Extended Overflow -- priority 3 TRAP59: MOVI PC, #OverflowError

FFFF FFF0 TRAP 60 Range, Pointer, Frame and Privilege Error -- priority 2 TRAP60: MOVI PC, #MiscError

FFFF FFF4 TRAP 61 Reserved -- priority 1 TRAP61: MOVI PC, #TrapReservecd

FFFF FFF8 TRAP 62 Reset -- priority 0 (highest) TRAP62: MOVI PC, #ResetEntry

FFFF FFFC TRAP 63 Error entry for instruction code of all ones TRAP63: MOVI PC, #AllOnesError

• Bits 14..12 of the MCR map the Trap Entry Table to one of the memory areas
MEM0..MEM3 or the IRAM

• Trap Entry Table is mapped to the end of memory area MEM3 after Reset

45

45

Unifying RISC and DSP

Interrupt-Lock Flag L

❑ Interrupt-Lock Flag L of Status Register SR controls Exception Inhibition

L = 1 inhibits exceptions

❑ Interrupt-Lock Flag L is automatically set to one by any Exception

❑ Interrupt-Lock Flag L can not be set to one in User State

Interrupt

Parity Error

Extended Overflow

Interrupt

Parity Error

Extended Overflow

46

46

Unifying RISC and DSP

Global Registers

❑ 16 Global Registers

G0 Program Counter PC
G1 Status Register SR
G2 Floating-point Exception Register FER
G3..G15 General purpose registers

G0 Program Counter PC
G1 Status Register SR
G2 Floating-point Exception Register FER
G3..G15 General purpose registers

G16..G17 Reserved
G18 Stack Pointer SP
G19 Upper Stack Bound UB
G20 Bus Control Register BCR
G21 Timer Prescaler Register TPR
G22 Timer Compare Register TCR
G23 Timer Register TR
G24 Watchdog Compare Register WCR
G25 Input Status Register ISR
G26 Function Control Register FCR
G27 Memory Control Register MCR
G28..G31 Reserved

G16..G17 Reserved
G18 Stack Pointer SP
G19 Upper Stack Bound UB
G20 Bus Control Register BCR
G21 Timer Prescaler Register TPR
G22 Timer Compare Register TCR
G23 Timer Register TR
G24 Watchdog Compare Register WCR
G25 Input Status Register ISR
G26 Function Control Register FCR
G27 Memory Control Register MCR
G28..G31 Reserved

❑ 16 High Global Registers

47

47

Unifying RISC and DSP

Global Registers and High Global Flag

• High Global Flag H of Status Register SR controls access to Global Registers

high global flag = 0high global flag = 0

denotion of
G0..G15

denotion of
G0..G15

high global flag = 1high global flag = 1

addresses
G0..G15

addresses
G0..G15

addresses
G16..G31

addresses
G16..G31

• High Global Flag is effective only the first cycle of the next instruction after it was set

• High Global Flag is cleared automatically

• Only the MOV or MOVI instruction can be used to access a High Global Register

ORI SR, 1<<5 ; set high global flag H in Status Register
MOVI G7, 0 ; access high global register G23 (Timer Register)
MOVI G7, 0 ; access global register G7

ORI SR, 1<<5 ; set high global flag H in Status Register
MOVI TR, 0 ; access high global register G23 (Timer Register)

ORI G1, 1<<5 ; set high global flag H in Status Register
MOV L0, G23 ; access high global register G23 (Timer Register)

ORI SR, 1<<5 ; set high global flag H in Status Register
MOVI G7, 0 ; access high global register G23 (Timer Register)
MOVI G7, 0 ; access global register G7

ORI SR, 1<<5 ; set high global flag H in Status Register
MOVI TR, 0 ; access high global register G23 (Timer Register)

ORI G1, 1<<5 ; set high global flag H in Status Register
MOV L0, G23 ; access high global register G23 (Timer Register)

48

48

Unifying RISC and DSP

Supervisor State

❑ Privileged to be executed only in Supervisor State

Supervisor State Flag S = 1

• Copying an operand to any of the high global registers

• Changing the interrupt-lock flag L from zero to one

• Returning through a Return instruction to Supervisor State

saved return Program Counter
in Local Register

31 0

saved return Status Register
in Local Register

31 18 0

S

S

Program Counter
31 0

Status Register
31 18 0

S

S

RETURNRETURN
CALL
TRAP

EXCEPTION

CALL
TRAP

EXCEPTION

The Supervisor State Flag S does not affect the behaviour of the Program
Counter PC, since program instructions are located on halfword boundaries.
Bit zero of the PC is always interpreted as zero by the instruction execution
unit.

49

49

Unifying RISC and DSP

Runtime Stack Initialization (1)

• Stack pointer register SP, upper stack bound register UB and frame
pointer FP must be initialized, before a Call or Trap instruction can be
executed, since the register stack is in an undefinded state after Reset

• Bits 31..25 of the status register SR represent the frame pointer FP.

• Least significant six bits of the FP (bits 30..25) must point to the
beginning of the current stack frame in the register stack, that is, they
point to L0

• Frame pointer FP must contain bits 8..2 of the stack pointer register
SP

• Bits 24..21 of the status register SR represent the frame length FL of
the current stack frame

• Frame length FL = 0 is always interpreted as FL = 16

Frame Pointer Frame Length

2829

FL

31 30 27 26 25 24 23 22 21 20 19 18 17 16

FP

Status Register SR (global register G1)

Bit

S

Supervisor State Flag

1213

H

15 14 11 10 9 8 7 6 5 4 3 2 1 0

High Global Flag

L

Interrupt-Lock Flag

50

50

Unifying RISC and DSP

Runtime Stack Initialization (2)

• The following code sequence shows an example which can be used to
set up SP, UB and FP after Reset

StackBase EQU $C000000 ; base address of hardware stack
StackSize EQU $1000 ; stack size of hardware stack

AfterReset:
 ORI SR, 1<<5 ; set high global flag H
 MOVI SP, StackBase ; set base address of hardware stack

 ORI SR, 1<<5 ; set high global flag H
 MOVI UB, StackBase+StackSize ; set upper bound of stack

 MOVI L0, StackInitialized ; initialize return PC
 ORI L0, 1 ; set supervisor state flag S in L0
 ; -> return to supervisor state

 MOVI L1, StackBase<<(25-2) ; bits 31..25 of SR contain
 ; bits 8..2 of SP
 ORI L1, 1<<15 ; set interrupt-lock flag L in L1
 ; -> disable all interrupts
 RET PC, L0 ; restore saved PC and saved SR
 ; located in L0 and L1
StackInitialized:
 FRAME L0, L0 ; runtime stack is set up
 ...

The memory part of the runtime stack is located in this example in the
internal RAM of the hyperstone E1-32 (memory address C000 000016).

The frame pointer FP can only be set by returning to supervisor state
through a return instruction. The supervisor state flag S is saved in bit zero
of the saved return PC of the current stack frame (L0 in the above example).
The Return instruction restores the saved S flag from this bit position to the
S flag in bit position 18 of the SR (thereby overwriting the bit 18 returned
from the saved return SR).

After Reset, the interrupt-lock flag L (bit 15 of the status register SR) is set.
When the L flag is one, all Interrupt, Parity Error and Extended Overflow
exceptions are inhibited. Changing the L flag from zero to one is privileged
to supervior or return from supervisor to supervisor state. A trap to Privilege
Error occurs if the L flag is set under program control from zero to one in
user state. The L flag is set to one by any exception (e.g. Reset, Interrupt,
etc.).

The L flag is set in the return SR, since all interrupts should be locked out
after initialization of the runtime stack. The Return instruction restores the
saved status register (L1 in the above example) to the SR.

