

A Schlumberger Company

μA741 Operational Amplifier

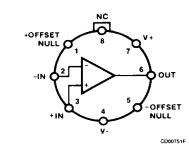
Linear Division Operational Amplifiers

Description

The μ A741 is a high performance monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of latch up tendencies make the μ A741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications.

• No Frequency Compensation Required

- Short Circuit Protection
- Offset Voltage Null Capability
- Large Common Mode And Differential Voltage Ranges
- Low Power Consumption
- No Latch Up

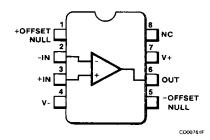

Absolute Maximum Ratings

Absolute maximum natings	
Storage Temperature Range	
Metal Can and Ceramic DIP	–65°C to +175°C
Molded DIP and SO-8	–65°C to +150°C
Operating Temperature Range	
Extended (µA741AM, µA741M)	-55°C to +125°C
Commercial (µA741EC, µA741C)	0°C to +70°C
Lead Temperature	
Metal Can and Ceramic DIP	
(soldering, 60 s)	300°C
Molded DIP and SO-8	
(soldering, 10 s)	265°C
Internal Power Dissipation ^{1, 2}	
8L-Metal Can	1.00 W
8L-Molded DIP	0.93 W
8L-Ceramic DIP	1.30 W
SO-8	0.81 W
Supply Voltage	
μΑ741Α, μΑ741, μΑ741Ε	±22 V
μA741C	±18 V
Differential Input Voltage	±30 V
Input Voltage ³	±15 V
Output Short Circuit Duration ⁴	Indefinite

Notes

- 1. $T_{\rm J~Max}$ = 150°C for the Molded DIP and SO-8, and 175°C for the Metal Can and Ceramic DIP.
- Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L-Metal Can at 6.7 mW/°C, the 8L-Molded DIP at 7.5 mW/°C, the 8L-Ceramic DIP at 8.7 mW/°C, and the SO-8 at 6.5 mW/°C.
- 3. For supply voltages less than \pm 15 V, the absolute maximum input voltage is equal to the supply voltage.
- Short circuit may be to ground or either supply. Rating applies to 125°C case temperature or 75°C ambient temperature.

Connection Diagram 8-Lead Metal Package (Top View)

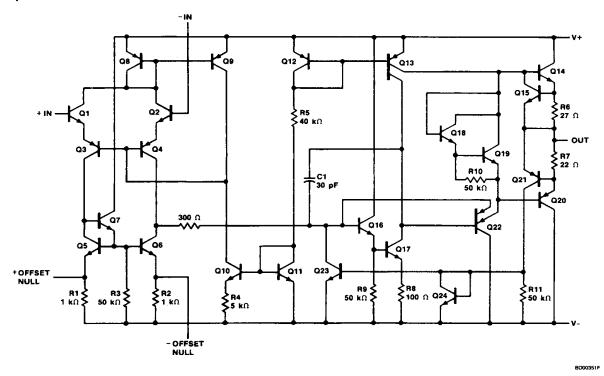

Lead 4 connected to case.

Order Information

Device Code	Package Code	Package Description
μA741HM	5W	Metal
μA741HC	5W	Metal
μ A741AHM	5W	Metal
μA741EHC	5W	Metal

Connection Diagram

8-Lead DIP and SO-8 Package (Top View)



Order Information

Device Code Package Code **Package Description** μA741RM 6T Ceramic DIP μA741RC 6T Ceramic DIP μA741SC KĊ Molded Surface Mount μA741TC 9T Molded DIP μA741ARM 6T Ceramic DIP µA741ERC Ceramic DIP 6T µA741ETC 9T Molded DIP

7-100

Equivalent Circuit

7-101

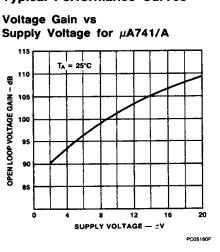
 μ A741 and μ A741C Electrical Characteristics T_A = 25°C, V_{CC} = ± 15 V, unless otherwise specified.

