

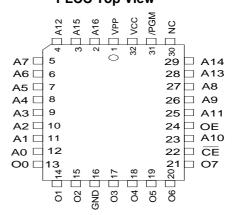
ICE27C010 1- Megabit(128KX8) OTP EPROM

Description

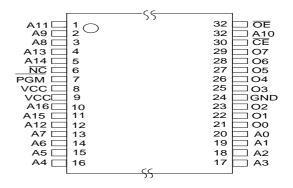
The ICE27C010 is a low-power, high-performance 1M(1,048,576) bit one-time programmable read only memory (OTP EPROM) organized as 128K by 8 bits. It is single 5V power supply in normal read mode operation. Any byte can be accessed in less than 45 ns. The ICE27C010 typically consumes 10mA , standby mode supply current typically 1 μ A. Two lines control (\overline{CE} , \overline{OE}) to give designers the flexibility to prevent

bus contention. Programming time is typically only 100 μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

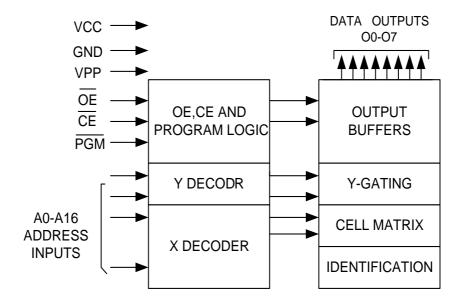
Features


- Fast Read Access Time: 70ns
- Low-Power consumption
- 1 μ A Typ. Standby
 - 10 mA max. Active at 5MHz
- JEDEC Standard Packages
 - 32-Lead 600-mil PDIP
 - 32-Lead PLCC
 - 32-Lead TSOP
- Operating voltage: 5V ±10%
- High Reliability CMOS Technology
 - 2000V ESD Protection
 - 200 mA Latchup Immunity
- Programming time: 100 us/byte (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code

Pin Configurations


Pin Name	Function
A0 – A16	Addresses
O0 – O7	Outputs
/CE	Chip Enable
/OE	Output Enable
/PGM	Program Strobe
NC	No Connect

PDIP Top View 32 VCC Vpp □ □ PGM A16 □ 31 3 30 □ NC A15 □ A12 □ A7 □ 29 4 □ A14 □ A13 5 28 A6 □ □ A8 6 27 26 □ A9 Α5 25 □ <u>A1</u>1 A4 🗆 8 24 A3 □ 9 □ OE A2 □10 23 A1 □11 22 □ CE ☐ O7 ☐ O6 ☐ O5 ☐ O4 A0 | 12 O0 | 13 21 20 O1 | 14 O2 | 15 19 18 GND □16 17 □ O3


PLCC Top View

TSOP Top View

Block Diagram

Absolute Maximum Rating

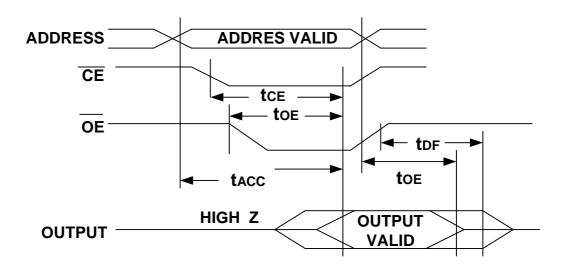
Operation Temperature Commercial	to +70
Storage Temperature65	to +125
Voltage on Any Pin with Respect to Ground	/ to +7.0V ⁽¹⁾
Vpp Supply Voltage with Respect to Ground0.6	V to +13.5V ⁽¹⁾

Operating Modes

Mode\Pin	\overline{CE}	\overline{OE}	\overline{PGM}	Ai	VPP	Outputs
Read	V_{IL}	V_{IL}	X ⁽¹⁾	Ai	Χ	D _{OUT}
Output Disable	Χ	V_{IH}	Х	X	Χ	High Z
Standby	V_{IH}	Χ	Χ	X	Χ	High Z
Rapid Program ⁽²⁾	V_{IL}	VPP	V_{IL}	Ai	Vpp	D _{IN}
PGM Verify	V_{IL}	V_{IL}	V_{IH}	Ai	VPP	D _{OUT}
PGM Inhibit	V_{IH}	Χ	Χ	X	Vpp	High Z
Product Identification ⁽⁴⁾	V_{IL}	V_{IL}	X	$A9 = V_H^{(3)}$ $A0,A1 = V_{IH} \text{ or } V_{IL}$ $A2 - A16 = V_{IL}$	X	Identification Code

Notes: 1. X can be V_{IL} or V_{IH} .