51

51

Unifying RISC and DSP

Power-Down Mode

❑ Power-Down Mode

• Power-Down Mode is entered by a 1-to-0 transition of MCR(22)

• Execution Pipeline is halted

• Clocked Logic

Timer

IO3 control modes
Interrupt

DRAM refresh

IRAM refresh

• Resumes execution at

any Interrupt

Reset (external, watchdog)

Supply Voltage: 5V
Clock Frequency
[MHz]

Power consumption
typical [mW]

Power consumption
power-down [mW]

10 200 5
25 380 12
33 470 16
40 540 20
50 650 25
66 800 33

52

52

Unifying RISC and DSP

Sleep Mode (only E1-32X)

❑ Sleep Mode
• Sleep Mode is entered via

I/O Write: A(27) = 1, A(25..22) = 1

• Processor Clock is switched off

• Content will be lost during sleep mode

Timer count

internal RAM

DRAM

• Resumes execution at

any Interrupt

External Reset

• After Processor awakes it continues with standard reset procedure

53

53

Unifying RISC and DSP

Assembler Example (without Real-Time Operating System)

❑ 2 LED’s
• IO1 drives red LED1
• IO2 drives green LED2

❑ I/O Device
• INT1 switches red LED1 on
• INT2 switches red LED1 off
• Interrupt INT1 and INT2 can

be cleared via write access
❑ Internal Timer

• toggles green LED2 each 1 second
❑ Initialization of E1-32

• BCR, MCR and FCR
• Run-time stack
• internal Timer

❑ Used Software Development Tools
• Macro Assembler hyMasm
• Linker hyLink
• EPROM Formatter hyEPROM

I/O DeviceI/O Device

IOWR#

/WR

INT1

INT1

D31..D0
D7..D0

A25..A0

INT2

INT2

IO1 IO2

R R

+ 5V

internal Timer

on

off

toggle

Red
LED1

Green
LED2

54

54

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyMasm, hyLink, hyEPROM

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.obj

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

55

55

Unifying RISC and DSP

Assembler Segment: EntryTable

❑ entrytab.asm
XREF InterruptINT1 ; turns red LED1 on (connected to IO1)
XREF InterruptINT2 ; turns red LED1 off
XREF TimerInterrupt ; toggles green LED2 (connected to IO2)
XREF ResetEntry
XREF TrapNotUsed
XREF SetPowerDown

SEGMENT TRAP17
TRAP17: MOVI PC, #SetPowerDown ; located at address FFFF FF44

SEGMENT EntryTable
TRAP48: MOVI PC, #TrapNotUsed ; located at address FFFF FFC0
TRAP49: MOVI PC, #TrapNotUsed ; located at address FFFF FFC4
TRAP50: MOVI PC, #TrapNotUsed ; located at address FFFF FFC8
TRAP51: MOVI PC, #TrapNotUsed ; located at address FFFF FFCC
TRAP52: MOVI PC, #InterruptINT2 ; located at address FFFF FFD0
TRAP53: MOVI PC, #InterruptINT1 ; located at address FFFF FFD4
TRAP54: MOVI PC, #TrapNotUsed ; located at address FFFF FFD8
TRAP55: MOVI PC, #TimerInterrupt ; located at address FFFF FFDC
TRAP56: MOVI PC, #TrapNotUsed ; located at address FFFF FFE0
TRAP57: MOVI PC, #TrapNotUsed ; located at address FFFF FFE4
TRAP58: MOVI PC, #TrapNotUsed ; located at address FFFF FFE8
TRAP59: MOVI PC, #TrapNotUsed ; located at address FFFF FFEC
TRAP60: MOVI PC, #TrapNotUsed ; located at address FFFF FFF0
TRAP61: MOVI PC, #TrapNotUsed ; located at address FFFF FFF4
TRAP62: MOVI PC, #ResetEntry ; located at address FFFF FFF8
TRAP63: MOVI PC, #TrapNotUsed ; located at address FFFF FFFC
END TRAP62

The XREF directive specifies that the label in the operand field is a label
defined in another module. The reference will be resolved by the linker. The
label must not be defined in the current module.

Syntax:
XrefDirective ::= XREF Label

A SEGMENT assembler directive defines where the following code or data is
to be placed at link time. A SEGMENT directive consists of the reserved word
SEGMENT followed by an identifier denoting the segment name.

When assembling a source file, the assembler places all code and/or data in
the current segment until the next segment directive is encountered.

Up to 64 different segments may be used in a program. This allows for great
flexibility and meets all requirements even for large systems.

Syntax:
SegmentDirective ::= SEGMENT Identifier

The END directive informs the cross-assembler of the end of the source input
file. If the optional Label behind END is present, it is used as the start address
of the program. This start address is included in the object file and passed to
the linker. During the linking process, only one module may have a start
address, otherwise an error results.

Any text found after an END directive is ignored.

Syntax:
EndDirective ::=[LabelDefinition] END [Label]

56

56

Unifying RISC and DSP

Assembler Segment: ResetSegment (1)

❑ reset.asm (part 1)
INCLUDE "system.inc"

XDEF ResetEntry

XREF InitializationReady ; after initialization branch to this address

XREF FCRVariable ; variable to store write-only FCR

SEGMENT ResetSegment

ResetEntry:

; all interrupts are inhibited,

; because interrupt-lock flag L is set after Reset

; instruction execution in Supervisor State after Reset

...

The INCLUDE assembler directive allows the insertion of source code from
another file into the current source file during assembly. The included file is
assembled into the current source file immediately after the directive. When
the EOF (end-of-file) of the included file is reached, the assembly resumes
on the line after the include directive.

The file to be included is named in the string constant after the INCLUDE
directive. A file name may contain a path. If the file does not exist, an error
results and the assembly is aborted. Recursive includes also result in an
error.

The assembler hyMasm searches for source files to be included in the
current directory and in each directory listed in the MS-DOS environment
variable HYGCCINC.

Syntax:

IncludeDirective ::= INCLUDE StringConstant

The XDEF directive defines a label in the current module as an external
symbol that is to be made visible to other modules at link time. The operand
must reference a label which is defined anywhere in the assembly file.

Syntax:

XdefDirective ::= XDEF Label

57

57

Unifying RISC and DSP

Assembler Segment: VariablesSegment

❑ var.asm

XDEF FCRVariable

SEGMENT VariablesSegment

FCRVariable: D.WU ; variable to store write-only 32 bit FCR

END

Data declaration directives are used to allocate memory. Two types of data
storage are allowed, scalar and array. The following table shows the
available data declaration types, the corresponding data types and the
alignment rules:
Type Data Type Alignment

D.BU unsigned byte byte boundary

D.BS signed byte byte boundary

D.BC character string byte boundary

D.HU unsigned halfword halfword boundary

D.HS signed halfword halfword boundary

D.WU unsigned word word boundary

D.WS signed word word boundary

D.WF single- precision floating-point word boundary

D.DF double-precision floating-point word boundary

The assembler automatically aligns data based on its data type. All labels
denoting data declaration directives are automatically adjusted to denote the
exact begin of the corresponding data declaration.

Syntax:
ScalarDeclaration ::= Type [ConstExpression]

Type ::= D.BU | D.BS | D.BC |

 D.HU | D.HS |

 D.WU |D.WS | D.WF |

 D.DF

A single data element of the specified type is reserved. The memory
location may be initialized.

58

58

Unifying RISC and DSP

System Include File

❑ system.inc

BCRValue EQU $F37505CB ; specify according to the connected hardware
MCRValue EQU $FDD9F0F0 ; specify according to the connected hardware
PowerDown EQU 1<<22 ; power-down bit in MCR

PLLClockDivider EQU %10 << 26 ; CPU Clock = Clock Input
TimeUnit EQU 1 ; in microseconds (10^-6)
ProcessorClock EQU 50 ; in megahertz (10^6)
PrescalerValue EQU ((TimeUnit * ProcessorClock) - 2) << 16
TPRValue EQU PLLClockDivider + PrescalerValue
TimerInterval EQU 1000000 ; 1 000 000 microseconds

StackBase EQU $C0000000 ; first address of IRAM
StackSize EQU $400 ; size: 1Kbyte

FCRValue EQU $CF7FFF99
IO1Polarity EQU (%1 << 1)
IO2Polarity EQU (%1 << 5)

PeripheralAddr EQU $03FFF7F8 ; specify according to the connected hardware
ClearINT1 EQU $F ; value to clear INT1
ClearINT2 EQU $0 ; value to clear INT2

59

59

Unifying RISC and DSP

Assembler Segment: ResetSegment (2)

❑ reset.asm (part 2)
; initialize BCR and MCR
; enable refresh of the IRAM
ORI SR, 1<<5 ; set high global flag H
MOVI BCR, BCRValue ; set BCR

ORI SR, 1<<5 ; set high global flag H
MOVI MCR, MCRValue ; set MCR

; initialize TPR and TR
ORI SR, 1<<5 ; set high global flag H
MOVI TPR, TPRValue ; set timer prescaler register
ORI SR, 1<<5 ; set high global flag H
MOVI TR, 0 ; set timer register

...