Symbol					μ Α741			μ Α741C		
	Characteristic	Condition	Min	Тур	Max	Min	Тур	Max	Unit	
V _{IO}	Input Offset Vo	oltage	$R_{\rm S} \le 10 \ k\Omega$		1.0	5.0		2.0	6.0	mV
V _{IO adj}	Input Offset Vo Adjustment Ra	-			± 15			± 15		mV
I _{IO}	Input Offset Cu	urrent			20	200		20	200	nA
I _{IB}	Input Bias Curr	rent			80	500		80	500	nA
ZI	Input Impedance	e		0.3	2.0		0.3	2.0		MΩ
Icc	Supply Current				1.7	2.8		1.7	2.8	mA
Pc	Power Consum	ption			50	85		50	85	mW
CMR	Common Mode	Rejection		70			70	90		dB
V _{IR}	Input Voltage F	Range		± 12	± 13		±12	± 13		v
PSRR	Power Supply	Rejection			30	150		-		μV/V
	Ratio		$V_{CC} = \pm 5.0 \text{ V to } \pm 18 \text{ V}$					30	150	
l _{OS}	Output Short C Current	Sircuit			25			25		mA
A _{VS}	Large Signal V	oltage Gain	$R_L \ge 2.0 \text{ k}\Omega, V_O = \pm 10 \text{ V}$	50	200		20	200		V/mV
V _{OP}	Output Voltage	Swing	$R_L = 10 \ k\Omega$	± 12			± 12	± 14		V
			$R_L = 2.0 \ k\Omega$	± 10			± 10	± 13		
TR	Transient	Rise time	$V_{\rm I}$ = 20 mV, $R_{\rm L}$ = 2.0 k Ω ,		0.3			0.3		μs
	Response	Overshoot	$C_{L} = 100 \text{ pF}, A_{V} = 1.0$		5.0			5.0		%
BW	Bandwidth				1.0			1.0		MHz
SR	Slew Rate		$R_L \ge 2.0 \ k\Omega, \ A_V = 1.0$		0.5			0.5		V/µs

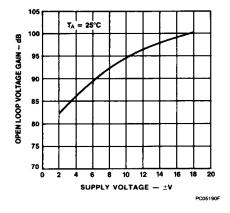
7-102

 μ A741 and μ A741C (Cont.) Electrical Characteristics Over the range of $-55^{\circ}C \leq T_A \leq +125^{\circ}C$ for μ A741, $0^{\circ}C \leq T_A \leq +70^{\circ}C$ for μ A741C, unless otherwise specified.

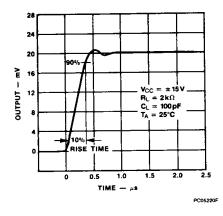
Symbol Characteristic	Condition		μ Α741C						
		Min	Тур	Max	Min	Тур	Max	Unit	
V _{IO} Input Offset Voltage					1		7.5	mV	
		$R_{S} \leq 10 \ k\Omega$		1.0	6.0			1	
V _{IO adj}	Input Offset Voltage Adjustment Range			± 15			± 15		mV
110	Input Offset Current							300	nA
		$T_{A} = +125^{\circ}C$		7.0	200				
		$T_A = -55^{\circ}C$		85	500				
I _{IB}	Input Bias Current							800	nA
		T _A = +125°C		0.03	0.5				μA
		$T_A = -55^{\circ}C$		0.3	1.5				
Icc	Supply Current	T _A = +125°C		1.5	2.5				mA
		T _A = -55°C		2.0	3.3				
Pc	Power Consumption	T _A = +125°C		45	75				mW
		$T_A = -55^{\circ}C$		60	100				
CMR	Common Mode Rejection	$R_{S} \leq 10 \ k\Omega$	70	90					dB
V _{IR}	Input Voltage Range		± 12	± 13					V
PSRR	Power Supply Rejection Ratio			30	150				μV/V
A _{VS}	Large Signal Voltage Gain	$R_L \ge 2.0 k\Omega$, $V_O = \pm 10 V$	25			15			V/mV
V _{OP}	Output Voltage Swing	$R_L = 10 \ k\Omega$	± 12	± 14					V
		$R_L = 2.0 \ k\Omega$	± 10	± 13		± 10	± 13		