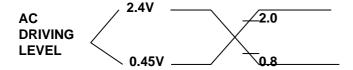
- 2. Refer to Programming Characteristics.
- 3. $V_H = 12 \pm 0.5 V$.
- 4. See Product Identification Code item.

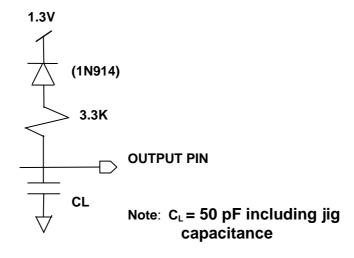

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units	
ILI	Input Load Current	V _{IN} = 0V to Vcc Com.			± 1	μΑ
I _{LO}	Output Leakage Current	$V_{OUT} = 0V$ to Vcc		± 5	μΑ	
IPP1 ⁽²⁾	Vpp ⁽¹⁾ Read/Standby Current	Vpp = Vcc		3	uA	
1	Vcc ⁽¹⁾ Standby Current	$I_{SB1}(CMOS), \overline{CE} =$	Vcc ± 0.3V		3	μΑ
I _{SB}	vcc Standby Current	$I_{SB2}(TTL), \overline{CE} = 2.0 \text{ to Vcc} + 0.5V$			500	uA
I _{CC}	Vcc Active Current	$f = 5MHz, I_{OUT} = 0mA,$		10	mA	
V _{IL}	Input Low Voltage			-0.6	0.8	V
V _{IH}	Input High Voltage			2.2	Vcc + 0.5	V
V _{OL}	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$			0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V	

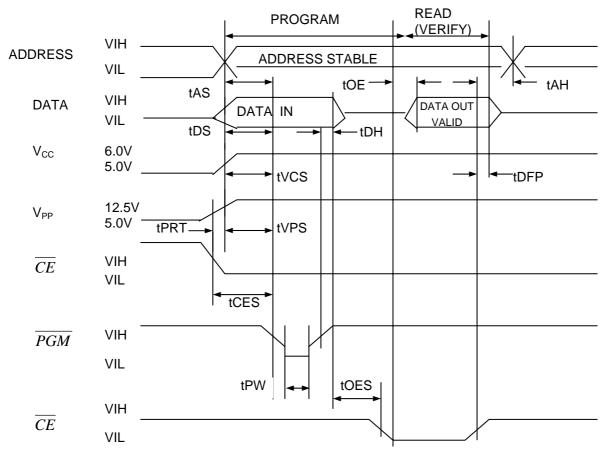
Notes: 1. Vcc must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.

2. Vpp may be connected directly to Vcc except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .


AC Waveforms for Read Operation (1)


Notes:

- 1. OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} .
- 2. OE may be delayed up to t_{ACC} t_{OE} after the address in valid without impact on t_{ACC} .
- 3. This parameter is only sampled and is not 100% tested.
- 4. Output float is defined as the point when data is no longer driven.


Input Test Waveforms and Measurement Levels

Output Test Load

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V $V_{IH.}$
- 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3.When programming the ICE27C010 at 0.1uF capacitor is required across V_{pp} and ground to suppress spurious voltage transients.