60

60

Unifying RISC and DSP

Assembler Segment: ResetSegment (3)

❑ reset.asm (part 3)

; enable external interrupt INT1 and INT2
; set polarity of INT1 and INT2 to non-inverted
; enable internal timer interrupt
; set priority of timer interrupt to 6
; set IO1 and IO2 to output state
; set polarity of IO1 and IO2 to Inverted
; interrupts are still inhibited

MOVI L0, FCRValue
STW.A 0, L0, FCRVariable ; store FCRValue in FCRVariable

ORI SR, 1<<5 ; set high global flag H
MOV FCR, L0 ; set FCR
...

The content of the Function Control Register FCR is saved in the variable
FCRVariable, since this register is write-only.

Absolute Address Mode:

Notation load instruction: LDxx.A 0, Rs, dis

Notation store instruction: STxx.A 0, Rs, dis

Data Type xx is with:

BU: byte unsigned; HU: halfword unsigned; W: word;

BS: byte signed; HS: halfword signed; D: double-
word;

The displacement dis is used as an address into memory address space.

In the case of all data types except byte, address bit zero of dis is treated as
zero.

The displacement dis provides absolute addressing at the beginning and the
end of the memory.

61

61

Unifying RISC and DSP

Assembler Segment: ResetSegment (4)

❑ reset.asm (part 4)
; initialize run-time stack
ORI SR, 1<<5 ; set high global flag H
MOVI SP, StackBase ; set base address of stack

ORI SR, 1<<5 ; set high global flag H
MOVI UB, StackBase+StackSize ; set upper bound of stack

MOVI L0, InitializationReady ; initialize return PC
MOVI L1, StackBase<<(25-2) ; bits 31..25 of SR contain bits 8..2 of SP

RET PC, L0 ; restore saved PC and SR located in L0 and L1
 ; supervisor state flag S is not set in L0
 ; interrupt-lock flag L is not set in L1
END

After the hardware is initialized, instruction execution continues at
InitializationReady.

62

62

Unifying RISC and DSP

Assembler Segment: MainSegment

❑ main.asm
XDEF InitializationReady

SEGMENT MainSegment

InitializationReady:

FRAME L0, L0 ; 16 Registers in stack frame

 ; interrupt-lock flag is now cleared

 ; runtime stack is set up

WaitForInterrupt:

TRAP 17 ; set power-down mode

BR WaitForInterrupt ; looping forever

END

63

63

Unifying RISC and DSP

Assembler Segment: InterruptSegment (1)

❑ intr.asm (part 1)
INCLUDE "system.inc"

XDEF InterruptINT1 ; turns red LED1 on (connected to IO1)
XDEF InterruptINT2 ; turns red LED1 off
XDEF TimerInterrupt ; toggles green LED2 (connected to IO2)
XDEF TrapNotUsed
XDEF SetPowerDown
XREF FCRVariable

SEGMENT InterruptSegment

SetPowerDown:
FRAME L3, L0
MOVI L2, MCRValue
ORI SR, 1<<5 ; set high global flag H
MOV MCR, L2 ; set power-down bit from 0 to 1
ANDNI L2, 1<<22 ; set power-down mode
ORI SR, 1<<5 ; set high global flag H
MOV MCR, L2 ; power down is set, program stops
RET PC, L0 ; return is executed after power up

TrapNotUsed: ; referenced in Entry Table
FRAME L2, L0 ; FL = 2; L0 = return PC, L1 = return SR
RET PC, L0

64

64

Unifying RISC and DSP

Assembler Segment: InterruptSegment (2)

❑ intr.asm (part 2)
TimerInterrupt:
FRAME L3, L0 ; FL = 3; L0 = return PC, L1 = return SR

LDW.A 0, L2, FCRVariable ; load FCRVariable
XORI L2, IO2Polarity ; toggle IO2Polarity bit
STW.A 0, L2, FCRVariable ; store FCRVariable

ORI SR, 1<<5 ; set high global flag H
MOV FCR, L2 ; set FCR

ORI SR, 1<<5 ; set high global flag H
MOV L2, TR ; move content of TR to local register L0
ADDI L2, TimeUnit*TimerInterval ; add timer delay time to local register L0
ORI SR, 1<<5 ; set high global flag H
MOV TCR, L2 ; set new TCR value

RET PC, L0

65

65

Unifying RISC and DSP

Assembler Segment: InterruptSegment (3)

❑ intr.asm (part 3)
InterruptINT1: ; turns red LED1 on (connected to IO1)

FRAME L3, L0 ; FL = 3; L0 = return PC, L1 = return SR

MOVI L2, ClearINT1 ; value to clear INT1

STW.IOA 0, L2, PeripheralAddr ; clear INT1 with I/O write access

LDW.A 0, L2, FCRVariable ; load FCRVariable

ORI L2, IO1Polarity ; set IO1Polarity bit

STW.A 0, L2, FCRVariable ; store FCRVariable

ORI SR, 1<<5 ; set high global flag H

MOV FCR, L2 ; set FCR

RET PC, L0

66

66

Unifying RISC and DSP

Assembler Segment: InterruptSegment (4)

❑ intr.asm (part 4)
InterruptINT2: ; turns red LED1 off (connected to IO1)

FRAME L3, L0 ; FL = 3; L0 = return PC, L1 = return SR

MOVI L2, ClearINT2 ; value to clear INT2

STW.IOA 0, L2, PeripheralAddr ; clear INT2 with I/O write access

LDW.A 0, L2, FCRVariable ; load FCRVariable

ANDNI L2, IO1Polarity ; clear IO1Polarity bit

STW.A 0, L2, FCRVariable ; store FCRVariable

ORI SR, 1<<5 ; set high global flag H

MOV FCR, L2 ; set FCR

RET PC, L0

END

67

67

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyMasm

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.obj

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

68

68

Unifying RISC and DSP

Assembler hyMasm (1)

• Translates hyperstone assembly language source programs into

relocatable object modules

• Command line invocation

hymasm {options} filename

• Options

-LIST

generates output listing file with .lst filename extension

-DSymbol[=IntVal]

defines the symbol Symbol together with optional value IntVal

the symbol is treated the same as an EQU directive in the source code

-g

generates debug information for debugger hyDebug (only with hyRTK)

-QUIET

displaying screen title and copyright information is suppressed

The five assembly language source files of the preceding example can be
translated into object modules as follows:
hymasm -LIST entrytab
hymasm -LIST reset
hymasm -LIST main
hymasm -LIST intr
hymasm -LIST var

The above command line can be entered with any combination of lower-
case or upper-case characters. Options may be specified in any order but
must precede filename.
If an extension is not specified on filename, then .asm is assumed. The
extension .obj and .lst can not be used for source input files to prevent
accidental overwriting of assembler source and listing files by the assembler
itself.
An object file, filename.obj, is created automatically when no errors in
the source program are detected. The old object file, if any, is always
renamed to filename.obb regardless of wether errors have been detected or
not.
A comprehensive output listing file, filename.lst, containing the source
and object code generated, is created when the assembler is invoked with
the -LIST option.