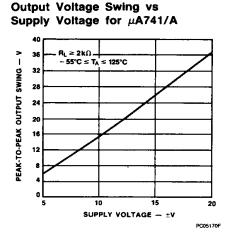

7-103

μ A741A and μA741E				
Electrical Characteristics	T _A = 25°C,	$V_{CC} = \pm 15 V$,	unless	otherwise specified.

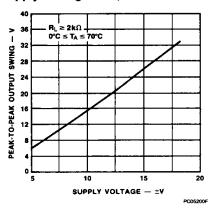

Symbol	Characteris	tic	Condition			Min	Тур	Max	Unit	
V _{IO}	Input Offset Voltage)	$R_{\rm S} \leq 50 \ \Omega$				0.8	3.0	mV	
lio	Input Offset Current	-				3.0	30	nA		
I _{IB}	Input Bias Current					30	80	nA		
ZI	Input Impedance		$V_{CC} = \pm 20 V$		1.0	6.0		MΩ		
Pc	Power Consumption		$V_{CC} = \pm 20 V$			80	150	mW		
PSRR	Power Supply Rejection Ratio		$V_{CC} = +10 V, -20 V to$ $V_{CC} = +20 V, -10 V,$ $R_{S} = 50 \Omega$				15	50	μV/\	
los	Output Short Circuit	Current			10	25	40	mA		
A _{VS}	Large Signal Voltag	Large Signal Voltage Gain V _{CC}		$R_L \ge 2$.	0 kΩ,	V _O = ±15 V	50	200		۷/m۱
TR	Transient Response	Rise time	$A_V = 1.0, V_{CC} = \pm 20 V, V_i = 50 mV, R_L = 2.0 k\Omega, C_L = 100 pF$			0.25	0.8	μs		
		Overshoot				6.0	20	%		
BW	Bandwidth		· · · · · · · · · · · · · · · · · · ·			0.437	1.5		MHz	
SR	Slew Rate		$V_{I} = \pm 10 V, A$	_V = 1.0			0.3	0.7		V/μ
the µA741	1		ange of -55°C ≤	≤ T _A ≤ 1	+125°C	for the $\mu A74$	1A, and	0°C ≤ -		
V _{IO}	Input Offset Voltage								4.0	mV
ΔV _{IO} /ΔΤ	Input Offset Voltage Temperature Sensiti						15	μV/°		
V _{IO adj}	Input Offset Voltage Adjustment Range		$V_{CC} = \pm 20 V$		10			mV		
I _{IO}	Input Offset Current								70	nA
$\Delta I_{\rm IO} / \Delta T$	Input Offset Current Temperature Sensiti								0.5	nA/°
l _{IB}	Input Bias Current								210	nA
Zi	Input Impedance						0.5			MΩ
Pc	1		$V_{CC} = \pm 20 \text{ V} \mu \text{A741A} -55^{\circ}\text{C}$				165			
-	Power Consumption		$V_{CC} = \pm 20 V$	μΑ/4	IA	–55°C				l mW
-	Power Consumption		$V_{CC} = \pm 20$ V	μΑ/4	IA	-55°C + 125°C			135	mW
-	Power Consumption		V _{CC} = ± 20 V	μΑ74 μΑ74					135 150	mW
CMR	Power Consumption		$V_{CC} = \pm 20 \text{ V}$ $V_{CC} = \pm 20 \text{ V},$	μΑ74	1E	+125°C	80	95		mW dB
CMR		ection		μΑ74	1E	+125°C	80 10	95		dB
	Common Mode Reje	ection Current		$\mu A74$ $V_{1} = \pm 1$	1E 5 V, R	+125°C		95	150	
CMR I _{OS}	Common Mode Reje Output Short Circuit	ection Current	$V_{CC} = \pm 20 V,$ $V_{CC} = \pm 20 V,$	$\mu A74$ $V_{I} = \pm 1$ $R_{L} \ge 2.0$	1E 5 V, R 0 kΩ,	+125°C	10	95	150	dB mA
CMR I _{OS}	Common Mode Reje Output Short Circuit	ection Current e Gain	$V_{CC} = \pm 20 V,$ $V_{CC} = \pm 20 V,$ $V_{O} = \pm 15 V$ $V_{CC} = \pm 5.0 V,$	$\mu A74$ $V_{I} = \pm 1$ $R_{L} \ge 2.0$	1E 5 V, R 0 kΩ, .0 kΩ,	+125°C	10 32	95	150	dB mA

