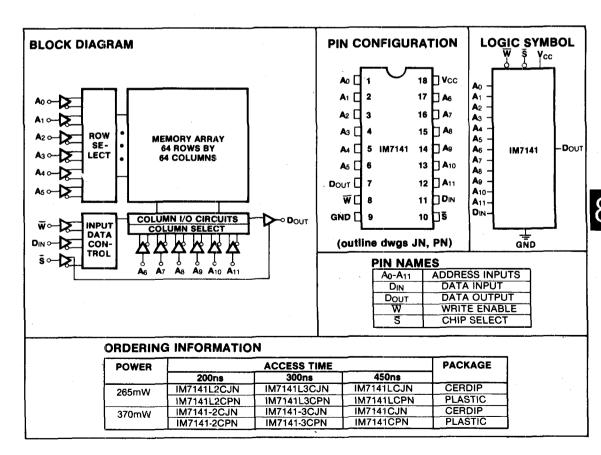
IM7141 4096 Bit (4096x1) NMOS Static RAM


FEATURES

- Cycle Time Equal to Access Time
- Completely Static No Clock Required
- Separate Data Input and Output
- TTL Compatible Inputs and Outputs
- 883A Class B Processing Available
- Single +5 Volt Power Supply
- High Density 18 Pin Package
- Maximum Access Time:
 - -200ns (-2)
 - -300ns (-3)
- Maximum Power Dissipation:
 - 256mW (L)
 - 370mW (Standard)

DESCRIPTION

The IM7141 is a 4096-bit static Random Access Memory device organized 4096 words X 1. bit. The storage cells and decode and control circuitry are completely static; no clocks or refresh operations are required. Memory access occurs within the specified access time after all address inputs are stable. A Chip Select input is provided for simple memory array expansion.

The 7141 is assembled in a standard 18 pin DIP for maximum system packing density.

ABSOLUTE MAXIMUM RATINGS

Operating Temperature	0°C to +70°C
Storage Temperature	65°C to +150°C
Voltage on any Pin to Ground	0.5V to +7V
Power Dissipation	

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

TEST CONDITIONS: $T_A = 0^{\circ}$ C to +70°C, $V_{CC} = +5$ V ± 5 %

T			7141L		7141		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Input Load Current (All Inputs)	I _{INLD}	V _{IN} = 0 to 5.25V		10		10	μΑ
Output Leakage Current	lork	$\overline{S} = 2.4V$, $V_{VO} = 0.4V$ to V_{CC}		10		10	μ
Power Supply Current	ICC2	VIN = 5.25, T _A = 0 °C Output Open		45		65	
Power Supply Current	lcc1	VIN = 5.25V, T _A = 0 °C Output Open		50		70	mA
In; ⊿t Low Voltage	VIL		-0.5	0.8	-0.5	0.8	1
Input High Voltage	ViH		2.0	Vcc	2.0	Vcc	V
Output Low Voltage	VoL	I _{OL} = 3.2mA		0.4		0.4]
Output High Voltage	Voн	I _{OH} = −200μA	2.4	Vcc	2.4	Vcc	

CAPACITANCE

8

PARAMETER	SYMBOL	TEST CONDITIONS	MAX	UNIT	
Input/Output Capacitance	C _{I/O}	V _{I/O} = 0V	5	nF	
Input Capacitance	CIN	VIN = OV	5	Р'	

NOTE: These parameters are periodically sampled, not 100% tested.

DEVICE OPERATION

When \overline{W} is high, the data input buffers are inhibited to prevent erroneous data from getting into the array. As long as \overline{W} remains high, the data stored cannot be changed by the addresses, Chip select, or data I/O voltage levels and timing transitions. The block diagram also shows data storage cannot be changed by \overline{W} , the addresses, or the input data as long as \overline{S} is high. Either \overline{S} or \overline{W} by itself, or in conjunction

with the other, can prevent the extraneous writing due to signal transitions.

A READ occurs during the overlap of \overline{S} low and \overline{W} high. Data within the array can only be changed during a Write time, defined as the overlap of \overline{S} low and \overline{W} low. To prevent the loss of data, the addresses must be properly established during the entire Write time plus t_{Wf} .

AC CHARACTERISTICS

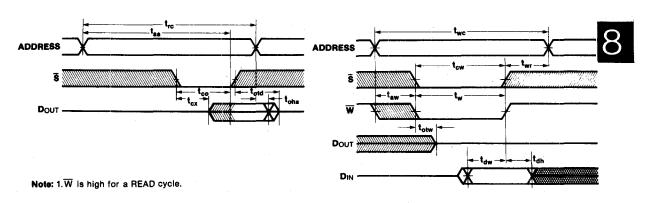
TEST CONDITIONS: $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = +5V \pm 5\%$

 $t_r = t_f = 10$ ns, $V_{IL} = 0.8$ V, $V_{IH} = 2.0$ V, Output Load = 1 TTL Gate and 100pF

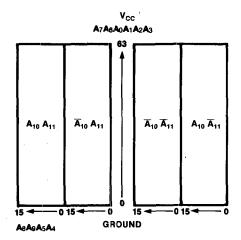
Input and output timing reference level = 1.5V

READ CYCLE

PARAMETER		7141L2, 7141-2		7141L3, 7141-3		7141L, 7141		
	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Read Cycle	t _{rc}	200		300		450		
Access Time	t _{aa}		200		300		450	
S to Output Valid	t _{co}		70		100		100	ns
S to Output Active	t _{cx}	0		0		0		113
Output 3 State from Deselect	totd	0	60	0	80	0	100	
Output Hold from Address Change	t _{oha}	10		10		10		


WRITE CYCLE

PARAMETER		7141L2, 7141-2		7141L3, 7141-3		7141L, 7141		
	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Write Time Cycle	t _{wc}	200		300		450		· .
Write Time	t _w	120		150		200		
Write Release Time	t _{wr}	0		0		0		
Output 3 State from Write	t _{otw}	0	60	0	80	0	100	ns
Data to Write Time Overlap	t _{dw}	120		150		200		
Data Hold from Write Time	t _{dh}	15		15		15		
Address Setup Time	taw	0		0		0		
S Select Pulse Width	t _{cw}	120		150		200		


TIMING DIAGRAMS

READ CYCLE

WRITE CYCLE

7141 BIT MAP DIAGRAM