69

69

Unifying RISC and DSP

Assembler hyMasm (2)

• Assembler output listing file (*.lst)
Hyperstone Macro Assembler Version 4.18 97-08-28 11:06:24 page: 1

PC Machine Code I Line File: example.asm
00000000 A 1 EQUValue EQU $F
00000000 A 2
00000000 A 3 XREF XREFVariable
00000000 A 4 XDEF XDEFVariable
00000000 A 5
00000000 FFFF FFFF A 6 XDEFVariable: D.WU $FFFFFFFF
00000004 A 7
00000004 A 8 Convert MACRO RegNo
00000004 A 9 ORI \RegNo, EQUValue
00000004 A 10 ENDMACRO Convert
00000004 A 11
00000004 6701 0000 0000 A 12 MOVI L0, XDEFVariable
0000000A 6701 0000 0000 A 13 MOVI L0, XREFVariable
00000010 9910 B000 0000 A 14 STW.A 0, L0, XDEFVariable
00000016 9910 B000 0000 A 15 STW.A 0, L0, XREFVariable
0000001C 7A0F A 16 ORI L0, $F
0000001E 7A0F A 17 ORI L0, EQUValue
00000020 A 18 Convert L0
00000020 7A0F A+ 18 ORI L0, EQUValue
00000022 A+ 18 ENDMACRO Convert

Location Counter Machine Code

Include Level Indicator (A..Z)

Line Number Soucre Code

70

70

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyLink

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.obj

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

71

71

Unifying RISC and DSP

Linker hyLink

• Linker and locator for object modules created by the hyMasm
assembler

• Command line invocation

hylink {options} @commandfilename[.lnk]

• Options

-MAP

creates a map file commandfilename.map, containing information
about the location of individual segments and a list of identifiers
declared as externals (XDEF)

-NODEBUG

no debug information is included in the hyperstone executable file
even if some or all of the object files are assembled with debug
information

-QUIET

displaying screen title and copyright information is suppressed

The five object modules former created by the hyMasm assembler can be
linked as follows:
hylink -MAP example1.lnk

The above command line can be entered with any combination of lower-
case or upper-case characters. Options may be specified in any order but
must precede commandfilename. If an extension is not specified on
commandfilename, then .lnk is assumed.

Modules are linked in the order specified by the user. Modules to be linked
are object files created by the hyMasm assembler. An hyperstone executable
file is created.

72

72

Unifying RISC and DSP

Linker Command File (1)

❑ File: example1.lnk (part 1)
; linker command file for assembler example

; the executable file example1.hye is created

; the content of the listed object files are linked into the

; executable file example.hye

; LINK Command

example1.hye = entrytab.obj, reset.obj, main.obj, intr.obj, var.obj

; the XDEF symbols StackBase and StackSize are defined

; DEFINE Command

define StackBase = $C0000000 ; base address of runtime stack

define StackSize = $400 ; stack size of runtime stack

The above link command file example1.lnk contains the following
commands:

LINK Command

Syntax:
exefilename = objectfilename | libfilename

 {[,]objectfilename | libfilename}

An executable file exefilename is created. objectfilename is the name of
an object file, libfilename is the name of a library file. When the name
extension of exefilename is omitted, .hye is used by default. The contents
of the listed object or library files are linked into the executable file. When
the name extension of the object or library file is omitted, .obj is used by
default.

DEFINE Command

Syntax:
DEFINE identifier = expression

The DEFINE command creates a user defined XDEF symbol. The XDEF
identifier and expression must be specified.

identifier is the identifier of the XDEF created.

expression is the value assigned to the XDEF created.

73

73

Unifying RISC and DSP

Linker Command File (2)

❑ File: example1.lnk (part 2)
; the segments ResetSegment, MainSegment, InterruptSegment and

; EntryTable are grouped together to the new segment MEM3Segment

; GROUP Command

GROUP MEM3Segment = ResetSegment, MainSegment, InterruptSegment

; segment EntryTable begins at address ($100000000 - LENGTH OF EntryTable)

; last address of EntryTable is located at address FFFFFFFC16

LOCATE EntryTable AT ($100000000 - LENGTH OF EntryTable)

LOCATE TRAP17 AT $FFFFFF44

LOCATE MEM3Segment AT ($FFFFFF44 - LENGTH OF MEM3Segment)

; the segment VariablesSegment begins at address StackBase+StackSize

LOCATE VariablesSegment AT (StackBase+StackSize)

; end of linker command file example1.lnk

GROUP Command

Syntax:
GROUP segmentname = segmentname {[,]segmentname}

The segments segmentname behind the equal (=) character are grouped
together to a single segment group; this group can then be referenced as one
segment by the segment name segmentname preceding the equal (=)
character. The segments names making up the new group are then no longer
visible to the linker and cannot be used in further linker commands.

The GROUP command forces the linker to group the segments in the order
specified.

segmentname specifies a segment.

LOCATE Command

Syntax:
LOCATE segmentname AT expression

The LOCATE command specifies the address at which a segment begins. If
multiple locate commands specify overlapping segments, a warning is
issued.

segmentname specifies the segment.

expression specifies the beginning address of the segment.

74

74

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyEPROM

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.obj

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

75

75

Unifying RISC and DSP

EPROM Formatter hyEPROM

• produces one or more binary file(s) for programming EPROMs

• Command line invocation

hyeprom @commandfilename.fmt

• one, two or four binary output files are generated according to the

memory organization of the EPROMs.

• File: example1.fmt

OUTPUT = example1.hex ; output binary file

USER = example1.hye ; filename of user program

EPROMSIZE = 128K ; size of EPROM in Bytes

EPROMWIDTH = 8 ; organization of EPROM

MEMBUSWIDTH = 8 ; bus size for accessing EPROM

BASEADDR = $FFFE0000 ; 1 0000 000016 - 128KByte

The above formatter command file example1.fmt contains the following
commands:

OUTPUT = filename denotes the name of the output binary file(s) used for
programming the EPROMs. In case of more than one output file a digit is
appended to the filename extension where the lower value indicates the
lower address.

USER = filename denotes the name of the user program file

EPROMSIZE specifies the size of each EPROM output file in bytes. The
optional suffix M means megabytes and K means kilobytes.

EPROMWIDTH specifies the organization of the EPROM-chip(s) (x8, x16 or
x32 bit organization).

MEMBUSWIDTH specifies the bus size (8, 16 or 32 bits) for accessing the
EPROM(s). The number of output files generated is calculated by the
formula MEMBUSWIDTH / EPROMWIDTH.

Example: Accessing two EPROMs with 16 bit organization via a 32-bit
memory bus: EPROMWIDTH = 16, MEMBUSWIDTH = 32

MEMBUSWIDTH / EPROMWIDTH = 2, therefore two EPROM files are generated.

BASEADDR specifies the base address of the EPROM. The default value is
hexadecimal address ($100000000 - EPROM size), that is the EPROM is
assumed at the end of memory area MEM3. For EPROMs in memory area
MEM2, BASEADDR is usually hexadecimal address $80000000.

76

76

Unifying RISC and DSP

Real-Time Operating System hyRTK

❑ Real-Time Operating System hyRTK
• Stack-Level Tasks
• Interrupt-Level Tasks

• CreateTask

• System Calls for Delaying Tasks
• Guards

• System Calls for accessing System Resources

77

77

Unifying RISC and DSP

Real-Time Operating System hyRTK (1)

• multitasking

• up to 255 stack-level tasks with unique priority (highest priority: 0)

only tasks with priority < 32 start running when scheduled

• up to 253 interrupt-level tasks with unique priority (highest priority: 0)

• pre-emptive, not time-sliced

lower-priority tasks are preempted automatically by the

highest-priority scheduled task

• task synchronization via Guards

• timing functions

• current size

32 Kbytes (800016 Bytes)

executed in MEM0, address range 0000 000016 - 0000 7FFF16

or

executed in MEM1, address range 4000 000016 - 4000 7FFF16

78

78

Unifying RISC and DSP

Real-Time Operating System hyRTK (2)

❑ Stack-Level Tasks
• own task control block (TCB) for each task

• defining Stack-Level Task in C with macro
StackLevelTCB(TCBVariable, Priority,

 OnCreate, OnError, OnReset,

 SizeHardwareStack, SizeAggregateStack);

Macro StackLevelTCB declares the variable TCBVariable of type StackLevelTCBType

Priority is the priority of the stack-level task

each stack-level task must have a different priority

when its priority is set in the range 0..31

OnCreate points to the user defined task function (task entry point)

OnError points to the user defined error function, optionally NULL

OnReset points to the user defined reset function, optionally

NULL

SizeHardwareStack defines the size of the hardware stack in bytes

SizeAggregateStack defines the size of the aggregate stack in bytes

Each stack-level task has a task control block (TCB). A TCB is declared by
a macro; the macro provides initialization parameters and defines the size of
the TCB. In the present version, a stack-level TCB has a size of 200 bytes.

The TCB macro for a stack-level task is applied in C as:

StackLevelTCB(Label, Priority, OnCreate, OnError, OnReset,
 SizeHardwareStack, SizeAggregateStack);

The C compiler treats the StackLevelTCB macro as a declaration of the
variable Label with the predefined structure type StackLevelTCBType. The
meaning and use of the parameters is the same as applied in assembler. The
StackLevelTCB macro applied in C must not be placed in a function (e.g.
main()), because the variable declared by the macro must be global.