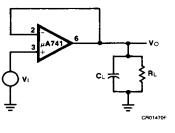
7-104


Typical Performance Curves

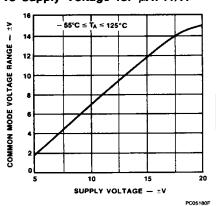


Voltage Gain vs Supply Voltage for μ A741C/E

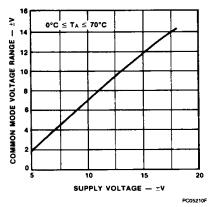




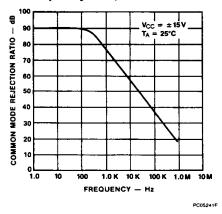
Output Voltage Swing vs Supply Voltage for $\mu\text{A741C/E}$

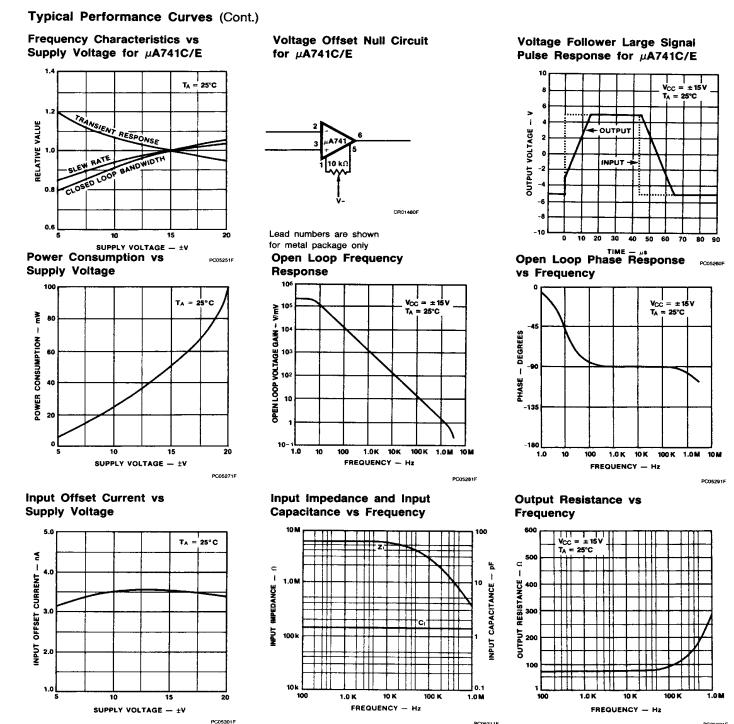


Transient Response Test Circuit for μ A741C/E

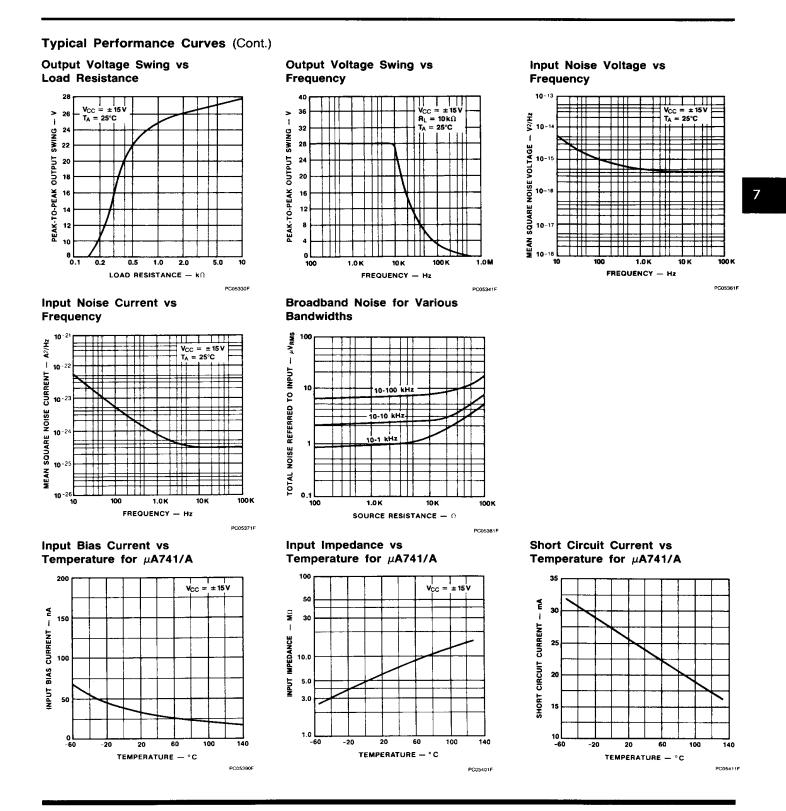


Lead numbers are shown for metal package only


Input Common Mode Voltage vs Supply Voltage for μ A741/A

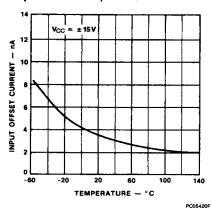

Input Common Mode Voltage Range vs Supply Voltage for µA741C/E

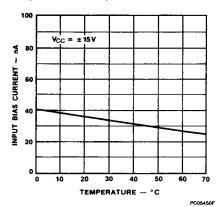
Common Mode Rejection Ratio vs Frequency for μ A741C/E


7-105