DC Programming Characteristics

 $T_A = 25 \pm 5$, $Vcc = 5.5 \pm 0.5V$, $Vpp = 12 \pm 0.5V$

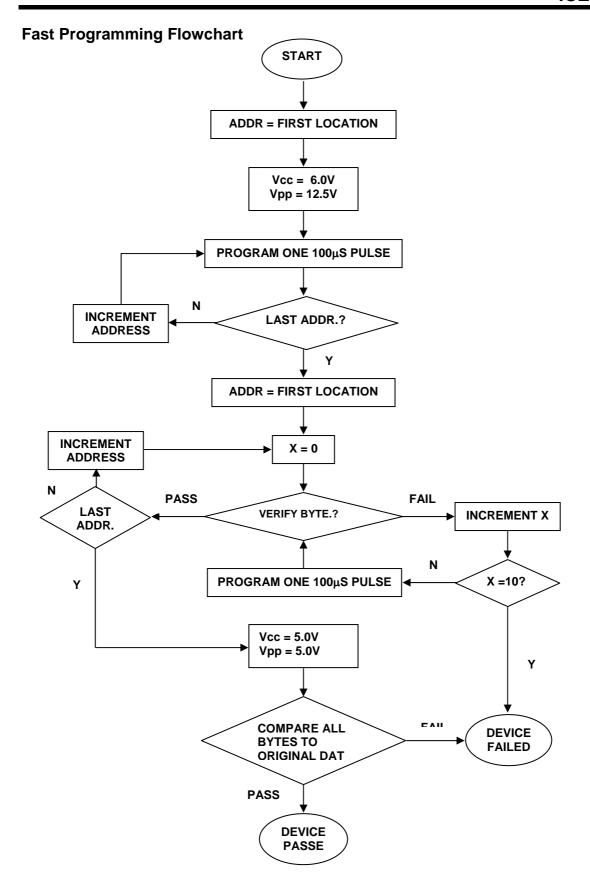
Symbol	Parameter	Test Conditions	Lin	Units	
Syllibol	raidilietei	rest conditions	Min	Max	Offics
I _{LI}	Input Load Current	$I_{IN} = V_{IL}, V_{IH}$		± 10	μΑ
V_{IL}	Input Low Level		-0.6	8.0	V
V_{IH}	Input High Level		2.0	Vcc + 1	V
V_{OL}	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$		0.4	V
V_{OH}	Output High Voltage	$I_{OH} = -400 \mu A$	2.4		V
I _{CC2}	Vcc Supply Current (Program and Verify)			20	mA
I _{PP2}	OE Supply Current	$\overline{CE} = \overline{PGM} = V_{IL}$		10	mA
V_{ID}	A9 Product Identification Voltage		10	12.5	V

AC Programming Characteristics

 $T_A = 25 \pm 5$, $Vcc = 5.5 \pm 0.5V$, $Vpp = 12.0 \pm 0.5V$

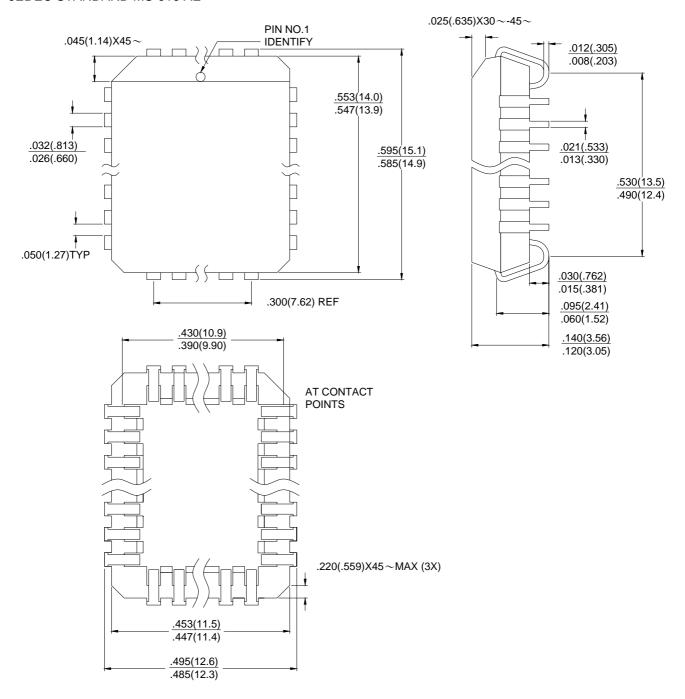
Symbol	Parameter	Test Conditions	Lin	Units	
Symbol	Farameter	Test Conditions	Min	Max	Ullits
t _{AS}	Address Setup Time		2		μS
t ces	CE Setup Time		2		μS
t _{OES}	\overline{OE} Setup Time	Input Rise and Fall Times	2		μS
t _{DS}	Data Setup Time	(10% to 90%) 20ns	2		μS
t _{AH}	Address Hold Time	Input Pulse Levels	0		μS
t_DH	Data Hold Time	0.45V to 2.4V	2		μS
t _{DFP}	\overline{OE} High to Output Float Delay ⁽²⁾		0	130	ns
t _{VPS}	Vpp Setup Time	Input Timing Reference Level 0.8V to 2.0V	2		μS
t _{VCS}	Vcc Setup Time	0.87 (0.2.07	2		μS
t _{PW}	\overline{PGM} Program Pulse Width ⁽³⁾	Output Timing Reference Level	95	105	μS
t _{OE}	Data Valid from \overline{OE}	0.8V to 2.0V		70	ns
t _{PRT}	Vpp Pulse Rise Time During Programming		50		ns

Notes: 1. Vcc must be applied simultaneously or before Vpp.and removed simultaneously or after Vpp.