A stack-level TCB which is declared in a C source module, can be imported
in other C source modules as follows:

extern StackLevelTCBType Label;

Note: For the main() task, OnError is initialized to point to the C-function
raise(). Optionally, OnError in other stack-level tasks may also be
specified to point to raise().

79

79

Unifying RISC and DSP

Real-Time Operating System hyRTK (3)

❑ Interrupt-Level Tasks
• own task control block (TCB) for each task

• defining Interrupt-Level Task in C with macro
InterruptLevelTCB(TCBVariable, Priority, OnInterrupt, OnError, OnReset);

Macro InterruptLevelTCB declares the variable TCBVariable of type
InterruptLevelTCBType

Priority is the priority of the interrupt-level task
Priority = 5 corresponds to pin IO3
Priority = 7 corresponds to pin INT1
Priority = 9 corresponds to pin INT2
Priority = 11 corresponds to pin INT3
Priority = 13 corresponds to pin INT4
Priority = 14 corresponds to pin IO1
Priority = 15 corresponds to pin IO2

OnInterrupt points to the user defined interrupt service function

OnError points to the user defined error function, optionally NULL

OnReset points to the user defined reset function, optionally NULL

Each interrupt-level task has a task control block (TCB). A TCB is declared
by a macro; the macro provides initialization parameters and defines the
size of the TCB. In the present version, a interrupt-level TCB has a size of
80 bytes.

The TCB macro for a interrupt-level task is applied in C as:
InterruptLevelTCB(Label, Priority,
 OnInterrupt, OnError, OnReset);

The C compiler treats the InterruptLevelTCB macro as a declaration of
the variable Label with the predefined structure type
InterruptLevelTCBType. The meaning and use of the parameters is the
same as applied in assembler. The InterruptLevelTCB macro applied in C
must not be placed in a function (e.g. main()), because the variable
declared by the macro must be global.

A interrupt-level TCB which is declared in a C source module, can be
imported in other C source modules as follows:
extern InterruptLevelTCBType Label;

An interrupt-level task may interrupt any stack-level task. Since interrupt-
level tasks use the aggregate stack of the interrupted stack-level task, it must
be guaranteed that each and every stack-level task provides enough
aggregate stack space to fulfill the interrupt-level task's need for aggregate
stack additionally to its own need. The hyC C compiler generates code so
that an interrupt-level task written in C uses the aggregate stack of the
interrupted stack-level task.

80

80

Unifying RISC and DSP

Real-Time Operating System hyRTK (4)

❑ Interrupt-Level Tasks and Interrupts
• interrupts start execution of an interrupt-level task

• macro SetOwnTaskPointer(Label)

must be placed as the first statement of the entered interrupt function
Label is the variable name of the TCB of the entered interrupt function

void MyInterrupt(void); /* function prototype of interrupt function */
InterruptLevelTCB(MyInterruptTCB, 14, MyInterrupt, NULL, NULL);

void MyInterrupt(void) /* implement. of interrupt function */
{
 SetOwnTaskPointer(&MyInterruptTCB);
 ...
}

• interrupt-level tasks may interrupt any stack-level task
• interrupt-level tasks may not be interrupted themselves

81

81

Unifying RISC and DSP

Real-Time Operating System hyRTK (5)

❑ CreateTask

Synopsis

#include <sys/hyrtk.h>

void CreateTask(StackLevelTCBType* TCBPointer);

void CreateTask(InterruptLevelTCBType* TCBPointer);

Description

The CreateTask function creates a task with the TCB addressed by
TCBPointer.

For stack-level tasks, a hardware stack and an aggregate stack of the
specified size is allocated. CreateTask is invoked automatically for
the first user task main().

For interrupt-level tasks, the interrupt entry is inserted in the trap
entry table.

Returns

The CreateTask function returns no value.

82

82

Unifying RISC and DSP

Real-Time Operating System hyRTK (6)

❑ System Initialization creates 4 Tasks
• stack-level task

SysTask (priority = 0)

handles communication between hyperstone system and host
system when debugger is connected

• interrupt-level tasks

TimerTask (priority = 254)

handles overflow of the 32-bit hardware timer into high-
order word of Time

SysDriverTask (priority = 14 or priority = 9)

handles interrupt of UART (INT4)

dual-ported RAM (INT4 or INT2)

ProfilerTask (priority = 255)

handles optional profiling of user programs when profiler is active

83

83

Unifying RISC and DSP

Real-Time Operating System hyRTK (7)

❑ GetHyTime

Synopsis

#include <sys/hyrtk.h>

signed long long int GetHyTime(void);

Description

Since system time is a value in the range of 0..263-1, the date is also
included and can be extracted.

Returns
The GetHyTime function returns the current system time in multiples
of 1 microsecond.

84

84

Unifying RISC and DSP

Real-Time Operating System hyRTK (8)

❑ DelayUntil

Synopsis

#include <sys/hyrtk.h>

void DelayUntil(signed long long int EventTime);

Description

The DelayUntil function suspends the calling function until the
EventTime is reached.

When the EventTime is less than the current system time, the current
system time is placed in the EventTime.

The highest-priority scheduled stack-level task starts running.

Returns

The DelayUntil function returns no value.

85

85

Unifying RISC and DSP

Real-Time Operating System hyRTK (9)

❑ DelayBy

Synopsis

#include <sys/hyrtk.h>

void DelayBy(signed long int TimeUnits);

Description

The DelayBy function suspends the calling function for TimeUnits.

A time unit represents 1 microsecond.

A negative value of TimeUnits is treated as 0.

The highest-priority scheduled stack-level task starts running.

Returns

The DelayBy function returns no value.

86

86

Unifying RISC and DSP

Real-Time Operating System hyRTK (10)

❑ Guards
• basic means to synchronize tasks

• only guard state = 0 lets a task pass and execute beyond a
WaitGuard()

WaitGuardMax()

• guard state <> 0 sets any task which tries to pass via
WaitGuard()

WaitGuardMax()

to the task state waiting

• defining Guards in C with macro
Guard(GuardVariable, InitialGuardState);

Macro Guard declares the variable GuardVariable with the predefined
structure GuardType

InitialGuardState can be any C integer constant expression

87

87

Unifying RISC and DSP

Real-Time Operating System hyRTK (11)

❑ ClearGuard

Synopsis

#include <sys/hyrtk.h>

void ClearGuard(GuardType* GuardPointer);

Description

The ClearGuard function sets the guard denoted by GuardPointer
to 0.

An interrupt-level task which calls ClearGuard must return with
either a ClearGuardReturn(), ClearGuardBitsReturn(),
DelayByReturn() or DelayUntilReturn() function call.

Returns

The ClearGuard function returns no value.

88

88

Unifying RISC and DSP

Real-Time Operating System hyRTK (12)

❑ SetGuard

Synopsis

#include <sys/hyrtk.h>

void SetGuard(GuardType* GuardPointer);

Description

The SetGuard function sets the guard denoted by GuardPointer to
1.

Returns

The SetGuard function returns no value.

89

89

Unifying RISC and DSP

Real-Time Operating System hyRTK (13)

❑ WaitGuard

Synopsis

#include <sys/hyrtk.h>

void WaitGuard(GuardType* GuardPointer);

Description

When the guard denoted by GuardPointer is 0, execution of the
calling task proceeds. Afterwards the referenced guard is set to 1.

When the guard denoted by GuardPointer is <> 0, the calling task is
suspended and set waiting on the addressed guard. The highest-
priority scheduled stack-level task starts running.

Returns

The WaitGuard function returns no value.

90

90

Unifying RISC and DSP

Real-Time Operating System hyRTK (14)

❑ WaitGuardMax
Synopsis

#include <sys/hyrtk.h>

void WaitGuardMax(GuardType* GuardPointer,
 signed long int TimeUnits);

Description
When the guard denoted by GuardPointer is 0, execution of the
calling task proceeds. Afterwards the referenced guard is set to 1.
When the guard denoted by GuardPointer is <> 0, the calling task is
suspended and set waiting on the addressed guard. The highest-
priority scheduled stack-level task starts running.
When TimeUnits passed and the task is still waiting, a timeout
occurs. Then the task state of the calling state is set from waiting to
scheduled and the referenced guard is set to 1.

