
Am9708/Am2708

1024 x 8 Erasable Read Only Memory

ORDERING INFORMATION

Package Type			
Hermetic DIP Transparent Window	$0^{\circ}C \leqslant T_{A} \leqslant +70^{\circ}C$	AM2708DC (450ns) AM2708-1DC (350ns)	
Hermetic DIP Transparent Window	$-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	AM9708DM (480ns)	

3-7

Am9708/Am2708

MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65°C to +150°C
Ambient Temperature Under Bias	-55°C to +125°C
All Signal Voltages, except Program and CS/WE, with Respect to VBB	-0.3V to +15V
Program Input Voltage with Respect to VBB	-0.3V to +35V
CS/WE Input with Respect to VBB	-0.3V to +20V
VCC and VSS with Respect to VBB	-0.3V to +15V
VDD with Respect to VBB	-0.3V to +20V
Power Dissipation	1.5W

The product described by this specification includes internal circuitry designed to protect input devices from excessive accumulation of static charge. It is suggested, nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to any voltages that exceed the maximum ratings.

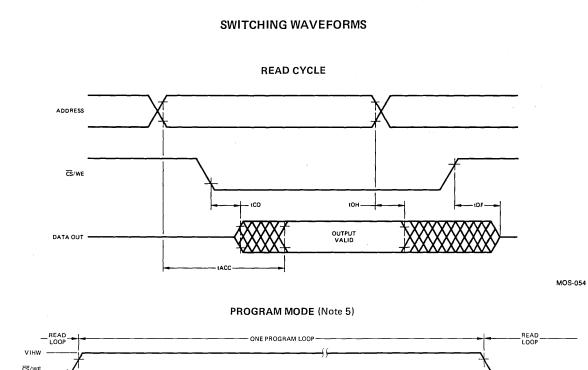
OPERATING RANGE

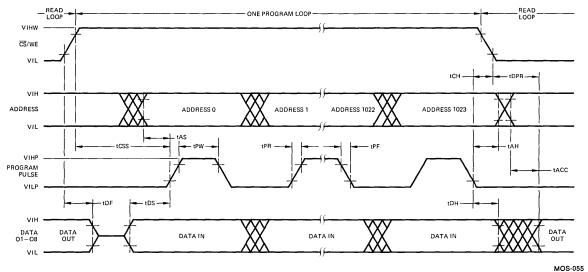
Ambient Temperature	VDD	VCC	VBB	VSS
0°C to +70°C	+12V ±5%	+5V ±5%	-5V ±5%	0V
-55°C to +125°C	+12V ±10%	+5V ±10%	-5V ±10%	0V

PROGRAMMING CONDITIONS

Ambient Temperature	VDD	VCC	VBB	vss	CS/WE	VIHP
+25°C	+12V ± 5%	+5V ± 5%	-5V ± 5%	٥v	+12V ± 5%	26V ± 1V

READ OPERATION


ELECTRICAL CHARACTERISTICS over operating range (Notes 1, 7)


arameters	Description	Test Conditions		Description Test Conditions Min.	Min.	Тур.	Max.	Units
VIL	Input LOW Voltage			VSS		0.65	Volts	
		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		3.0		VCC+1	Volts	
VIH	Input HIGH Voltage	$T_A = -55^{\circ}C \text{ to } +$	125°C	2.4		VCC+1	Volts	
VOL	Output LOW Voltage	10L = 1.6mA				0.45	Volts	
VOH	Output HIGH Voltage	$IOH = -100\mu A$		3.7			Volts	
VON	Output nich voltage	IOH = -1.0mA		2.4			Volts	
ILI	Address and Chip Select Input Load Current	VSS ≤ VIN ≤ VCC			1.0	10	μΑ	
ILO	Output Leakage Current	$\frac{\text{VOUT}}{\text{CS}/\text{WE}} = + 5.0\text{V}$			1.0	10	μΑ	
			$T_A = 0^{\circ}C$		50	65		
IDD	VDD Supply Current		$T_A = -55^{\circ}C$			80	mA	
ICC		All inputs HIGH.	$T_A = 0^{\circ}C$		6.0	10	mA	
	VCC Supply Current	$\overline{CS}/WE = +5.0V$	$T_A = -55^{\circ}C$			15		
IBB	VBB Supply Current		$T_A = 0^{\circ}C$		30	45	- mA	
	VDD Supply Current		$T_A = -55^{\circ}C$			60		
PD	Power Dissipation	$T_A = 70^{\circ}C$				800	mW	
CIN	Input Capacitance	$T_A = 25^{\circ}C$			4.0	6.0	pF	
COUT	Output Capacitance	f = 1MHz All pins at 0V			8.0	12.0	pF	