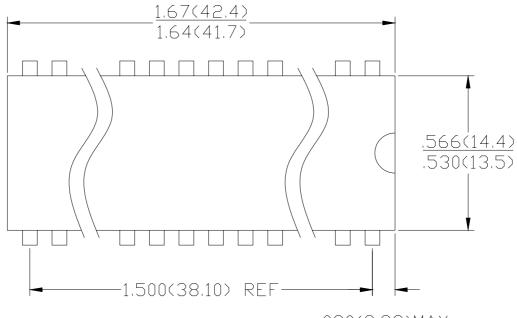

- 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is 100 μ sec \pm 5%.

Product Identification Code

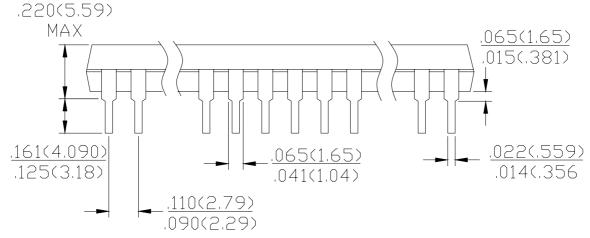
Codes	Pins									Hex Data		
Codes	A 1	A0	07	06	O5	04	О3	02	01	00	nex Data	
Continue Code 1	0	0	0	1	1	1	1	1	1	1	7F	
Continue Code 2	0	1	0	1	1	1	1	1	1	1	7F	
Manufacturer	1	0	0	1	0	1	1	1	1	0	5E	
Device Type	1	1	1	1	0	0	0	0	0	1	C1	

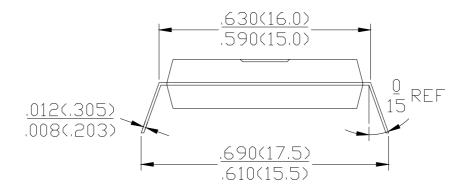

Rapid Programming Algorithm

A 100 μs PGM pulse width is used to program. The address is set to the first location. Vcc is raised to 6.0V and Vpp is raised to 12.5V. Each address is first programmed with one 100 μs \overline{PGM} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. Vpp is then lowered to 5.0V and Vcc to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

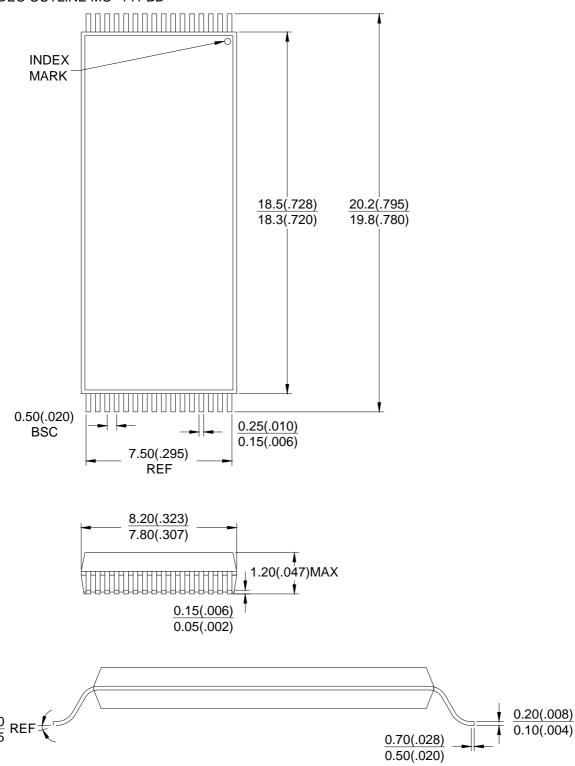


Packaging Information


32P, 32-Lead, Plastic J-Leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-016 AE



32D, 32-Lead, 0.600" wide, Plastic Dual Inline Package (PDIP) Dimensions in Inches and (Millimeters)



.090(2.29)MAX

32T, 32-Lead, Plastic Thin Small Outline Package (TSOP) Dimensions in Millimeters and (Inches)* JEDEC OUTLINE MO- 141 BD

*Controlling dimension: millimeters