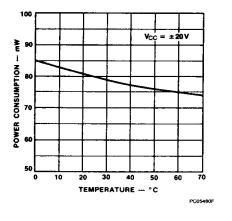
PC05321F

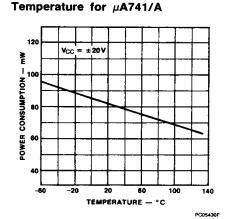
7-106


PC05311F

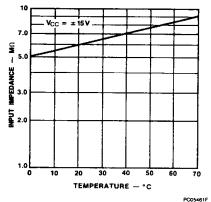

7-107

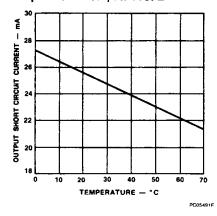
Typical Performance Curves (Cont.)


Input Offset Current vs Temperature for μ A741/A

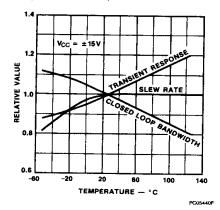


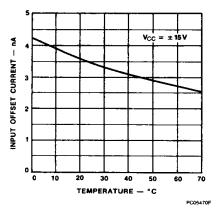
Input Bias Current vs Temperature for μ A741C/E

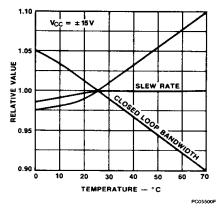

Power Consumption vs Temperature for μ A741C/E



Input Impedance vs Temperature for μ A741C/E


Power Consumption vs


Short Circuit Current vs Temperature for μ A741C/E


Frequency Characteristics vs Temperature for μ A741/A

Input Offset Current vs Temperature for μ A741C/E

Frequency Characteristics vs Temperature for μ A741C/E

7-108