Returns
The WaitGuardMax function returns no value.

91

91

Unifying RISC and DSP

Real-Time Operating System hyRTK (15)

WaitGuard(A)WaitGuard(A)

ClearGuard(A)ClearGuard(A)

WaitGuard(B)WaitGuard(B)

ClearGuard(B)ClearGuard(B)

• WaitGuard() and ClearGuard()

Stack-Level Task 1 Stack-Level Task 2

A=?

A=0

A=1

B=0

B=1

B=?

92

92

Unifying RISC and DSP

Real-Time Operating System hyRTK (16)

WaitGuard(A)WaitGuard(A)

ClearGuardReturn(A)ClearGuardReturn(A)

• WaitGuard() and ClearGuardReturn()

Stack-Level Task Interrupt-Level Task

Interrupt

A=?

A=?

A=0

A=1

93

93

Unifying RISC and DSP

Real-Time Operating System hyRTK (17)

❑ GetBCR

Synopsis

#include <sys/hyrtk.h>

unsigned long int GetBCR(void);

Returns

The GetBCR function returns the current value of the Bus Control
Register BCR.

❑ GetMCR

Synopsis

#include <sys/hyrtk.h>

unsigned long int GetMCR(void);

Returns

The GetMCR function returns the current value of the Memory Control
Register MCR.

94

94

Unifying RISC and DSP

Real-Time Operating System hyRTK (18)

❑ UpdateBCR

Synopsis

#include <sys/hyrtk.h>

void UpdateBCR(unsigned long int SetBits

 unsigned long int ClearBits);

Description

The UpdateBCR function modifies the value of the bus control register
BCR.

Each bit set in SetBits sets the corresponding bit in the BCR.

Each bit set in ClearBits clears the corresponding bit in the BCR.

If the same bit is set in SetBits and ClearBits, the corresponding
bit in the BCR will be inverted (toggled).

Returns

The UpdateBCR function returns no value.

95

95

Unifying RISC and DSP

Real-Time Operating System hyRTK (19)

❑ UpdateMCR

Synopsis

#include <sys/hyrtk.h>

void UpdateMCR(unsigned long int SetBits

 unsigned long int ClearBits);

Description

The UpdateMCR function modifies the value of the memory control
register MCR.

Each bit set in SetBits sets the corresponding bit in the MCR.

Each bit set in ClearBits clears the corresponding bit in the MCR.

If the same bit is set in SetBits and ClearBits, the corresponding
bit in the MCR will be inverted (toggled).

Returns

The UpdateMCR function returns no value.

96

96

Unifying RISC and DSP

Real-Time Operating System hyRTK (20)

❑ GetISR

Synopsis

#include <sys/hyrtk.h>

unsigned long int GetISR(void);

Returns

The GetISR function returns the current value of the Input Status
Register ISR.

❑ GetFCR

Synopsis

#include <sys/hyrtk.h>

unsigned long int GetFCR(void);

Returns

The GetFCR function returns the current value of the Function Control
Register FCR.

97

97

Unifying RISC and DSP

Real-Time Operating System hyRTK (21)

❑ UpdateFCR

Synopsis

#include <sys/hyrtk.h>

void UpdateFCR(unsigned long int SetBits

 unsigned long int ClearBits);

Description

The UpdateFCR function modifies the value of the function control
register FCR.

Each bit set in SetBits sets the corresponding bit in the FCR.

Each bit set in ClearBits clears the corresponding bit in the FCR.

If the same bit is set in SetBits and ClearBits, the corresponding
bit in the FCR will be inverted (toggled).

Returns

The UpdateFCR function returns no value.

98

98

Unifying RISC and DSP

C Example (with Real-Time Operating System)

❑ 2 LED’s
• IO1 drives red LED1
• IO2 drives green LED2

❑ I/O Device
• INT1 switches red LED1 on
• INT2 switches red LED1 off
• Interrupt INT1 and INT2 can

be cleared via write access
❑ Internal Timer

• toggles green LED2 each 1 second

❑ Used Software Development Tools
• C Compiler hyC
• C Run-Time Library crtl.lib
• Real-Time Operating System hyRTK
• Linker hyLink
• Board Definition hyAdmin
• Debugger hyDebug
• Boot Loader romboot.hye and pcboot.hye
• EPROM Formatter hyEPROM

I/O DeviceI/O Device

IOWR#

/WR

INT1

INT1

D31..D0
D7..D0

A25..A0

INT2

INT2

IO1 IO2

R R

+ 5V

internal Timer

on

off

toggle

red
LED1

green
LED2

99

99

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyC, hyMasm, hyLink, hyAdmin, hyDebug, hyEPROM

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.obj

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

100

100

Unifying RISC and DSP

main.c

#include <sys\hyrtk.h>
#include "int.h"
#include "global.h"

extern InterruptLevelTCBType InterruptTCB1;
extern InterruptLevelTCBType InterruptTCB2;

void main(void)
{
 CreateTask(&InterruptTCB1);
 CreateTask(&InterruptTCB2);

 /* set IO1 and IO2 to output mode, enable INT1 and INT2 */
 UpdateFCR(IO1Mask | IO2Mask, IO1Direction | IO2Direction | INT1Mask | INT2Mask);
 while (1)
 {
 /* toggle green LED2 */
 UpdateFCR(IO2Polarity, IO2Polarity);
 DelayBy(1000000); /* delay 1 second */
 }
}

101

101

Unifying RISC and DSP

global.h

#ifndef _global_h
#define _global_h

#define INT1Mask 1<<28 /* 0 = enable */
#define INT2Mask 1<<29 /* 0 = enable */

/* red LED */
#define IO1Direction 1<<2 /* 0 = Output */
#define IO1Polarity 1<<1 /* 1 = Non-Inverted */
#define IO1Mask 1<<0 /* must be 1 on Output */

/* green LED */
#define IO2Direction 1<<6 /* 0 = Output */
#define IO2Polarity 1<<5 /* 1 = Non-Inverted */
#define IO2Mask 1<<4 /* must be 1 on Output */

/* I/O Peripheral */
#define PeripheralAddr 0x03FFF7F8 /* specify according to the connected hardware */
#define ClearINT1 0xF /* value to clear INT1 */
#define ClearINT2 0x0 /* value to clear INT2 */

#endif

102

102

Unifying RISC and DSP

int.h

#ifndef _int_h

#define _int_h

/* Function Prototypes */

void InterruptFunction1(void);

void InterruptFunction2(void);

#endif

103

103

Unifying RISC and DSP

int.c

#include <sys\hyrtk.h>
#include <io.h>
#include "global.h"
#include "int.h"

InterruptLevelTCB(InterruptTCB1, 7, InterruptFunction1, NULL, NULL);
InterruptLevelTCB(InterruptTCB2, 9, InterruptFunction2, NULL, NULL);

void InterruptFunction1(void)
{
 SetOwnTaskPointer(&InterruptTCB1);
 outpw(PeripheralAddr, ClearINT1);
 UpdateFCR(0, IO1Polarity);
}

void InterruptFunction2(void)
{
 SetOwnTaskPointer(&InterruptTCB2);
 outpw(PeripheralAddr, ClearINT2);
 UpdateFCR(IO1Polarity, 0);
}

104

104

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyC

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.obj

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

105

105

Unifying RISC and DSP

ANSI C Compiler hyC (1)

• translates ANSI C source files into assemby language source
programs

• assembly language files can be automatically passed to the
assembler hyMasm to generate object modules

• object modules can be automatically passed to the linker hyLink to
generate a hyperstone executable file

• Command line invocation
hyc {options} filename {filename}

• Options
-S

compiles C source files into assembler code, but does not invoke
the assembler

-c
compiles and assembles C source files and assembly language
source programs to object files, but does not link

-$LinkerCommandFile
uses the linker command file LinkerCommandFile for linking the
object files, when neither -S option nor -c option specified, -$
option must be specified

The hyC hyperstone ANSI C compiler takes a C source file and translates it
to assembler statements which may then be automatically passed to the
assembler in order to get an objet file.