READ OPE SWITCHIN	RATION G CHARACTERISTICS over oper	rating range (Notes 2, 7)	0°C ≤	T _A ≤ 70°C	–55°C ≤ 1	Γ _A ≤ +125°C	· · .
Parameters	Description	Test Conditions	Min.	Max.	Min.	Max.	Units
tACC	Address to Output Access Time (Note 3)	tr = tf ≤ 20ns Output Load: One Standard TTL Gate Plus 100pF		2708 2708-1 450 350		480	ns
tCO	Chip Select to Output on Delay (Note 4)			120		150	ns
tDF	Chip Select to Output OFF Delay		0	120	0	150	
tOH	Previous Read Data Valid with Respect to Address Change		0		0		

PROGRAMMING CHARACTERISTICS under programming conditions

Parameter	Description Min. Max.		Units	
tAS	Address Set Up Time	10		μs
tCSS	CS/WE Set Up Time	10		μs
tDS	Data Set Up Time	10		μs
tAH	Address Hold Time (Note 5)	1.0		μs
tCH	CS/WE Hold Time (Note 5)	0.5		μs
tDH	Data Hold Time	1.0		μs
tDF	Chip Select to Output Off Delay	0	120	ns
tDPR	Program to Read Delay		10	μs
tPW	Program Pulse Width	0.1	1.0	ms
tPR, tPF	Program Pulse Transition Times	0.5	2.0	μs
VIHW	CS/WE Input High Level	11.4	12.6	Volts
VIHP	Program Pulse High Level (Note 6)	25	27	Volts
VILP	Program Pulse Low Level (Note 6)	VSS	1.0	Volts

PROGRAMMING THE Am2708

All 8192 bits of the Am2708 are in the logic HIGH state after erasure. When any of the output bits are programmed, the output state will change from HIGH to LOW. Programming of the device is initiated by raising the \overline{CS}/WE input to +12V. A memory location is programmed by addressing the device and supplying 8 data bits in parallel to the data out lines. When address and data bits are set up, a programming pulse is applied to the program input. All addresses are programmed sequentially in a similar manner. One pass through all 1024 addresses is considered one program loop. The number of program loops (N) required to complete the programming cycle is a function of the program pulse width (tPW) such that $N \ge 100$ ms/tPW requirement is met. Do not apply more than one program pulse per address without sequentially programming all other addresses. There should be N successive loops through all locations. The Program pin will source the IIPL current when it is low (VILP) and CS/WE is high (VIHW). The Program pin should be actively pulled down to maintain its low level.

ERASING THE Am2708

The Am2708 can be erased by exposing the die to highintensity, short-wave, ultra-violet light at a wavelength of 2537 angstroms through the transparent lid. The recommended dosage is ten watt-seconds per square centimeter. This erasing condition can be obtained by exposing the die to model S-52 ultraviolet lamp manufactured by Ultra-Violet Products, Inc. or Product Specialties, Inc. for approximately 20 to 30 minutes from a distance of about 2.5 centimeters above the transparent lid. The light source should not be operated with a short-wave filter installed. All bits will be in a logic HIGH state when erasure is complete.

CAUTION

Ultraviolet radiation is invisible and can damage human eyes. Precautions should be taken to avoid exposure to direct or reflected ultraviolet radiation. It will often be convenient to fully enclose the ultraviolet source and the EROMs being erased to prevent accidental exposure.

Ultraviolet lamps can also ionize oxygen and create ozone which can be harmful to humans. Erasing should be carried out in a well ventilated area in order to minimize the concentration of ozone.

NOTES:

- 1. Typical values are for $T_A = 25^{\circ}C$, nominal supply voltages and nominal processing parameters.
- Timing reference levels (Read)
 - Inputs: High = 2.8V (DC), 2.2V (DM); Low = 0.8V Outputs: High = 2.4V, Low = 0.8V
- 3. Typical access time is 280ns.
- 4. Typical chip select to output on delay is 60ns.
- 5. tAH must be greater than tCH.
- 6. VIHP VILP \ge 25 Volts.
- 7. V_{BB} must be applied prior to V_{CC} and V_{DD}. V_{BB} must also be the last power supply switched off.