The hyC compiler may be invoked by entering hyc followed by options and
one ore more C source file names. The syntax for the entire command line is
as follows:
hyc {option} filename {filename}

Options must be preceded by a minus sign (-) and must be separated by at
least one space character; multiple single-letter options may not be grouped:
-dr is different from -d -r.

filename denote the filenames of the source file(s) to be compiled. File
names which end in .c are taken as C source to be pre-processed, compiled
and assembled. Please note that the .c file extension is not optional. If the
.c file extension is omitted, an error will be flagged. Multiple filenames can
be specified on the command line but filenames containing wildcards, such
as *.c or xyz?.c, are not allowed.

Compiler output files which end in .s and assembler source files with the
extension .asm are assembled when specified on the command line.

When you invoke the C compiler with a C source file, it automatically does
pre-processing, compilation, assembly and linking (when specifying the -$
option). The output is then an executable program with the file extension
.hye which is ready for loading to the target system. Command options
allow halting the compilation process after a certain stage of processing.

106

106

Unifying RISC and DSP

ANSI C Compiler hyC (2)

• Options

-g

produces debugging information for source-level debugging in
combination with the debugger hyDebug

-O

with -O (upper-case O), the compiler tries to reduce code size and
execution time

-w

inhibits all warning messages

-Wall

prints all warning messages

-DSymbol[=IntVal]

defines the symbol Symbol together with optional value IntVal

107

107

Unifying RISC and DSP

ANSI C Compiler hyC (3)

❑ Object Sizes

Data Type Size Alignment

unsigned char 8 bits byte boundary

signed char 8 bits

unsigned short int 16 bits halfword boundary

signed short int 16 bits max. 1 byte of padding

unsigned int 32 bits word boundary

signed int 32 bits max. 3 bytes of padding

unsigned long int 32 bits

signed long int 32 bits

unsigned long long int 64 bits

signed long long int 64 bits

float 32 bits

double 64 bits

pointer 32 bits

108

108

Unifying RISC and DSP

ANSI C Compiler hyC (4)

❑ Arguments Passing
• only 6 local registers may be used to pass arguments to a function
• all other arguments and structure arguments must be stored on the

aggregate stack
• register stack arguments:

<Caller>:
MOV Ln, <arg0>
MOV Ln+1, <argn1>

:
MOV Ln+5, <arg5>
CALL Ln+6, <Callee>

<Callee>:
FRAME Ld, Ls ; Ld is the largest register used + 1
 : ; Ls is the number of register arguments passed
RET PC, Ls

Only 6 registers (as seen by the called subprogram) may be used to pass
arguments to a function. This reduces the probability of spilling arguments.
All other arguments must be stored on the aggregate stack. Structure
arguments are always stored on the aggregate stack.

109

109

Unifying RISC and DSP

ANSI C Compiler hyC (6)

❑ Return Values
• function return value in L0:

char, short int, int, long int, float and pointers

• function return value in L0 and L1:
double and long long int

• If a function returns two words (double or long long int) and takes
only one word argument, an extra register must be preserved by the
caller to hold the result:
MOVI L4, $1000 ; pass $1000 as arg1
CALL L6, func1 ; skip L5
MOVD L0, L4 ; result is in L4//L5

Function results are always returned in L0 for char, short int, int,
long int, float and pointers, while double and long long int are
returned in L0 and L1.

Note that if a function returns a value, then enough registers must be
allocated to hold the result.

110

110

Unifying RISC and DSP

ANSI C Compiler hyC (7)

❑ Names of Global Variables and Functions
• prefixed with an underscore

Declaration Compiler Name
int i; _i
int int_num; _int_num

void funct(void); _funct

❑ Names of Local Static Variables
• prefixed with an underscore and a numerical value

Declaration Compiler Name
void func_a(void)
{

 static int i; _0i
static int_num; _1int_num

}
void func_b(void)
{

 static int i; _2i
 static int_num; _3int_num
}

111

111

Unifying RISC and DSP

ANSI C Compiler hyC (8)

❑ Default Segment Names

❑ Renaming Predefined Segment Names with Compiler Option
-mseg-code=name

renames segment code to segment name
-mseg-text=name

renames segment text to segment name
-mseg-far_bss=name

renames segment far_bss to segment name

❑ Creating Additionally Segment Names with Compiler Option
-mscalar-seg

generates additionally segments scalar_text and scalar_far_bss

Segment Name Usage Example
code program code if (A != B) C = 0;
text static initialized data int a[10] = {0}, b=1;
far_bss static uninitialized data int a[10], b;

112

112

Unifying RISC and DSP

ANSI C Compiler hyC (9)

❑ Linker Command File (used by hyLink) and C Programs

• link with start-up code startup.obj and C run-time library crtl.lib

• priority of task main

• size of hardware stack of task main

• size of aggregate stack of task main

• compile with hyC and option -$LinkerCommandFile or link with

hyLink and @LinkerCommandFile

After all C and assembler modules have been compiled, they are ready to
link together with the startup.obj start-up code and the crtl.lib run-
time library to a single executable program.

Modules can either separately compiled and linked later by invoking the
linker in a separate pass or the C compiler can be directed to invoke the
linker automatically by specifying the -$ option. In any case a linker
command file containing the names of all modules making up the
executable file and some commands controlling the linkage process has to
be set up.

The ORDER command tells the linker to locate the segments code, text and
far_bss in consecutive ascending order.

The LOCATE command specifies the start address of the first segment to
begin at 800016.

Please note that addresses 000016 - 7FFF16 or 4000 000016 - 4000 7FFF16,
respectively are reserved for the real-time operating system hyRTK.

The priority of the program Priority, the size of the hardware stack
defined by Stack1Size and the size of the aggregate stack Stack2Size
have to be specified.

When calculating the size of the hardware stack Stack1Size and the size of
the aggregate stack Stack2Size, please keep in mind that recursive
functions need a large amount of stack space depending on the depth of
recursion and that the C run-time library needs approximately 512 bytes for
the hardware stack and aggregate stack.

113

113

Unifying RISC and DSP

main.lnk (1)

; linker command file for C example

; RENAME Command

; rename segment code and text to IRAMcode and IRAMtext

RENAME int.o code = IRAMcode

RENAME int.o text = IRAMtext

; LINK Command

main.hye = main.o, int.o, startup.obj crtl.lib

; ORDER Command

; Order segments IRAMcode, IRAMtext

ORDER IRAMcode, IRAMtext

; LOCATE Command

; Locate IRAMcode and IRAMtext in IRAM

LOCATE IRAMcode at $C0000000

114

114

Unifying RISC and DSP

main.lnk (2)

; ORDER Command

; Order segments code, text and far_bss

ORDER code, text, far_bss

; LOCATE COMMAND

; locate segments code, text, far_bss at address $8000

LOCATE code at $8000

; Define program priority and stack sizes

DEFINE Priority = 31

DEFINE Stack1Size = 2048 ; size of hardware stack

DEFINE Stack2Size = 2048 ; size of aggregate stack

115

115

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyAdmin

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.ob
j

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

116

116

Unifying RISC and DSP

Board Administration Program hyAdmin (1)

• provides service for generating and editing board definition files (e.g.)
boarddef.def and boarddef.rom

• these files contains settings of up to 255 different board configurations
• a board configuration comprise following settings:

BCR Bus Control Register

MCR Memory Control Register
TPR Timer Prescaler Register

• each board configuration can be identified with its bord type number
(1..255)

• function control register FCR cannot be set via board definition file

• Following tools use the board definition file to initialized the BCR, MCR
and TPR according to the hardware environment:

pcboot.hye in use with the debugger hyDebug

romboot.hye in use with EPROM formatter hyEPROM

The board definition program hyAdmin is invoked with the following
command line:
hyadmin filename

where filename denotes the board definition file (usually boarddef.def). If
you specify a non-existing file, hyAdmin automatically prompts you to
create a new file. In this case type y or Y to create it or n or N to terminate
hyAdmin.

If the file filename exists and is a valid board definition file, hyAdmin
automatically loads this file for editing.

117

117

Unifying RISC and DSP

Board Administration Program hyAdmin (2)

118

118

Unifying RISC and DSP

Board Administration Program hyAdmin (3)

• following predefined board types are kept in the board definition file
boarddef.def and boarddef.rom:

Board Type Board Type

1 Development board (version 10/95) with hyperstone E1-32N (version U2)

2 Development board (version 11/95) with hyperstone E1-32N (version U3) @ 50 MHz

3 Reserved by hyperstone

4 Development board (version 12/95) with hyperstone E1-32N (version LL) @ 66 MHz

5 Development board (revision 5) with hyperstone E1-32XN (version U4)

6 Reserved by hyperstone

7 Optical character recognition board (version 08/95) with hyperstone E1-32N (version U2)

8 Reserved by hyperstone

9 Reserved by hyperstone

10 Reserved by hyperstone

11 Reserved by hyperstone

12 Reserved by hyperstone

13 Reserved by hyperstone

14 Reserved by hyperstone

15 Reserved by hyperstone

119

119

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyDebug

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.obj

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

120

120

Unifying RISC and DSP

hyDebug

121

121

Unifying RISC and DSP

Profiler hyProf

void funcA(void)
{
 int i, a;

 for (i = 0; i < 10; i++)
 a = 0;
}

void funcB(void)
{
 int i;

 for (i = 0; i < 100000; i++)
 funcA();
}

122

122

Unifying RISC and DSP

hyC
C Compiler

hyC
C Compiler

hyMasm
Macro

Assembler

hyMasm
Macro

Assembler hyLink
Linker

hyLink
Linker

hyProf
Profiler

hyProf
Profiler

hyEPROM
EPROM

Formatter

hyEPROM
EPROM

Formatter

hyAdmin
Board

Definition

hyAdmin
Board

Definition

hyLib
Library

Manager

hyLib
Library

Manager

hyDebug
Debugger

hyDebug
Debugger

Software Tools
hyEPROM

romboot.hye

pcboot.hyehydebug.cfg

hyrtk.hye

*.c

*.s

*.asm

*.obj

*.lib

*.hye

*.prf

*.fmt

*.hex

*.rom

*.def

*.lnk

*.lst

*.map

hydsp.lib crtl.lib

startup.obj

123

123

Unifying RISC and DSP

main.fmt

OUTPUT = EPROM.HEX ; Binary Output File

SYSTEM = c:\hstone\bin\hyrtk.hye ; Real-Time Operating System

BOOT = c:\hstone\bin\romboot.hye ; Bootloader

BOARDDEF = c:\hstone\eprom\boarddef.rom ; Board Definition File

BOARDTYPE = 2 ; Hyperstone Development Board

USER = main.hye ; User Program

EPROMSIZE = 128K ; Size of EPROM in Bytes

EPROMWIDTH = 8 ; Data Bus Width of EPROM in Bits

MEMBUSWIDTH = 8 ; Bus Width of MEM3 in Bits

SYSTEM = filename

filename denotes the name of the operating system executable file
(hyrtk.hye)

BOOT = filename

filename denotes the name of the boot file containing the boot loader
(romboot.hye).

BOARDDEF = filename

filename denotes the name of the board definition file. The board
definition file can contain up to 255 different board configurations. The
board definition file can be generated and edited by the utility program
hyADMIN.

BOARDTYPE

selects the desired board configuration (1..255) in the board definition file.
A board configuration specifies the board clock frequency and the BCR and
MCR register setting of the board.

124

124

Unifying RISC and DSP

Boot Loader romboot.hye and pcboot.hye

• Reset Handler

• Initializes with values from board definition file

MCR

BCR

TPR

• Copies

Real-Time Operating System

User Program

FFFF FFFF16 romboot.hye

hyrtk.hye

user program

MEM3

MEM3

IRAM

MEM2

MEM1

MEM0
or

125

125

Unifying RISC and DSP

DSP Unit

❑ DSP Unit
• ALU and DSP Unit
• Parallelism ALU - DSP

• Example Dot Product

126

126

Unifying RISC and DSP

ALU and DSP Unit

32 bit ALU
Shifter

Load/Store

96 Registers

DSP Unit
16 / 32 bit

On-chip RAM

I-Cache

Bus Interface

Off-chip Memory & Peripherals

E1-32

❑ Single issue
❑ Single-cycle ALU instr.

❑ 16 bit subword processing

❑ 16 / 32 bit DSP arithmetic

❑ Latency based parallelism of
ALU - Ld/St - DSP

❑ Complex DSP arithmetic

G14

G15

127

127

Unifying RISC and DSP

DSP Unit

LdLd LsLs

Register
G14G14

G15G15

16 x 16 bit
Multiplier

Array

16 x 16 bit
Multiplier

Array

48 bit Adder48 bit Adder

accu latchaccu latch

>>15>>15

Instruction Remarks

EMUL Ld, Ls G15 := Ld · Ls (signed and unsigned)
EMULS Ld, Ls G14//G15 := Ld · Ls (signed)
EMULU Ld, Ls G14//G15 := Ld · Ls (unsigned)
EMAC Ld, Ls G15 := G15 + Ld · Ls
EMACD Ld, Ls G14//G15 := G14//G15 + Ld · Ls
EMSUB Ld, Ls G15 := G15 – Ld · Ls
EMSUBD Ld, Ls G14//G15 := G14//G15 – Ld · Ls
EHMAC Ld, Ls G15 := G15 + LdH · LsH + LdL · LsL
EHMACD Ld, Ls G14//G15 := G14//G15 + LdH · LsH + LdL · LsL
EHCMULD Ld, Ls G14 := LdH · LsH – LdL · LsL

G15 := LdH · LsL + LdL · LsH
EHCMACD Ld, Ls G14 := G14 + LdH · LsH – LdL · LsL

G15 := G15 + LdH · LsL + LdL · LsH
EHCSUMD Ld, Ls G14H := LdH + G14

G14L := LdL + G15
G15H := LdH – G14

G15L := LdL – G15
EHCFFTD Ld, Ls G14H := LdH + G14>>15

G14L := LdL + G15>>15
G15H := LdH – G14>>15

G15L := LdL – G15>>15

128

128

Unifying RISC and DSP

Parallelism ALU - DSP

LDD.P L0, L5 : load data with postincrement
Label: EMULU L5, L6 ; multiply 32 bit x 32 bit

LDD.P L0, L5 : load new data with postincrement
ADDI L4, -1 ; decrement loop index
DBGT Label ; conditional delayed branch
STD.P L1, G14 ; store G14//G15

Issue

Latency

Latency

Latency

Cycle

1

2

3

4

5

DSP
Instruction

Load

ALU
Instruction

Load/Store
Instructions

ADD

BranchLatency

Store

Latency

Latency

Store

Load

129

129

Unifying RISC and DSP

Dot Product Evaluation (1)

long int x[100], y[100];
long long int accu;

accu = 0;
for (i = 0; i < 100; i++)
 accu += x[i] * y[i];

; L0 = &x

; L1 = &y

LDW.P L0, L4 ; L4 = x[0]

LDW.P L1, L5 ; L5 = y[0]

MOVD G14, 0 ; clear accumulator

MOVI L6, 99 ; loop index, 99 down to 0, sets flags

loop:

EMACD L4, L5 ; multiply-accumulate

LDW.P L0, L4 ; load new x, postincrement address update

LDW.P L1, L5 ; load new y, postincrement address update

DBGT loop ; delayed branch, if N or Z flags are 0

ADDI L6, -1 ; loop index update

The resources of the E1-32/E1-16 (ALU, Load/Store Pipeline and DSP
Unit) are 90% used.

130

130

Unifying RISC and DSP

Dot Product Evaluation (2)

; L0= &x

; L1= &y

LDW.P L0, L4 ; L4 = x[0]

LDW.P L1, L5 ; L5 = y[0]

MOVD G14, 0 ; clear accumulator

MOVI L8, 100 ; loop index, 100 down to 1

loop:

LDW.P L0, L6 ; load new x, postincrement address update

LDW.P L1, L7 ; load new y, postincrement address update

ADDI L8, -2 ; loop index update

EMACD L4, L5 ; multiply-accumulate

LDW.P L0, L4 ; load new x, postincrement address update

LDW.P L1, L5 ; load new y, postincrement address update

DBGT loop ; delayed branch, if N or Z flags are 0

EMACD L6, L7 ; multiply-accumulate

The resources of the E1-32/E1-16 (ALU, Load/Store Pipeline and DSP
Unit) are 90% used.

